Differential Geometry I - Homework 5

Pablo Sánchez Ocal
March 6th, 2017

Exercise 1

1. Let $f: M \longrightarrow \mathbb{R}$ with $p \in M$ a critical point and M of dimension n. Given $v, w \in T_{p} M$, let X and Y be vector fields with $X(p)=v$ and $Y(p)=v$, that is, we can write:

$$
v=\sum_{i=1}^{n} v^{i} \frac{\partial}{\partial x^{i}}, \quad w=\sum_{i=1}^{n} w^{i} \frac{\partial}{\partial x^{i}}, \quad X=\sum_{i=1}^{n} a^{i} \frac{\partial}{\partial x^{i}}, \quad Y=\sum_{i=1}^{n} b^{i} \frac{\partial}{\partial x^{i}}
$$

with (x, U) a chart around $p \in M$ and $a^{i}, b^{i}: M \longrightarrow \mathbb{R}$ smooth functions with $a^{i}(p)=v^{i}, b^{i}(p)=w^{i}$ for $1 \leq i \leq n$. We define $f_{* *}(v, w)=X(Y(f))(p)$, we want to show that since $[X, Y]_{P}(f)=0$ (because the crossed derivatives are zero since p is a critical point of f, the way to see this is exactly what we will do in the following) we have that $f_{* *}(v, w)$ is symmetric and well defined. First, using that the commutator is zero, we clearly have:

$$
f_{* *}(v, w)=X(Y(f))(p)=Y(X(f))(p)=f_{* *}(w, v)
$$

thus $f_{\tilde{\sim}}(v, w)$ is symmetric. Moreover, suppose we have \tilde{X} and \tilde{Y} be vector fields with $\tilde{X}(p)=v$ and $\tilde{Y}(p)=v$, that is, we can write:

$$
\tilde{X}=\sum_{i=1}^{n} \tilde{a}^{i} \frac{\partial}{\partial x^{i}}, \quad \tilde{Y}=\sum_{i=1}^{n} \tilde{b}^{i} \frac{\partial}{\partial x^{i}}
$$

with $\tilde{a}^{i}, \tilde{b}^{i}: M \longrightarrow \mathbb{R}$ smooth functions with $\tilde{a}^{i}(p)=v^{i}, \tilde{b}^{i}(p)=w^{i}$ for $1 \leq i \leq n$. Now:

$$
\begin{aligned}
X(Y(f))(p) & =\sum_{i=1}^{n} a^{i}(p) \frac{\partial}{\partial x^{i}}\left(\sum_{j=1}^{n} b^{j} \frac{\partial f}{\partial x^{j}}\right)(p) \\
& =\sum_{i=1}^{n} a^{i}(p)\left(\sum_{j=1}^{n}\left(\frac{\partial b^{j}}{\partial x^{i}} \frac{\partial f}{\partial x^{j}}+b^{j} \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}\right)\right)(p) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} a^{i}(p) b^{j}(p) \frac{\partial^{2} f(p)}{\partial x^{i} \partial x^{j}}=\sum_{i=1}^{n} \sum_{j=1}^{n} v^{i} w^{j} \frac{\partial^{2} f(p)}{\partial x^{i} \partial x^{j}} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \tilde{a}^{i}(p) \tilde{b}^{j}(p) \frac{\partial^{2} f(p)}{\partial x^{i} \partial x^{j}}=\tilde{X}(\tilde{Y}(f))(p)
\end{aligned}
$$

since p being a critical point of f means that $\partial f(p) / \partial x^{i}=0$ for $1 \leq i \leq n$, so the crossed derivatives vanish. Thus $f_{* *}(v, w)$ is well defined.
2. We show that (note that we have changed a bit the notation of the problem to better match what we want to illustrate). Let X and Y be as above, we have:

$$
f_{* *}\left(\sum_{i=1}^{n} v^{i} \frac{\partial}{\partial x^{i}} \sum_{i=1}^{n} w^{i} \frac{\partial}{\partial x^{i}}\right)=X(Y(f))(p)=\sum_{i=1}^{n} \sum_{j=1}^{n} v^{i} w^{j} \frac{\partial^{2} f(p)}{\partial x^{i} \partial x^{j}}
$$

in virtue of the computed above. This is what we wanted to prove.
3. Show that the rank of the matrix $\partial^{2} f(p) / \partial x^{i} \partial x^{j}$ is independent of the coordinate system. For this, suppose we have another chart (y, V), then we may write $x(y)$ a change of variables and:

