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Exercise 1

1. We consider R2 with the standard coordinates. Let R = x ∂
∂x + y ∂

∂y , we want to
find an expression for R in polar coordinates. We know that such coordinates are:{

x = r cos(θ)

y = r sin(θ)

meaning that for a general smooth function u : R2 −→ R we have:

∂u(x, y)

∂r
=
∂u(x, y)

∂x

∂x

∂r
+
∂u(x, y)

∂y

∂y

∂r
=
∂u(x, y)

∂x
cos(θ) +

∂u(x, y)

∂y
sin(θ)

hence by multiplying everything by r, we obtain:

r
∂u(x, y)

∂r
= r cos(θ)

∂u(x, y)

∂x
+ r sin(θ)

∂u(x, y)

∂y
= x

∂u(x, y)

∂x
+ y

∂u(x, y)

∂y

meaning that R = r ∂∂r in polar coordinates.

2. We consider the fields X = ∂
∂x and Y = ∂

∂y +f ∂
∂z with f(x, y, z) = xz+ x3

3 +xy2 +

x3y2.

(a) We have:

[X,Y ] =
∂

∂x

(
∂

∂y
+ f

∂

∂z

)
− ∂

∂y

(
∂

∂x

)
+ f

∂

∂z

(
∂

∂x

)
=

∂2

∂x∂z
+
∂f

∂x

∂

∂z
+ f

∂2

∂x∂z
− ∂2

∂y∂x
+ f

∂2

∂z∂x
=
∂f

∂x

∂

∂z

= (z + x2 + y2 + 3x2y2)
∂

∂z

we rename g(x, y, z) = z + x2 + y2 + 3x2y2. Now:

[X, [X,Y ]] =
∂

∂x

(
g
∂

∂z

)
− g ∂

∂z

(
∂

∂x

)
=

∂g

∂x

∂

∂z
+ g

∂2

∂x∂z
− g ∂2

∂z∂x
=
∂g

∂y

∂

∂z
= (2x+ 6xy2)

∂

∂z

and:

[Y, [X,Y ]] =
∂

∂y

(
g
∂

∂z

)
+ f

∂

∂z

(
g
∂

∂z

)
− g ∂

∂z

(
∂

∂y

)
− g ∂

∂z

(
f
∂

∂z

)
=

∂g

∂y

∂

∂z
+ g

∂2

∂y∂z
+ f

∂g

∂z

∂

∂z
+ fg

∂2

∂z2
− g ∂

∂z∂y
− g∂f

∂z

∂

∂z

− gf
∂2

∂z2
=
∂g

∂y

∂

∂z
+ f

∂g

∂z

∂

∂z
− g∂f

∂z

∂

∂z

= (2y + 6x2y − 2x3

3
− 2x3y3)

∂

∂z
.
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(b) We now find the points p ∈ R3 such that [X,Y ]p ∈ 〈Xp, Yp〉. We will take
p = (x, y, z), without risk of confusing notation since the differentials will
never be applied to functions. Thus we want to find a, b ∈ R such that
[X,Y ]p = aXp + bYp. Notice how Xp has a term ∂

∂x that does not appear in
[X,Y ]p nor Yp, and since this is an element of the canonical basis, we must
have a = 0. Similarly, the term ∂

∂y of the canonical basis cannot be matched

in [X,Y ]p, thus we must have b = 0. Since ∂
∂z is an element of the canonical

basis (hence non zero), we must have z+x2+y2+3x2y2 = 0. Thus the desired
points are the ones of the form p = (x, y,−x2 − y2 − 3x2y2) with x, y ∈ R.

