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Exercise 1

1. Let f : M −→ R with p ∈ M a critical point and M of dimension n. Given
v, w ∈ TpM , let X and Y be vector fields with X(p) = v and Y (p) = v, that is, we
can write:

v =

n∑
i=1

vi
∂

∂xi
, w =

n∑
i=1

wi
∂

∂xi
, X =

n∑
i=1

ai
∂

∂xi
, Y =

n∑
i=1

bi
∂

∂xi

with (x, U) a chart around p ∈ M and ai, bi : M −→ R smooth functions with
ai(p) = vi, bi(p) = wi for 1 ≤ i ≤ n. We define f∗∗(v, w) = X(Y (f))(p), we want
to show that since [X,Y ]P (f) = 0 (because the crossed derivatives are zero since
p is a critical point of f , the way to see this is exactly what we will do in the
following) we have that f∗∗(v, w) is symmetric and well defined. First, using that
the commutator is zero, we clearly have:

f∗∗(v, w) = X(Y (f))(p) = Y (X(f))(p) = f∗∗(w, v)

thus f∗∗(v, w) is symmetric. Moreover, suppose we have X̃ and Ỹ be vector fields
with X̃(p) = v and Ỹ (p) = v, that is, we can write:

X̃ =
n∑
i=1

ãi
∂

∂xi
, Ỹ =

n∑
i=1

b̃i
∂

∂xi

with ãi, b̃i : M −→ R smooth functions with ãi(p) = vi, b̃i(p) = wi for 1 ≤ i ≤ n.
Now:

X(Y (f))(p) =

n∑
i=1

ai(p)
∂

∂xi

 n∑
j=1

bj
∂f

∂xj

(p)

=

n∑
i=1

ai(p)

 n∑
j=1

(
∂bj

∂xi
∂f

∂xj
+ bj

∂2f

∂xi∂xj

) (p)

=
n∑
i=1

n∑
j=1

ai(p)bj(p)
∂2f(p)

∂xi∂xj
=

n∑
i=1

n∑
j=1

viwj
∂2f(p)

∂xi∂xj

=

n∑
i=1

n∑
j=1

ãi(p)b̃j(p)
∂2f(p)

∂xi∂xj
= X̃(Ỹ (f))(p)

since p being a critical point of f means that ∂f(p)/∂xi = 0 for 1 ≤ i ≤ n, so the
crossed derivatives vanish. Thus f∗∗(v, w) is well defined.

2. We show that (note that we have changed a bit the notation of the problem to
better match what we want to illustrate). Let X and Y be as above, we have:

f∗∗

(
n∑
i=1

vi
∂

∂xi

n∑
i=1

wi
∂

∂xi

)
= X(Y (f))(p) =

n∑
i=1

n∑
j=1

viwj
∂2f(p)

∂xi∂xj
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in virtue of the computed above. This is what we wanted to prove.

3. Show that the rank of the matrix ∂2f(p)/∂xi∂xj is independent of the coordinate
system. For this, suppose we have another chart (y, V ), then we may write x(y) a
change of variables and:

∂2f

∂yl∂yk
=

∂

∂yl

 n∑
j=1

∂xj

∂yk
∂f

∂xj

 =
n∑
i=1

∂xi

∂yl
∂

∂xi

 n∑
j=1

∂xj

∂yk
∂f

∂xj


=

n∑
i=1

∂xi

∂yl

 n∑
j=1

∂2xj

∂xi∂yk
∂f

∂xj
+
∂xj

∂yk
∂2f

∂xi∂xj


which evaluated at our particular p ∈ M having ∂f(p)/∂xi = 0 for 1 ≤ i ≤ n
yields:

∂2f(p)

∂yl∂yk
=

n∑
i=1

n∑
j=1

∂xi(p)

∂yl
∂xj(p)

∂yk
∂2f(p)

∂xi∂xj

which means that we can go between ∂2f(p)/∂xi∂xj and ∂2f(p)/∂yl∂yk by multi-
plication of the change of basis matrices between x and y. Since a change of basis
matrix is invertible, it preserves the rank, hence the two matrices above have the
same rank. Thus the rank of ∂2f(p)/∂xi∂xj is independent of the chart we choose.

