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Exercise 1

1. Let f : M — R with p € M a critical point and M of dimension n. Given
v,w € T,M, let X and Y be vector fields with X (p) = v and Y (p) = v, that is, we

can write:
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with (z,U) a chart around p € M and a’,b° : M — R smooth functions with
a‘(p) = o', bi(p) = w' for 1 < i < n. We define fi.(v,w) = X(Y(f))(p), we want
to show that since [X,Y]p(f) = 0 (because the crossed derivatives are zero since
p is a critical point of f, the way to see this is exactly what we will do in the
following) we have that f..(v,w) is symmetric and well defined. First, using that
the commutator is zero, we clearly have:

fes(v,w) = X(Y () (p) = Y(X()(p) = fax(w,v)

thus fe«(v, w) is symmetric. Moreover, suppose we have X and Y be vector fields
with X (p) = v and Y (p) = v, that is, we can write:

C a0 o g O
:;a&ni’ Y_;baxi

with @, b : M — R smooth functions with @ (p) = v*, b'(p) = w' for 1 < i < n.
Now:
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since p being a critical point of f means that df(p)/dz' = 0 for 1 < i < n, so the
crossed derivatives vanish. Thus f..(v, w) is well defined.

2. We show that (note that we have changed a bit the notation of the problem to
better match what we want to illustrate). Let X and Y be as above, we have:
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in virtue of the computed above. This is what we wanted to prove.

. Show that the rank of the matrix 92 f(p)/0x'0x? is independent of the coordinate
system. For this, suppose we have another chart (y, V'), then we may write z(y) a
change of variables and:
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which evaluated at our particular p € M having df(p)/0x' = 0 for 1 < i < n

yields:
p) 927 (p) 9*f (p)
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which means that we can go between 9% f(p)/0x*0x7 and 8% f(p)/0y'dy* by multi-
plication of the change of basis matrices between z and y. Since a change of basis
matrix is invertible, it preserves the rank, hence the two matrices above have the
same rank. Thus the rank of 9% f(p)/0z'0x7 is independent of the chart we choose.

. Let f: M — N and p € M be a critical point of f. For v,w € T,M, X, Y vector
fields over M as above and g : N — R smooth, we define f..(v,w)(g) = X(Y(go
f))(p). We want to show that this means that the function f.. : T,M x T,M —
Ty N is well defined and bilinear.

First, we prove that indeed we have that f..(v,w) is a derivation. For this, let
(z,U) be a chart on M around p and (y,V') a chart on N around f(p), say N has
dimension m. We have:
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since p being a critical point of f means that df(p)/dz° = 0 for 1 < i < n, so the
first order derivatives on f vanish. Now, since this only depends on the derivative
of g at f(p), we found that we can write f..(v,w)(g) as a sum of derivatives of g
with respect to 9/dy* evaluated at f(p) for 1 < k < m, which is a basis of TrpN
hence fis(v,w) is a derivation. Moreover, if there are another vector fields X and
Y of M such that X(p) = v and Y (p) = w, since go f : M — R we already
saw in a section above that X (Y (go f))(p) = X (Y (go f))(p). Combining this two
results, we obtain that f.. is well defined.

Second, let u,v,w € T,M and r € R, let W be a vector field on M with W (p) = u.
Since fi is well defined, we can use W+ X as the vector field having W (p)+X (p) =
u + v, and then:

foutv,w)(g) = (W+X)(Y(go f))(p) =W (g0 f))(p)+ XY (gof))(p)
fr(u,w)(g) + fas(v,w)(9),

analogously:

fre(w,u+v) = Y(W+X)(go f))(p) =Y(W(go f)+ X(go f))(p)
Y(W(go f))(p)+Y(X(go f))(p)
f**(wa U)(Q) + f**(w,v)(g)7

with:
fes(rv,w)(g) = (rX)(Y(go f))(p)=X(rY(go f))(p)
= 1rX(Y(go [))(p) = rfu(v,w)(g),
analogously:
fex(v,rw)(g) = X((rY)(go f))(p) = X (Y (r(go f))(p)
= 1X(Y(go [))(p) =rfulv,w)(g),

where we have used indiscriminately the definition of sum of functions and function
obtained by multiplication with a scalar and that X and Y are vector fields hence
evaluated at p they behave like derivations (in particular they are linear). Thus
by the four equalities above, we have that f,, is bilinear, as desired.

. Let ¢ : R — M have 0 as a critical point. Consider (¢,R) a chart of R, this yields
0/0t a basis in TyR, meaning that (1,1) € TyR can be written as (9/0t,0/0t),
meaning that using the sections above we have for any f : M — R smooth:

el () = e (505 ) D=5 (5:720) )
= (fo0)"(0)=c"(0)(f)
and ¢, (1,1) = ¢’(0) as desired.



Exercise 2

1. Let f : R — R smooth with f(0) = 0, define g(t) = f(v/t) for t > 0. First,
we notice that by Taylor’s Theorem with the Peano form of the reminder we can
write:

f(x) = £(0) + f(0)xr + f”2(0)w2 + afz)z® = £(0) + f”2m):c2 + afx)z?

with a : R — R a smooth function with lim,_,o a(z) = 0. Now, we have that:
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where we have used that h | 0 if and only if vA | 0 and both limg o a(z) =

lim, oz = 0. This proves the desired result.

2. Given ¢ : R — M smooth with ¢/(0) = 0 € T,M we define y(t) = c¢(v/t) for t > 0.
For any fixed function f : M — R smooth, consider now foc: R — R, as in
the section above we set g(t) = (f o ¢)(v/t) for t > 0. Now:

"(0)(f) = (f 20)"(0) = 244 (0) = 2(f 0 7)'(0) = 2+/(0)(f),

where we have used the definition of ¢”(0) in the first equality, the result proven
in the section above in the second equality, notice how g(t) = (f o 7)(t) for the
third equality and the definition of 4’(0) in the fourth equality. Since this is true
for every f, we have that ¢’(0) = 27/(0), as desired.