(c) We now find the points p ∈ R3 such that both [X, [X,Y ]]p, [Y, [X,Y ]]p ∈
〈Xp, Yp〉. We will again take p = (x, y, z) and an analogous argument as the
one above finds that the coefficients of both Xp and Yp in the expressions
of both [X, [X,Y ]]p and [Y, [X,Y ]]p must be zero. Hence the two remaining
expressions are: {

2x+ 6xy2 = 0

2y + 6x2y − 2x3

3 − 2x3y2 = 0

and the first equation yields 2x(1 + 3y2) = 0, but since y ∈ R we always have
1 + 3y2 6= 0, meaning that we must have x = 0. Imposing this to the second
equation immediately yields 2y = 0 hence y = 0. Notice how we have no
restrictions for the third component of the points. Thus the desired points
are the ones of the form p = (0, 0, z) with z ∈ R.
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Exercise 2

Let ∆ be the distribution on R3 \ {0} given at a point (x, y, z) ∈ R3 \ {0} by ∆(x,y,z) =

{a ∂
∂x + b ∂∂y + c ∂∂z : ax + by + cz = 0}. To show that ∆ is integrable, we will show that

given X,Y ∈ ∆, we have [X,Y ] ∈ ∆. Assuming we already proved this, we are under
the hypothesis of the Frobenius Integrability Theorem [2, Theorem 19.10 (p. 501)], and
applying it we directly obtain that ∆ is integrable, as desired.

Hence the only thing we have to do is check that if X,Y ∈ ∆ then [X,Y ] ∈ ∆. The
general expression of such vector fields belonging to ∆ is:

X = f1
∂

∂x
+ f2

∂

∂y
+ f3

∂

∂z
, Y = g1

∂

∂x
+ g2

∂

∂y
+ g3

∂

∂z

where fi, gi : R3 −→ R are smooth functions for i = 1, 2, 3, such that for every p =
(p1, p2, p3) ∈ R3 \ {0} we have:

f1(p)p1 + f2(p)p2 + f3(p)p3 = 0, g1(p)p1 + g2(p)p2 + g3(p)p3 = 0

and in particular the equations:

f1(x, y, z)x+ f2(x, y, z)y + f3(x, y, z)z = 0, g1(x, y, z)x+ g2(x, y, z)y + g3(x, y, z)z = 0

are true as functions from R3 \ {0} to R. This will be particularly relevant since we will
need to differentiate them. Now, we proceed to compute [X,Y ]p, and for this we first
note that it must be a derivation since X and Y being vector fields means that [X,Y ]
is a vector field, which evaluated at a point yields a derivation. This means that we can
just compute the first order derivatives and ignore the rest of higher order derivatives.
Computing (we will then subtract X(Y )− Y (X) of these relevant terms):

X(Y ) yields f1

(
∂g1
∂x

∂

∂x
+
∂g2
∂x

∂

∂y
+
∂g3
∂x

∂

∂z

)
+ f2

(
∂g1
∂y

∂

∂x
+
∂g2
∂y

∂

∂y
+
∂g3
∂y

∂

∂z

)
+ f3

(
∂g1
∂z

∂

∂x
+
∂g2
∂z

∂

∂y
+
∂g3
∂z

∂

∂z

)
Y (X) yields g1

(
∂f1
∂x

∂

∂x
+
∂f2
∂x

∂

∂y
+
∂f3
∂x

∂

∂z

)
+ g2

(
∂f1
∂y

∂

∂x
+
∂f2
∂y

∂

∂y
+
∂f3
∂y

∂

∂z

)
+ g3

(
∂f1
∂z

∂

∂x
+
∂f2
∂z

∂

∂y
+
∂f3
∂z

∂

∂z

)
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meaning that the condition of [X,Y ]p ∈ ∆p is, once we evaluate at a point p = (p1, p2, p3):(
f1(p)

∂g1
∂x
|p + f2(p)

∂g1
∂y
|p + f3(p)

∂g1
∂z
|p − g1(p)

∂f1
∂x
|p − g2(p)

∂f1
∂y
|p − g3(p)

∂f1
∂z
|p
)
p1

+

(
f1(p)