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial y^{l} \partial y^{k}} & =\frac{\partial}{\partial y^{l}}\left(\sum_{j=1}^{n} \frac{\partial x^{j}}{\partial y^{k}} \frac{\partial f}{\partial x^{j}}\right)=\sum_{i=1}^{n} \frac{\partial x^{i}}{\partial y^{l}} \frac{\partial}{\partial x^{i}}\left(\sum_{j=1}^{n} \frac{\partial x^{j}}{\partial y^{k}} \frac{\partial f}{\partial x^{j}}\right) \\
& =\sum_{i=1}^{n} \frac{\partial x^{i}}{\partial y^{l}}\left(\sum_{j=1}^{n} \frac{\partial^{2} x^{j}}{\partial x^{i} \partial y^{k}} \frac{\partial f}{\partial x^{j}}+\frac{\partial x^{j}}{\partial y^{k}} \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}\right)
\end{aligned}
$$

which evaluated at our particular $p \in M$ having $\partial f(p) / \partial x^{i}=0$ for $1 \leq i \leq n$ yields:

$$
\frac{\partial^{2} f(p)}{\partial y^{l} \partial y^{k}}=\sum_{i=1}^{n} \sum_{j=1}^{n} \frac{\partial x^{i}(p)}{\partial y^{l}} \frac{\partial x^{j}(p)}{\partial y^{k}} \frac{\partial^{2} f(p)}{\partial x^{i} \partial x^{j}}
$$

which means that we can go between $\partial^{2} f(p) / \partial x^{i} \partial x^{j}$ and $\partial^{2} f(p) / \partial y^{l} \partial y^{k}$ by multiplication of the change of basis matrices between x and y. Since a change of basis matrix is invertible, it preserves the rank, hence the two matrices above have the same rank. Thus the rank of $\partial^{2} f(p) / \partial x^{i} \partial x^{j}$ is independent of the chart we choose.
4. Let $f: M \longrightarrow N$ and $p \in M$ be a critical point of f. For $v, w \in T_{p} M, X, Y$ vector fields over M as above and $g: N \longrightarrow \mathbb{R}$ smooth, we define $f_{* *}(v, w)(g)=X(Y(g \circ$ $f))(p)$. We want to show that this means that the function $f_{* *}: T_{p} M \times T_{p} M \longrightarrow$ $T_{f(p)} N$ is well defined and bilinear.
First, we prove that indeed we have that $f_{* *}(v, w)$ is a derivation. For this, let (x, U) be a chart on M around p and (y, V) a chart on N around $f(p)$, say N has dimension m. We have:

$$
\begin{aligned}
f_{* *}(v, w)(g) & =X(Y(g \circ f))(p)=\sum_{i=1}^{n} a^{i}(p) \frac{\partial}{\partial x^{i}}\left(\sum_{j=1}^{n} b^{j} \frac{\partial(g \circ f)}{\partial x^{j}}\right)(p) \\
& =\sum_{i=1}^{n} a^{i}(p) \frac{\partial}{\partial x^{i}}\left(\sum_{j=1}^{n} b^{j} \sum_{k=1}^{m} \frac{\partial g}{\partial y^{k}} \frac{\partial f}{\partial x^{j}}\right)(p) \\
& =\sum_{i=1}^{n} a^{i}(p) \frac{\partial}{\partial x^{i}}\left(\sum_{j=1}^{n} \sum_{k=1}^{m} b^{j} \frac{\partial g}{\partial y^{k}} \frac{\partial f}{\partial x^{j}}\right)(p) \\
& =\sum_{i=1}^{n} a^{i}(p) \sum_{j=1}^{n} \sum_{k=1}^{m}\left(\frac{\partial}{\partial x^{i}}\left(b^{j} \frac{\partial g}{\partial y^{k}}\right) \frac{\partial f}{\partial x^{j}}+b^{j} \frac{\partial g}{\partial y^{k}} \frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}\right)(p) \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{m} a^{i}(p) b^{j}(p) \frac{\partial^{2} f(p)}{\partial x^{i} \partial x^{j}} \frac{\partial g(f(p))}{\partial y^{k}}
\end{aligned}
$$