4. Let f : M −→ N and p ∈M be a critical point of f . For v, w ∈ TpM , X, Y vector
fields over M as above and g : N −→ R smooth, we define f∗∗(v, w)(g) = X(Y (g ◦
f))(p). We want to show that this means that the function f∗∗ : TpM × TpM −→
Tf(p)N is well defined and bilinear.

First, we prove that indeed we have that f∗∗(v, w) is a derivation. For this, let
(x, U) be a chart on M around p and (y, V ) a chart on N around f(p), say N has
dimension m. We have:

f∗∗(v, w)(g) = X(Y (g ◦ f))(p) =

n∑
i=1

ai(p)
∂

∂xi

 n∑
j=1

bj
∂(g ◦ f)

∂xj

(p)

=

n∑
i=1

ai(p)
∂

∂xi

 n∑
j=1

bj
m∑
k=1

∂g

∂yk
∂f

∂xj

(p)

=

n∑
i=1

ai(p)
∂

∂xi

 n∑
j=1

m∑
k=1

bj
∂g

∂yk
∂f

∂xj

(p)

=
n∑
i=1

ai(p)
n∑
j=1

m∑
k=1

(
∂

∂xi

(
bj
∂g

∂yk

)
∂f

∂xj
+ bj

∂g

∂yk
∂2f

∂xi∂xj

)
(p)

=

n∑
i=1

n∑
j=1

m∑
k=1

ai(p)bj(p)
∂2f(p)

∂xi∂xj
∂g(f(p))

∂yk
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since p being a critical point of f means that ∂f(p)/∂xi = 0 for 1 ≤ i ≤ n, so the
first order derivatives on f vanish. Now, since this only depends on the derivative
of g at f(p), we found that we can write f∗∗(v, w)(g) as a sum of derivatives of g
with respect to ∂/∂yk evaluated at f(p) for 1 ≤ k ≤ m, which is a basis of Tf(p)N

hence f∗∗(v, w) is a derivation. Moreover, if there are another vector fields X̃ and
Ỹ of M such that X̃(p) = v and Ỹ (p) = w, since g ◦ f : M −→ R we already
saw in a section above that X(Y (g ◦ f))(p) = X̃(Ỹ (g ◦ f))(p). Combining this two
results, we obtain that f∗∗ is well defined.

Second, let u, v, w ∈ TpM and r ∈ R, let W be a vector field on M with W (p) = u.
Since f∗∗ is well defined, we can use W+X as the vector field having W (p)+X(p) =
u+ v, and then:

f∗∗(u+ v, w)(g) = (W +X)(Y (g ◦ f))(p) = W (Y (g ◦ f))(p) +X(Y (g ◦ f))(p)

= f∗∗(u,w)(g) + f∗∗(v, w)(g),

analogously:

f∗∗(w, u+ v) = Y ((W +X)(g ◦ f))(p) = Y (W (g ◦ f) +X(g ◦ f))(p)

= Y (W (g ◦ f))(p) + Y (X(g ◦ f))(p)

= f∗∗(w, u)(g) + f∗∗(w, v)(g),

with:

f∗∗(rv, w)(g) = (rX)(Y (g ◦ f))(p) = X(rY (g ◦ f))(p)

= rX(Y (g ◦ f))(p) = rf∗∗(v, w)(g),

analogously:

f∗∗(v, rw)(g) = X((rY )(g ◦ f))(p) = X(Y (r(g ◦ f)))(p)

= rX(Y (g ◦ f))(p) = rf∗∗(v, w)(g),

where we have used indiscriminately the definition of sum of functions and function
obtained by multiplication with a scalar and that X and Y are vector fields hence
evaluated at p they behave like derivations (in particular they are linear). Thus
by the four equalities above, we have that f∗∗ is bilinear, as desired.