∂g2
∂x
|p + f2(p)

∂g2
∂y
|p + f3(p)

∂g2
∂z
|p − g1(p)

∂f2
∂x
|p − g2(p)

∂f2
∂y
|p − g3(p)

∂f2
∂z
|p
)
p2

+

(
f1(p)

∂g3
∂x
|p + f2(p)

∂g3
∂y
|p + f3(p)

∂g3
∂z
|p − g1(p)

∂f3
∂x
|p − g2(p)

∂f3
∂y
|p − g3(p)

∂f3
∂z
|p
)
p3

and we want this to be zero. To obtain so, we come back to the two equations we said
we would need to differentiate, and proceed to do so with respect to every coordinate.
This results in (as above, we have also evaluated at the pertinent point p = (p1, p2, p3)):

∂f1
∂x
|pp1 + f1(p) +

∂f2
∂x
|pp2 +

∂f3
∂x
|pp3 = 0 · −g1(p)

∂f1
∂y
|pp1 +

∂f2
∂y
|pp2 + f2(p) +

∂f3
∂y
|pp3 = 0 · −g2(p)

∂f1
∂z
|pp1 +

∂f2
∂z
|pp2 +

∂f3
∂z
|pp3 + f3(p) = 0 · −g3(p)

∂g1
∂x
|pp1 + g1(p) +

∂g2
∂x
|pp2 +

∂g3
∂x
|pp3 = 0 · f1(p)

∂g1
∂y
|pp1 +

∂g2
∂y
|pp2 + g2(p) +

∂g3
∂y
|pp3 = 0 · f2(p)

∂g1
∂z
|pp1 +

∂g2
∂z
|pp2 +

∂g3
∂z
|pp3 + g3(p) = 0 · f3(p)

where we have already written in a right column the term with which we intend to
multiply each equation. We now notice that if we multiply as stated and then sum all
six equations, on the left hand side we precisely obtain the expression above (that arose
from evaluating [X,Y ]p and trying to check if it belonged in ∆p) since the multiplications
fi(p)gj(p) for i, j = 1, 2, 3 appear twice with opposite signs, hence they cancel out. Since
the right hand side is always zero, this means that:(

f1(p)
∂g1
∂x
|p + f2(p)

∂g1
∂y
|p + f3(p)

∂g1
∂z
|p − g1(p)

∂f1
∂x
|p − g2(p)

∂f1
∂y
|p − g3(p)

∂f1
∂z
|p
)
p1

+

(
f1(p)

∂g2
∂x
|p + f2(p)

∂g2
∂y
|p + f3(p)

∂g2
∂z
|p − g1(p)

∂f2
∂x
|p − g2(p)

∂f2
∂y
|p − g3(p)

∂f2
∂z
|p
)
p2

+

(
f1(p)

∂g3
∂x
|p + f2(p)

∂g3
∂y
|p + f3(p)

∂g3
∂z
|p − g1(p)

∂f3
∂x
|p − g2(p)

∂f3
∂y
|p − g3(p)

∂f3
∂z
|p
)
p3

= 0

and thus [X,Y ]p ∈ ∆p for every p ∈ R3 \ {0}, meaning that [X,Y ] ∈ ∆, as we wanted
to prove.
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Exercise 3

This exercise is concerned with finding a solution α : W −→ V for the differential
equation: {

α(0) = x
∂α
∂tj

(t) = fj(t, α(t))

for all t ∈W ⊂ Rm.

1. We want to have α(ut) = β(u, t) for some function β : [0, ε)×W −→ V . Now, this
β must cleary satisfy β(0, t) = α(0t) = α(0) = x as initial condition and:

∂β

∂u
(u, t) =

∂α

∂u
(ut) =

m∑
j=1

∂α

∂tj
(ut)

∂(utj)

∂u
(t) =

m∑
j=1

fj(ut, α(ut))tj =
m∑
j=1

tjfj(ut, β(u, t))

where we used the chain rule for differentiation and the differential equation that
we want α to satisfy. This is the desired result. As a side note, we know that such
a differential equation can be solved, and thus such β exists (although there may
be different ε’s involved for the domain).