since p being a critical point of f means that $\partial f(p) / \partial x^{i}=0$ for $1 \leq i \leq n$, so the first order derivatives on f vanish. Now, since this only depends on the derivative of g at $f(p)$, we found that we can write $f_{* *}(v, w)(g)$ as a sum of derivatives of g with respect to $\partial / \partial y^{k}$ evaluated at $f(p)$ for $1 \leq k \leq m$, which is a basis of $T_{f(p)} N$ hence $f_{* *}(v, w)$ is a derivation. Moreover, if there are another vector fields \tilde{X} and \tilde{Y} of M such that $\tilde{X}(p)=v$ and $\tilde{Y}(p)=w$, since $g \circ f: M \longrightarrow \mathbb{R}$ we already saw in a section above that $X(Y(g \circ f))(p)=\tilde{X}(\tilde{Y}(g \circ f))(p)$. Combining this two results, we obtain that $f_{* *}$ is well defined.

Second, let $u, v, w \in T_{p} M$ and $r \in \mathbb{R}$, let W be a vector field on M with $W(p)=u$. Since $f_{* *}$ is well defined, we can use $W+X$ as the vector field having $W(p)+X(p)=$ $u+v$, and then:

$$
\begin{aligned}
f_{* *}(u+v, w)(g) & =(W+X)(Y(g \circ f))(p)=W(Y(g \circ f))(p)+X(Y(g \circ f))(p) \\
& =f_{* *}(u, w)(g)+f_{* *}(v, w)(g),
\end{aligned}
$$

analogously:

$$
\begin{aligned}
f_{* *}(w, u+v) & =Y((W+X)(g \circ f))(p)=Y(W(g \circ f)+X(g \circ f))(p) \\
& =Y(W(g \circ f))(p)+Y(X(g \circ f))(p) \\
& =f_{* *}(w, u)(g)+f_{* *}(w, v)(g),
\end{aligned}
$$

with:

$$
\begin{aligned}
f_{* *}(r v, w)(g) & =(r X)(Y(g \circ f))(p)=X(r Y(g \circ f))(p) \\
& =r X(Y(g \circ f))(p)=r f_{* *}(v, w)(g),
\end{aligned}
$$

analogously:

$$
\begin{aligned}
f_{* *}(v, r w)(g) & =X((r Y)(g \circ f))(p)=X(Y(r(g \circ f)))(p) \\
& =r X(Y(g \circ f))(p)=r f_{* *}(v, w)(g),
\end{aligned}
$$

where we have used indiscriminately the definition of sum of functions and function obtained by multiplication with a scalar and that X and Y are vector fields hence evaluated at p they behave like derivations (in particular they are linear). Thus by the four equalities above, we have that $f_{* *}$ is bilinear, as desired.
5. Let $c: \mathbb{R} \longrightarrow M$ have 0 as a critical point. Consider (t, \mathbb{R}) a chart of \mathbb{R}, this yields $\partial / \partial t$ a basis in $T_{0} \mathbb{R}$, meaning that $(1,1) \in T_{0} \mathbb{R}$ can be written as $(\partial / \partial t, \partial / \partial t)$, meaning that using the sections above we have for any $f: M \longrightarrow \mathbb{R}$ smooth:

$$
\begin{aligned}
c_{* *}(1,1)(f) & =c_{* *}\left(\frac{\partial}{\partial t}, \frac{\partial}{\partial t}\right)(f)=\frac{\partial}{\partial t}\left(\frac{\partial}{\partial t}(f \circ c)\right)(0) \\
& =(f \circ c)^{\prime \prime}(0)=c^{\prime \prime}(0)(f)
\end{aligned}
$$

and $c_{* *}(1,1)=c^{\prime \prime}(0)$ as desired.