5. Let c : R −→M have 0 as a critical point. Consider (t,R) a chart of R, this yields
∂/∂t a basis in T0R, meaning that (1, 1) ∈ T0R can be written as (∂/∂t, ∂/∂t),
meaning that using the sections above we have for any f : M −→ R smooth:

c∗∗(1, 1)(f) = c∗∗

(
∂

∂t
,
∂

∂t

)
(f) =

∂

∂t

(
∂

∂t
(f ◦ c)

)
(0)

= (f ◦ c)′′(0) = c′′(0)(f)

and c∗∗(1, 1) = c′′(0) as desired.
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Exercise 2

1. Let f : R −→ R smooth with f(0) = 0, define g(t) = f(
√
t) for t ≥ 0. First,

we notice that by Taylor’s Theorem with the Peano form of the reminder we can
write:

f(x) = f(0) + f ′(0)x+
f ′′(0)

2
x2 + α(x)x3 = f(0) +

f ′′(0)

2
x2 + α(x)x3

with α : R −→ R a smooth function with limx→0 α(x) = 0. Now, we have that:

g′+(0) = lim
h↓0

g(h)− g(0)

h
= lim

h↓0

f(
√
h)− f(0)

h

= lim
h↓0

f(0) + f ′′(0)
2 h+ α(

√
h)
√
h3 − f(0)

h
=
f ′′(0)

2
+ lim

h↓0

α(
√
h)
√
h3

h

=
f ′′(0)

2
+ lim

h↓0
α(
√
h)
√
h =

f ′′(0)

2
+ lim√

h↓0
α(
√
h)
√
h =

f ′′(0)

2
,

where we have used that h ↓ 0 if and only if
√
h ↓ 0 and both limx↓0 α(x) =

limx↓0 x = 0. This proves the desired result.

2. Given c : R −→M smooth with c′(0) = 0 ∈ TpM we define γ(t) = c(
√
t) for t ≥ 0.

For any fixed function f : M −→ R smooth, consider now f ◦ c : R −→ R, as in
the section above we set g(t) = (f ◦ c)(

√
t) for t ≥ 0. Now:

c′′(0)(f) = (f ◦ c)′′(0) = 2g′+(0) = 2(f ◦ γ)′(0) = 2γ′(0)(f),

where we have used the definition of c′′(0) in the first equality, the result proven
in the section above in the second equality, notice how g(t) = (f ◦ γ)(t) for the
third equality and the definition of γ′(0) in the fourth equality. Since this is true
for every f , we have that c′′(0) = 2γ′(0), as desired.
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Exercise 3

1. Consider the map f : R3 −→ R3 given by f(x, y, z) = f(y,−x, z). Let p = (0, 0, a)
for a ∈ R, we compute f∗ : TpR3 −→ R3. Since this is the differential of f evaluated
at p, we have:

f∗ = (Df)p =
0 1 0
−1 0 0
0 0 1

p =
0 1 0
−1 0 0
0 0 1

for every p = (0, 0, a) with a ∈ R. Moreover, we can think of f∗ as belonging to
R3 ⊗ (R3)∗: if we consider e1, e2, e3 the canonical basis of R3, with e∗1, e

∗
2, e
∗
3 the

dual basis of (R3)∗, then ei ⊗ e∗j is the multiplication of a column vector with a
row vector, yielding a matrix with a one in the entry (i, j) and zeros everywhere
else, meaning that summing over the basis {ei⊗ e∗j}i,j=1,2,3 of R3⊗ (R3)∗ weighted
by the entries of f∗ we obtain:

(1) · (e1 ⊗ e∗2) + (−1) · (e2 ⊗ e∗1) + (1) · (e3 ⊗ e∗3) =

0 1 0
0 0 0
0 0 0


−

0 0 0
1 0 0
0 0 0

+

0 0 0
0 0 0
0 0 1

 =

 0 1 0
−1 0 0
0 0 1

 = f∗

and we gave f∗ in the basis of R3 ⊗ (R3)∗ with the desired components.

2. We consider now f∗ evaluated at (0, 0,±1). We already saw that (Df)(0,0,a) does
not depend on a ∈ R, hence we obtain the same f∗ as above, and its expression as
a (1, 1)-tensor is the above given.

3. Let f : M −→ N is a smooth function between manifolds M , N of dimensions m
and n respectively. Let p ∈ M , we want to describe f∗ : TpM −→ Tf(p)N as an
element of Tf(p)N ⊗ T ∗pM and give its components. In order to do this, we will
notice that using local charts, say (x, U) near p ∈M and (y, V ) near f(p) ∈ N , we
can assume that M = Rm and N = Rn. In particular, TpM has ∂/∂x1, . . . , ∂/∂xm

