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Exercise 1

Let α and β be closed differential forms on a manifold M .

1. Show that α ∧ β is closed:

d(α ∧ β) = dα ∧ β + (−1)deg(α)α ∧ dβ = 0 ∧ β + (−1)deg(α)α ∧ 0 = 0,

where we have used a standard equality of the differential of the wedge of two
forms.

2. Show that if α is exact, say dν = α, then α ∧ β is exact:

α ∧ β = dν ∧ β = dν ∧ β + (−1)deg(ν)ν ∧ 0 = dν ∧ β + (−1)deg(ν)ν ∧ dβ = d(ν ∧ β),

where we again used the same equality of the differential of the wedge of two forms.
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Exercise 2

1. We show that every closed 1-form in S2 is exact. For this, let w be a closed 1-form
in S2. Let N,S ∈ S2 be the north pole and the south pole of the sphere. Consider
wN and wS the restrictions of w to S2\{N} and S2\{S} respectively, which remain
closed. Since we have that both S2 \ {N} and S2 \ {S} are diffeomorphic to R2 (as
we proved in Homework 1), we obtain that the restrictions wN and wS are also
closed when looking at them as forms over R2. By [2, Corollary 17.16 (p. 447)] we
have that H1(R2) = 0, thus we have 0-forms fN and fS on R2, that can be seen as
forms on S2 \ {N} and S2 \ {S} respectively, such that dfN = wN and dfS = wS .
Moreover, on S2 \ {N} ∩ S2 \ {S} = S2 \ {N,S} we have:

d(fN − fS) = dfN − dfS = wN −WS = 0.

Now using using [2, Proposition 11.22 (p. 282)], we obtain that on S2 \ {N,S} we
have fN − fS = r with r ∈ R is a fixed value. Thus define:

f(p) =

{
fN (p) if p ∈ S2 \ {N}
fS(p) + r if p ∈ S2 \ {S}

,

which is well defined because in the intersection the two values coincide by the
above. Moreover, piece-wise this is smooth and it is smooth in the intersection,
thus f is smooth, thus f is a 0-form. Finally, we have that:

df =

{
dfN = wN in S2 \ {N}
d(fS + r) = dfS = wS in S2 \ {S}

,

and since wN and wS coincide in S2 \{N,S}, we obtain that df = w, meaning that
w is exact, as desired.

2. Prove that the following form is closed:

σ =
xdy ∧ dz − ydx ∧ dz + zdx ∧ dy

(x2 + y2 + z2)3/2
= σ1dy ∧ dz − σ3dx ∧ dz + σ3dx ∧ dy.

We note that when we apply the definition of the differential, the only terms that
will survive are the ones that are proportional to dx ∧ dy ∧ dz, since the rest will
have the wedge of two identical 1-forms, hence they will be zero. This means that:

dσ =
∂σ1
∂x

dx ∧ dy ∧ dz − ∂σ2
∂y

dy ∧ dx ∧ dz +
∂σ3
∂z

dz ∧ dx ∧ dy

=

(
∂σ1
∂x

+
∂σ2
∂y

+
∂σ3
∂z

)
dx ∧ dy ∧ dz.

Thus we simply compute:

∂σ1
∂x

=
(x2 + y2 + z2)3/2 − (3/2)x(x2 + y2 + z2)1/22x

(x2 + y2 + z2)3

=
(x2 + y2 + z2)1/2

(x2 + y2 + z2)3
(x2 + y2 + z2 − 3x2) =

−2x2 + y2 + z2

(x2 + y2 + z2)5/2
,
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∂σ2
∂y

=
(x2 + y2 + z2)3/2 − (3/2)y(x2 + y2 + z2)1/22y

(x2 + y2 + z2)3

=
(x2 + y2 + z2)1/2

(x2 + y2 + z2)3
(x2 + y2 + z2 − 3y2) =

−2y2 + x2 + z2

(x2 + y2 + z2)5/2
,

∂σ3
∂x

=
(x2 + y2 + z2)3/2 − (3/2)z(x2 + y2 + z2)1/22z

(x2 + y2 + z2)3

=
(x2 + y2 + z2)1/2

(x2 + y2 + z2)3
(x2 + y2 + z2 − 3z2) =

−2z2 + x2 + y2

(x2 + y2 + z2)5/2
.

Hence:

∂σ1
∂x

+
∂σ2
∂y

+
∂σ3
∂z

=
1

(x2 + y2 + z2)5/2
(−2x2 + y2 + z2

− 2y2 + x2 + z2 − 2z2 + x2 + y2) = 0,

so dσ = 0 and σ is closed, as desired.