2. Now we will show that we can use a fixed value for ε. We will prove that β(u, vt)
and β(uv, t) satisfy the same differential equation as functions of u. First, we
clearly have β(0, vt) = x and β(0v, t) = β(0, t) = x as initial condition. We first
compute:

∂β(u, vt)

∂u
=

m∑
j=1

(vt)jfj(uvt, β(u, vt)) = v
m∑
j=1

tjfj(uvt, β(u, vt))

and then:

∂β(uv, t)

∂u
=
∂β(uv, t)

∂(uv)

∂(uv)

∂u
= v

m∑
j=1

tjfj(uvt, β(uv, t))

where in both cases we have used the expression obtained in the section above.
This means that both functions satisfy the differential equation:{

ψ(0) = x
∂ψ
∂u (u) = v

∑m
j=1 t

jfj(uvt, ψ(u))

hence by uniqueness of the solution, we must have β(u, vt) = β(uv, t), as desired.

3. Using the equality found in the section above, we differentiate with respect to tj

each side:

v
∂β

∂tj
(u, vt) =

m∑
i=1

∂β

∂ti
(u, vt)

∂(vti)

∂tj
=

∂β(u, vt)

∂tj

=
∂β(uv, t)

∂tj
=

m∑
i=1

∂β

∂ti
(uv, t)

∂ti

∂tj
=
∂β

∂tj
(uv, t)
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hence by substituting u = 1 we obtain v ∂β
∂tj

(1, vt) = ∂β
∂tj

(v, t), as desired.

4. We prove, using the integrability condition on f , that the functions ∂β
∂tj

(v, t) and
vfj(vt, β(v, t)) satisfy the same differential equation as functions of v. By unique-
ness of the solutions, we will then have that those two expressions are equal.
First, using the section above we have that ∂β

∂tj
(0, t) = 0 ∂β

∂tj
(1, 0t) = 0, and

0fj(0t, β(0, t)) = 0 as initial condition. Second, we will just differentiate each
of the functions with respect to v. We have:

∂

∂v

(
∂β

∂tj
(v, t)

)
(v) =

∂

∂tj

(
∂β

∂v
(v, t)

)
(v) =

∂

∂tj

(
m∑
i=1

tifi(vt, β(v, t))

)
(v)

=
m∑
i=1

ti
∂fi(vt, β(v, t))

∂tj
(v) + fj(vt, β(v, t)) = fj(vt, β(v, t))

+
m∑
i=1

ti

(
v
∂fi
∂tj

(vt, β(v, t)) +
n∑
k=1

∂fi
∂xk

(vt, β(v, t))
∂βk

∂tj
(v, t)

)

and:

∂(vfj(vt, β(v, t)))

∂v
(v) = fj(vt, β(v, t)) + v

∂fj(vt, β(v, t))

∂v
(v)

= fj(vt, β(v, t)) + v

(
m∑
i=1

∂fj
∂ti

(vt, β(v, t))ti

+
n∑
k=1

∂fj
∂xk

(vt, β(v, t))
∂βk

∂v
(v, t)

)
= fj(vt, β(v, t))

+ v

(
m∑
i=1

∂fj
∂ti

(vt, β(v, t))ti

+

n∑
k=1

∂fj
∂xk

(vt, β(v, t))

(
m∑
i=1

tifki (vt, β(v, t))

))

= fj(vt, β(v, t)) +

m∑
i=1

tiv

(
∂fj
∂ti

(vt, β(v, t))

+
n∑
k=1

∂fj
∂xk

(vt, β(v, t))fki (vt, β(v, t))