as a basis and Tf(p)N has ∂/∂y1, . . . , ∂/∂yn a basis. Thus (f∗)p = (Df)p is a matrix
eating an m-dimensional vector in TpM and pooping an n-dimensional vector in
Tf(p)N , that is, it has m columns and n rows, say (f∗)p = (api,j)i,j with i = 1, . . . , n
and j = 1, . . . ,m its expression with the entries in the basis above. Now, T ∗pM has
dx1, . . . , dxm as the canonical dual basis. In particular, as in the section above,
{∂/∂yi ⊗ dxj}i,j with i = 1, . . . , n and j = 1, . . . ,m is the corresponding basis of
Tf(p)N ⊗T ∗pM and ∂/∂yi⊗dxj is the multiplication of a column vector with a row
vector, yielding a matrix with a one in the entry (i, j) and zeros everywhere else.
Thus we can again rewrite:

(f∗)p =
∑
i,j

api,j ·
(
∂

∂yi
⊗ dxj

)
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writing f∗ ∈ Tf(p)N ⊗ T ∗pM with the entries of f∗ as its components, what we
desired.
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Exercise 4

1. Let φ : M −→ N and f : N −→ R be smooth, Y a vector field on M . Now:

φ∗(df)(Y ) = d(f ◦ φ)(Y ) = Y (f ◦ φ),

where we used [2, Lemma 6.12 (p. 137)] and the definition of the action on a vector
field.

2. Using the limit definition, we have that:

(LX(df)(p))(Yp) =

(
lim
h→0

φ∗h(df)(p)− (df)(p)

h

)
(Yp)

= lim
h→0

φ∗h(df)(p)(Yp)− (df)(p)(Yp)

h

= lim
h→0

Y (f ◦ φh)(p)− Y (f)(p)

h

= Y

(
lim
h→0

(f ◦ φh)(p)− f(p)

h

)
= Y

(
lim
h→0

(φ∗hf)(p)− f(p)

h

)
= Y (X(f))(p) = Yp(LXf)

meaning that:
d(LXf)(Yp) = Yp(LXf) = (LX(df)(p))(Yp)

and thus d(LXf) = LX(df).

3. Let X and Y vector fields on M and f : M −→ R a smooth function. Let X
generate the family {φt}, set α(t, h) = Yφ−t(p)(f ◦ φh). Now:

D1α(0, 0) = lim
t→0

α(t, 0)− α(0, 0)

t
= lim

t→0

Yφ−t(p)(f)− Yp(f)

t

= lim
t→0

Y (f)(φ−t(p))− Y (f)(p)

t
= − lim

t→0

Y (f)(φt(p))− Y (f)(p)

t
= −X(Y (f))(p) = −Xp(Y (f)),

where the only trick we used is noting that since t→ 0, the change t 7→ −t yields
the fourth equality. Moreover:

D2α(0, 0) = lim
h→0

α(0, h)− α(0, 0)

h
= lim

h→0

Yp(f ◦ φh)− Yp(f)

h

= Yp

(
lim
h→0

f ◦ φh − f
h

)
= Yp(X(f)).
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Thus if we have c(h) = α(h, h) then:

−c′(0) = − lim
h→0

α(h, h)− α(0, 0)

h
= − lim

h→0

α(h, h)− α(h, 0)

h

− lim
h→0

α(h, 0)− α(0, 0)

h
= −D2α(0, 0)−D1α(0, 0) = −Yp(X(f))

+ Xp(Y (f)) = [X,Y ]p(f) = LXY (p)(f)),

the desired results.
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Exercise 5

Let γ : J −→M be an integral curve of a vector field X on a manifold M with γ′(t0) = 0
for some t0 ⊂ J ⊂ R. We show that γ(t) = γ(t0) for every t ∈ J .

By definition of γ being an integral curve, it means that it is a solution of the system:{
dρ(s)
dt = X(ρ(s))∀s ∈ J
ρ(t0) = γ(t0)

.

However, the curve β : J −→M defined by β(t) = γ(t0) is also a solution of the system
above since: {

dβ(s)
dt = 0 = dα(t0)

dt X(α(t0)) = X(β(s))∀s ∈ J
ρ(t0) = γ(t0)

,

where we have used that β is constant thus has zero derivative. Now we have α and β
two solutions of the same system, by [1, Theorem 2 (p. 141)] we have uniqueness of the
solutions of ordinary differential equations. This means that in fact α = β as integral
curves, thus α(t) = β(t) = α(t0) for every t ∈ J , what we wanted to prove.
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