Exercise 2

1. Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ smooth with $f(0)=0$, define $g(t)=f(\sqrt{t})$ for $t \geq 0$. First, we notice that by Taylor's Theorem with the Peano form of the reminder we can write:

$$
f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2}+\alpha(x) x^{3}=f(0)+\frac{f^{\prime \prime}(0)}{2} x^{2}+\alpha(x) x^{3}
$$

with $\alpha: \mathbb{R} \longrightarrow \mathbb{R}$ a smooth function with $\lim _{x \rightarrow 0} \alpha(x)=0$. Now, we have that:

$$
\begin{aligned}
g_{+}^{\prime}(0) & =\lim _{h \downarrow 0} \frac{g(h)-g(0)}{h}=\lim _{h \downarrow 0} \frac{f(\sqrt{h})-f(0)}{h} \\
& =\lim _{h \downarrow 0} \frac{f(0)+\frac{f^{\prime \prime}(0)}{2} h+\alpha(\sqrt{h}) \sqrt{h^{3}}-f(0)}{h}=\frac{f^{\prime \prime}(0)}{2}+\lim _{h \downarrow 0} \frac{\alpha(\sqrt{h}) \sqrt{h^{3}}}{h} \\
& =\frac{f^{\prime \prime}(0)}{2}+\lim _{h \downarrow 0} \alpha(\sqrt{h}) \sqrt{h}=\frac{f^{\prime \prime}(0)}{2}+\lim _{\sqrt{h} \downarrow 0} \alpha(\sqrt{h}) \sqrt{h}=\frac{f^{\prime \prime}(0)}{2},
\end{aligned}
$$

where we have used that $h \downarrow 0$ if and only if $\sqrt{h} \downarrow 0$ and both $\lim _{x \downarrow 0} \alpha(x)=$ $\lim _{x \downarrow 0} x=0$. This proves the desired result.
2. Given $c: \mathbb{R} \longrightarrow M$ smooth with $c^{\prime}(0)=0 \in T_{p} M$ we define $\gamma(t)=c(\sqrt{t})$ for $t \geq 0$. For any fixed function $f: M \longrightarrow \mathbb{R}$ smooth, consider now $f \circ c: \mathbb{R} \longrightarrow \mathbb{R}$, as in the section above we set $g(t)=(f \circ c)(\sqrt{t})$ for $t \geq 0$. Now:

$$
c^{\prime \prime}(0)(f)=(f \circ c)^{\prime \prime}(0)=2 g_{+}^{\prime}(0)=2(f \circ \gamma)^{\prime}(0)=2 \gamma^{\prime}(0)(f),
$$

where we have used the definition of $c^{\prime \prime}(0)$ in the first equality, the result proven in the section above in the second equality, notice how $g(t)=(f \circ \gamma)(t)$ for the third equality and the definition of $\gamma^{\prime}(0)$ in the fourth equality. Since this is true for every f, we have that $c^{\prime \prime}(0)=2 \gamma^{\prime}(0)$, as desired.

Exercise 3

1. Consider the map $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ given by $f(x, y, z)=f(y,-x, z)$. Let $p=(0,0, a)$ for $a \in \mathbb{R}$, we compute $f_{*}: T_{p} \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$. Since this is the differential of f evaluated at p, we have:

$$
f_{*}=(D f)_{p}=\begin{array}{cclccc}
0 & 1 & 0 & 0 & 1 & 0 \\
-1 & 0 & 0_{p}=-1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}
$$

for every $p=(0,0, a)$ with $a \in \mathbb{R}$. Moreover, we can think of f_{*} as belonging to $\mathbb{R}^{3} \otimes\left(\mathbb{R}^{3}\right)^{*}$: if we consider e_{1}, e_{2}, e_{3} the canonical basis of \mathbb{R}^{3}, with $e_{1}^{*}, e_{2}^{*}, e_{3}^{*}$ the dual basis of $\left(\mathbb{R}^{3}\right)^{*}$, then $e_{i} \otimes e_{j}^{*}$ is the multiplication of a column vector with a row vector, yielding a matrix with a one in the entry (i, j) and zeros everywhere else, meaning that summing over the basis $\left\{e_{i} \otimes e_{j}^{*}\right\}_{i, j=1,2,3}$ of $\mathbb{R}^{3} \otimes\left(\mathbb{R}^{3}\right)^{*}$ weighted by the entries of f_{*} we obtain:

$$
\begin{aligned}
(1) \cdot\left(e_{1} \otimes e_{2}^{*}\right)+(-1) \cdot\left(e_{2} \otimes e_{1}^{*}\right)+(1) \cdot\left(e_{3} \otimes e_{3}^{*}\right) & =\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
-\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right) & =\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)=f_{*}
\end{aligned}
$$