)

where we have abused all the tricks of differentiation known to mankind (specially
the notation of the evaluation of the differentials on the point) and used the results
proven in the sections above. We note that the sum we obtained in the second
differentiation does not exactly resemble the one obtained in the first, since it
appears that the indexes i and j are in the wrong order. However, the integrability
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condition on f gives us the equality:

∂fj
∂ti

+
n∑
k=1

∂fj
∂xk

fki =
∂fi
∂tj

+
n∑
k=1

∂fi
∂xk

fkj

and substituting this we obtain:

∂(vfj(vt, β(v, t)))

∂v
(v, t) = fj(vt, β(v, t)) +

m∑
i=1

tiv

(
∂fi
∂tj

(vt, β(v, t))

+

n∑
k=1

∂fi
∂xk

(vt, β(v, t))fkj (vt, β(v, t))

)

= fj(vt, β(v, t)) +

m∑
i=1

ti

(
v
∂fi
∂tj

(vt, β(v, t))

+
n∑
k=1

∂fi
∂xk

(vt, β(v, t))(vfj(vt, β(v, t)))k

)
.

This means that both functions satisfy the differential equation:{
ψ(0) = 0
∂ψ
∂v (v) = fj(vt, β(v, t)) +

∑m
i=1 t

i
(
v ∂fi
∂tj

(vt, β(v, t)) +
∑n

k=1
∂fi
∂xk

(vt, β(v, t))ψk(v)
)

where ψk denotes the k-th component of ψ, and we obtained the desired result.

5. We finally define α(t) = β(1, t). We have α(vt) = β(1, vt) = β(v, t) using one of
the sections above. Moreover α(0) = β(0t) = β(0, t) = x and:

∂α

∂tj
(t) =

∂β

∂tj
(1, t) = 1fj(1t, β(1, t)) = fj(t, α(t)),

where we have used the definition of α and the proved above. Hence α satisfies
the differential equation: {

α(0) = x
∂α
∂tj

(t) = fj(t, α(t))

for all t ∈W ⊂ Rm, as desired.
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Exercise 4

An element w ∈ Λk(V ) is called decomposable if we can write w = φ1∧ · · ·∧φk for some
φ, . . . , φk ∈ Λ1(V ).

1. If dim(V ) ≤ 3, then every w ∈ Λ2(V ) is decomposable. This is clear if dim(V ) =
0, 1 since 2 > 1, 0 and thus in those cases Λ2(V ) is trivial. If dim(V ) = 2, say
x, y are a basis, then Λ2(V ) = 〈dx ∧ dy〉 with dx, dy ∈ Λ1(V ), hence any element
in Λ2(V ) is clearly decomposable (we may have to use the multilinearity of the
wedge product). Finally for dim(V ) = 3, say x, y, z are a basis, then Λ2(V ) =
〈dx ∧ dy, dy ∧ dz, dz ∧ dx〉 thus a general element w ∈ Λ2(V ) has the form w =
w1dx ∧ dy + w2dy ∧ dz + w3dz ∧ dx for certain w1, w2, w3 ∈ R. Since Λ1(V ) =
〈dx, dy, dz〉, this means that the expression of two general elements φ1, φ2 ∈ Λ1(V )
is of the form φa = a1dx+a2dy+a3dz and φb = b1dx+ b2dy+ b3dz with ai, bi ∈ R
for i = 1, 2, 3. Now, if we compute the wedge and impose φa ∧ φb = w, we obtain:

(a1b2 − b1a2)dx ∧ dy + (a2b3 − b2a3)dy ∧ dz + (a3b1 − b3a1)dz ∧ dx = φa ∧ φb
= w = w1dx ∧ dy + w2dy ∧ dz + w3dz ∧ dx

that is the linear system of equations over the real numbers:
a1b2 − b1a2 = w1

a2b3 − b2a3 = w2

a3b1 − b3a1 = w3

which has three equations and six variables, meaning that not only it has a solution,
but it has an infinite number of solutions: we have extra degrees of freedom. Thus
there exist φa, φb ∈ Λ1(V ) having as components the solutions of the system above,
and by construction we now have w = φa ∧ φb, that is, w is decomposable.