Exercise 3

1. Consider the map f : R? — R3 given by f(z,y,2) = f(y, —,2). Let p = (0,0, a)
for a € R, we compute f, : T,R3 — R3. Since this is the differential of f evaluated

at p, we have:
0 0

10 1
fo=Df)y=—1 0 0,=—1 0
0 01 0 01

for every p = (0,0,a) with a € R. Moreover, we can think of f, as belonging to
R3 ® (R3)*: if we consider ey, es, e3 the canonical basis of R, with e, €5, e3 the
dual basis of (R3)*, then e; ® e; is the multiplication of a column vector with a
row vector, yielding a matrix with a one in the entry (7, ) and zeros everywhere
else, meaning that summing over the basis {¢; ® e; }ij=1,23 of R? ® (R3)* weighted
by the entries of f, we obtain:

010

(D-(e1®@e5)+ (1) (e2®ef) + (1) - (e3®e3) = |0 0 0

000

000 000 0 10
—lto0o0|l+|000] = [-100]|=4r

000 00 1 0 0 1

and we gave f, in the basis of R? ® (R®)* with the desired components.

2. We consider now f, evaluated at (0,0,+1). We already saw that (Df),0,.) does
not depend on a € R, hence we obtain the same f, as above, and its expression as
a (1,1)-tensor is the above given.

3. Let f: M — N is a smooth function between manifolds M, N of dimensions m
and n respectively. Let p € M, we want to describe f. : T,M — Ty, N as an
element of Ty,) N ® TyM and give its components. In order to do this, we will
notice that using local charts, say (z,U) near p € M and (y, V') near f(p) € N, we
can assume that M = R™ and N = R". In particular, T,M has 8/dz",...,0/0z™
as a basis and Ty, N has 0/8y", ..., 8/0y™ abasis. Thus (f.), = (Df), is a matrix
eating an m-dimensional vector in 7, M and pooping an n-dimensional vector in

Tty N, that is, it has m columns and n rows, say (f«), = (aﬁj)m withi=1,...,n
and j = 1,...,m its expression with the entries in the basis above. Now, T"M has
dx',...,dx™ as the canonical dual basis. In particular, as in the section above,

{0/0y* @ dx?}; j with i = 1,...,n and j = 1,...,m is the corresponding basis of
TtpyN @Ty;M and 0/ Oy* ®da’ is the multiplication of a column vector with a row
vector, yielding a matrix with a one in the entry (i, ) and zeros everywhere else.
Thus we can again rewrite:

0 .
(f*)p = izj:af’j : <ayZ & dﬂ?j)
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writing f« € Ty, N @ Ty M with the entries of f. as its components, what we
desired.



Exercise 4
1. Let ¢ : M — N and f: N — R be smooth, Y a vector field on M. Now:
" (df)(Y) =d(fod)(Y)=Y(fo9),

where we used [2, Lemma 6.12 (p. 137)] and the definition of the action on a vector
field.

2. Using the limit definition, we have that:

(Lx(d)p)(¥,) = (nm Pidf)e) — (df )(p)) (¥,)

h—0 h
_ iy 20U (0)(Y) — (df) (p) (Yp)
h—0 h
_ i YU e on)() = Y()(p)
h—0 h
_ (f o én)(p) — f(p)
=Y (%135 : h )
(05,1)(p) — f(p)
=Y <;1336 o >

meaning that:
d(Lx [)(Yp) = Yp(Lx f) = (Lx(df)(p))(Yp)

and thus d(Lx f) = Lx/(df).

3. Let X and Y vector fields on M and f : M — R a smooth function. Let X
generate the family {¢:}, set a(t,h) = Yy_, ) (f o ér). Now:

a(t,0) — a(0,0) Yo iw(f) = Yu(f)

Duai0.0) = iy " <y el
i YD) = YIDG) _ o YD) Y ()
t—0 t t—0 t

= =X (NP ==X (),

where the only trick we used is noting that since ¢ — 0, the change ¢ — —t yields
the fourth equality. Moreover:

Dra(00) = fiy SO0y Bl o))
= % (Jim TG ) = v



Thus if we have ¢(h) = a(h, h) then:

; B . a(h,h) —«a(0,0) B a(h,h) — a(h,0)
—¢(0) = - fim h =~ h
~ Jm a(h,0) . @09 _ _ p,0(0,0) - D1a(0,0) = —Y,(X(f))

+ X(V() = X Y]p(f) = LxY (p)(f)),

the desired results.



Exercise 5

Let v : J — M be an integral curve of a vector field X on a manifold M with v/(¢tg) = 0
for some ty C J C R. We show that v(t) = (o) for every t € J.
By definition of v being an integral curve, it means that it is a solution of the system:

{‘ﬁf') = X(p(s))Vs € J
p(to) = v(to)

However, the curve 5 : J — M defined by 5(t) = ~v(to) is also a solution of the system
above since:

dt
p(to) = (o)

where we have used that § is constant thus has zero derivative. Now we have « and 3
two solutions of the same system, by [I, Theorem 2 (p. 141)] we have uniqueness of the
solutions of ordinary differential equations. This means that in fact o = 8 as integral
curves, thus a(t) = B(t) = a(tg) for every t € J, what we wanted to prove.

{dﬂ(s) — 0= %200 ¥ (a(ty)) = X (B(s))Vs € J
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