and we gave f_{*} in the basis of $\mathbb{R}^{3} \otimes\left(\mathbb{R}^{3}\right)^{*}$ with the desired components.
2. We consider now f_{*} evaluated at $(0,0, \pm 1)$. We already saw that $(D f)_{(0,0, a)}$ does not depend on $a \in \mathbb{R}$, hence we obtain the same f_{*} as above, and its expression as a $(1,1)$-tensor is the above given.
3. Let $f: M \longrightarrow N$ is a smooth function between manifolds M, N of dimensions m and n respectively. Let $p \in M$, we want to describe $f_{*}: T_{p} M \longrightarrow T_{f(p)} N$ as an element of $T_{f(p)} N \otimes T_{p}^{*} M$ and give its components. In order to do this, we will notice that using local charts, say (x, U) near $p \in M$ and (y, V) near $f(p) \in N$, we can assume that $M=\mathbb{R}^{m}$ and $N=\mathbb{R}^{n}$. In particular, $T_{p} M$ has $\partial / \partial x^{1}, \ldots, \partial / \partial x^{m}$ as a basis and $T_{f(p)} N$ has $\partial / \partial y^{1}, \ldots, \partial / \partial y^{n}$ a basis. Thus $\left(f_{*}\right)_{p}=(D f)_{p}$ is a matrix eating an m-dimensional vector in $T_{p} M$ and pooping an n-dimensional vector in $T_{f(p)} N$, that is, it has m columns and n rows, say $\left(f_{*}\right)_{p}=\left(a_{i, j}^{p}\right)_{i, j}$ with $i=1, \ldots, n$ and $j=1, \ldots, m$ its expression with the entries in the basis above. Now, $T_{p}^{*} M$ has $d x^{1}, \ldots, d x^{m}$ as the canonical dual basis. In particular, as in the section above, $\left\{\partial / \partial y^{i} \otimes d x^{j}\right\}_{i, j}$ with $i=1, \ldots, n$ and $j=1, \ldots, m$ is the corresponding basis of $T_{f(p)} N \otimes T_{p}^{*} M$ and $\partial / \partial y^{i} \otimes d x^{j}$ is the multiplication of a column vector with a row vector, yielding a matrix with a one in the entry (i, j) and zeros everywhere else. Thus we can again rewrite:

$$
\left(f_{*}\right)_{p}=\sum_{i, j} a_{i, j}^{p} \cdot\left(\frac{\partial}{\partial y^{i}} \otimes d x^{j}\right)
$$

writing $f_{*} \in T_{f(p)} N \otimes T_{p}^{*} M$ with the entries of f_{*} as its components, what we desired.

Exercise 4

1. Let $\phi: M \longrightarrow N$ and $f: N \longrightarrow \mathbb{R}$ be smooth, Y a vector field on M. Now:

$$
\phi^{*}(d f)(Y)=d(f \circ \phi)(Y)=Y(f \circ \phi)
$$

where we used [2, Lemma 6.12 (p. 137)] and the definition of the action on a vector field.
2. Using the limit definition, we have that:

$$
\begin{aligned}
\left(L_{X}(d f)(p)\right)\left(Y_{p}\right) & =\left(\lim _{h \rightarrow 0} \frac{\phi_{h}^{*}(d f)(p)-(d f)(p)}{h}\right)\left(Y_{p}\right) \\
& =\lim _{h \rightarrow 0} \frac{\phi_{h}^{*}(d f)(p)\left(Y_{p}\right)-(d f)(p)\left(Y_{p}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{Y\left(f \circ \phi_{h}\right)(p)-Y(f)(p)}{h} \\
& =Y\left(\lim _{h \rightarrow 0} \frac{\left(f \circ \phi_{h}\right)(p)-f(p)}{h}\right) \\
& =Y\left(\lim _{h \rightarrow 0} \frac{\left(\phi_{h}^{*} f\right)(p)-f(p)}{h}\right) \\
& =Y(X(f))(p)=Y_{p}\left(L_{X} f\right)
\end{aligned}
$$

meaning that:

$$
d\left(L_{X} f\right)\left(Y_{p}\right)=Y_{p}\left(L_{X} f\right)=\left(L_{X}(d f)(p)\right)\left(Y_{p}\right)
$$