2. If we have φ1, φ2, φ3, φ4 linearly independent, then w = (φ1 ∧φ2) + (φ3 ∧φ4) is not
decomposable. To see this, we compute:

w ∧ w = (φ1 ∧ φ2) ∧ (φ1 ∧ φ2) + (φ1 ∧ φ2) ∧ (φ3 ∧ φ4)
+ (φ3 ∧ φ4) ∧ (φ1 ∧ φ2) + (φ3 ∧ φ4) ∧ (φ3 ∧ φ4)
= 2φ1 ∧ φ2 ∧ φ3 ∧ φ4 6= 0

where for the very last equality we have used [1, Corollary 4 (p. 206)], recalling
that the terms of the wedge are linearly independent. However, suppose w is
decomposable, that is, there are η, ν ∈ Λ1(V ) such that w = η ∧ ν. Then w ∧w =
(η ∧ ν)∧ (η ∧ ν) = 0. Thus w being decomposable yields a contradiction, meaning
that w is not decomposable, as desired.
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Exercise 5

Let φ1, . . . , φk ∈ Λ1(V ) be linearly independent, let ψ1, . . . , ψk ∈ Λ1(V ) satisfy (φ1 ∧
ψ1) + · · ·+ (φk ∧ ψk) = 0. First, choose a fixed j = 1, . . . , k. We have that wedging the
above equality with

∧k
i=1,i 6=j φi we obtain:

0 =

k∧
i=1,i 6=j

φi ∧

(
k∑
i=1

φi ∧ ψi

)
=

k∧
i=1,i 6=j

φi ∧ (φj ∧ ψj) = ±φ1 ∧ · · · ∧ φk ∧ ψj

where we have used that the wedge product is zero when we have repeating factors and
that to permuting two factors we have to multiply by −1, meaning that to put φj in
its position we may need to add a ±1 factor to the equality. However, since on the
left hand side we have a zero, this factor doesn’t matter and for every j = 1, . . . , k
we obtain 0 = φ1 ∧ · · · ∧ φk ∧ ψj . In virtue of [1, Corollary 4 (p. 206)] we have that
ψj , φ1, . . . , φk are linearly dependent, in particular ψj ∈ 〈φ1, . . . , φk〉 and thus we can

write ψi =
∑k

i=1 ajiφj for every i = 1, . . . , k. Secondly, to check that we must have
ast = ats for every s, t = 1, . . . , k, we wedge the expression above by φi, and we obtain
φi ∧ψi =

∑k
i=1 ajiφi ∧ φj . Now, summing over all i = 1, . . . , k yields the expression that

we know to be zero by hypothesis:

0 =

k∑
i=1

φi ∧ ψi =

k∑
i=1

k∑
j=1

ajiφi ∧ φj ,

now fixing s, t = 1, . . . , k we wedge with
∧k
i=1,i 6=s,t φi to obtain:

0 =

 k∑
i=1

k∑
j=1

ajiφi ∧ φj

∧ k∧
i=1,i 6=s,t

φi = ats(φs∧φt)∧
k∧

i=1,i 6=s,t
φi+ast(φt∧φs)∧

k∧
i=1,i 6=s,t

φi

since again the wedge product is zero when we have repeating factors. Now since we
wedged with something that was linearly independent, the only possible way in which
this is zero is if and only if 0 = atsφs∧φt+astφt∧φs, meaning that 0 = (ats−ast)φs∧φt
if we permute the wedge product, multiply by −1 and factor out the wedges. Since
again φs, φt are linearly independent (and hence its wedge is nonzero), this means that
ats = ast. Since this reasoning follows for every s, t = 1, . . . , k, we obtained the desired
equality.
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