and thus $d\left(L_{X} f\right)=L_{X}(d f)$.
3. Let X and Y vector fields on M and $f: M \longrightarrow \mathbb{R}$ a smooth function. Let X generate the family $\left\{\phi_{t}\right\}$, set $\alpha(t, h)=Y_{\phi_{-t}(p)}\left(f \circ \phi_{h}\right)$. Now:

$$
\begin{aligned}
D_{1} \alpha(0,0) & =\lim _{t \rightarrow 0} \frac{\alpha(t, 0)-\alpha(0,0)}{t}=\lim _{t \rightarrow 0} \frac{Y_{\phi_{-t}(p)}(f)-Y_{p}(f)}{t} \\
& =\lim _{t \rightarrow 0} \frac{Y(f)\left(\phi_{-t}(p)\right)-Y(f)(p)}{t}=-\lim _{t \rightarrow 0} \frac{Y(f)\left(\phi_{t}(p)\right)-Y(f)(p)}{t} \\
& =-X(Y(f))(p)=-X_{p}(Y(f))
\end{aligned}
$$

where the only trick we used is noting that since $t \rightarrow 0$, the change $t \mapsto-t$ yields the fourth equality. Moreover:

$$
\begin{aligned}
D_{2} \alpha(0,0) & =\lim _{h \rightarrow 0} \frac{\alpha(0, h)-\alpha(0,0)}{h}=\lim _{h \rightarrow 0} \frac{Y_{p}\left(f \circ \phi_{h}\right)-Y_{p}(f)}{h} \\
& =Y_{p}\left(\lim _{h \rightarrow 0} \frac{f \circ \phi_{h}-f}{h}\right)=Y_{p}(X(f))
\end{aligned}
$$

Thus if we have $c(h)=\alpha(h, h)$ then:

$$
\begin{aligned}
-c^{\prime}(0) & =-\lim _{h \rightarrow 0} \frac{\alpha(h, h)-\alpha(0,0)}{h}=-\lim _{h \rightarrow 0} \frac{\alpha(h, h)-\alpha(h, 0)}{h} \\
& -\lim _{h \rightarrow 0} \frac{\alpha(h, 0)-\alpha(0,0)}{h}=-D_{2} \alpha(0,0)-D_{1} \alpha(0,0)=-Y_{p}(X(f)) \\
& \left.+X_{p}(Y(f))=[X, Y]_{p}(f)=L_{X} Y(p)(f)\right),
\end{aligned}
$$

the desired results.

Exercise 5

Let $\gamma: J \longrightarrow M$ be an integral curve of a vector field X on a manifold M with $\gamma^{\prime}\left(t_{0}\right)=0$ for some $t_{0} \subset J \subset \mathbb{R}$. We show that $\gamma(t)=\gamma\left(t_{0}\right)$ for every $t \in J$.

By definition of γ being an integral curve, it means that it is a solution of the system:

$$
\left\{\begin{array}{l}
\frac{d \rho(s)}{d t}=X(\rho(s)) \forall s \in J \\
\rho\left(t_{0}\right)=\gamma\left(t_{0}\right)
\end{array}\right.
$$

However, the curve $\beta: J \longrightarrow M$ defined by $\beta(t)=\gamma\left(t_{0}\right)$ is also a solution of the system above since:

$$
\left\{\begin{array}{l}
\frac{d \beta(s)}{d t}=0=\frac{d \alpha\left(t_{0}\right)}{d t} X\left(\alpha\left(t_{0}\right)\right)=X(\beta(s)) \forall s \in J \\
\rho\left(t_{0}\right)=\gamma\left(t_{0}\right)
\end{array}\right.
$$

where we have used that β is constant thus has zero derivative. Now we have α and β two solutions of the same system, by [1, Theorem 2 (p. 141)] we have uniqueness of the solutions of ordinary differential equations. This means that in fact $\alpha=\beta$ as integral curves, thus $\alpha(t)=\beta(t)=\alpha\left(t_{0}\right)$ for every $t \in J$, what we wanted to prove.

References

[1] M. Spivak, A Comprehensive Introduction to Differential Geometry - Volume 1, Publish or Perish INC., 2005.
[2] J. M. Lee, Introduction to Smooth Manifolds, Springer-Verlag, 2003.