3. Evaluate the integral of σ over S2. We have:∫
S2
σ =

∫
S2

xdy ∧ dz − ydx ∧ dz + zdx ∧ dy
(x2 + y2 + z2)3/2

=

∫
S2
xdy ∧ dz − ydx ∧ dz + zdx ∧ dy

=

∫
∂B3

xdy ∧ dz − ydx ∧ dz + zdx ∧ dy

=

∫
B3

d(xdy ∧ dz − ydx ∧ dz + zdx ∧ dy)

=

∫
B3

3dy ∧ dy ∧ dz = 3vol(B3) = 3
4

3
π = 4π,

where in the second equality we have used that x2 +y2 +z2 = 1 on S2, on the third
equality we have used that the boundary of the three dimensional closed ball of unit
radius B3 is the two dimensional sphere of unit radius S2, on the fourth equality we
have applied Stokes’ Theorem, on the fourth equality we have differentiated using
the definition and rearranging the terms to put the order of the 1-forms in such a
way that we can add them up, on the fifth equality we notice that the integral of
the ball over the three canonical coordinates equals the volume of such ball, and
on the sixth equality we use that we know the value of the volume of any ball given
its radius.

Suppose that σ were exact, that is, there is ν a 1-form with dν = σ. In that case,
we can integrate: ∫

S2
σ =

∫
S2
dν =

∫
∂S2

ν = 0,
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where we used Stokes’ Theorem for the second equality and the fact that ∂S2 = ∅
since the two dimensional sphere has no boundary, meaning that the integral must
vanish. However, we computed above that this same integral was non-vanishing,
hence σ exact yields a contradiction, meaning that σ cannot be exact, as desired.
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Exercise 3

Let M be a compact orientable n-manifold without boundary, let θ be a (n − 1)-form
on M . We want to see that dθ is zero at some point of the manifold.

For this, we first note that we may restrict us to one of the connected components
of M , where we will prove the existence of such a point. Equivalently, we may assume
that M is connected. Now, notice that by Stokes’ Theorem:∫

M
dθ =

∫
∂M

θ = 0

because ∂M = ∅ by hypothesis. Moreover, since θ is a (n − 1)-form, dθ is an n-form,
and as such can be written as dθ = fdx1 ∧ · · · ∧ dxn where f is a 0-form and x1, . . . , xn

are the coordinates of a chart (x, U) on M . Suppose f(p) 6= 0 for every p ∈ M , say
f(q) > 0 for a certain q ∈M (the case where f(q) < 0 for a certain q ∈M is completely
analogous), we have two possibilities:

1. If f(p) > 0 for every p ∈M , then we clearly have:∫
M
dθ =

∫
M
fdx1 ∧ · · · ∧ dxn > 0,

a contradiction with the above. Hence this cannot happen.

2. If there is r ∈M with f(r) < 0, then notice that f : M −→ R is a smooth map (in
particular continuous) from a connected topological space M to R a totally ordered
set equipped with the order topology. Thus we can apply the n-dimensional version
of the Intermediate Value Theorem to say that the whole range from f(r) to f(q)
is contained in the image of f , that is, [f(r), f(q)] ∈ im(f). In particular, there
is a point s ∈ M with f(s) = 0, meaning that dθ at this s ∈ M must be zero, as
desired.
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Exercise 4

1. Let M be a compact oriented n-manifold with non-empty boundary. We want to
show that there is no retraction φ : M −→ ∂M .

For this, let w ∈ Ωn−1(∂M) be an (n− 1)-form in ∂M whose integral over ∂M is
strictly positive. Notice that we can guarantee its existence because in virtue of
[2, Theorem 17.30 (p. 454)] we have that the integral of the corresponding forms
gives an isomorphism Hn−1

c
∼= R, thus given a positive real number we can take

the isomorphism to obtain the cohomology class of certain form, and this form
will have integral the same positive real number we started with. Consider now
β = φ∗w a (n− 1)-form on M and integrate dβ over M in the two natural ways:

0 =

∫
M
φ∗(dw) =

∫
M
d(φ∗w) =

∫
M
dβ =

∫
∂M

β =

∫
∂M

φ∗w =

∫
∂M

w > 0.

Starting from the integral of dβ over M to the left, we used the definition of β,
then we used that the pullback and the exterior derivative commute in virtue of [2,
Proposition 14.26 (p. 366)] and finally we used that dw ∈ Ωn(∂M) = {0} because
∂M is (n−1)-dimensional, thus all the n-forms are zero. Starting from the integral
of dβ over M to the right, we used Stokes’ Theorem, then we used the definition
of β, then we used that φ restricted to ∂M is the identity and finally we used the
construction of w, namely that it has strictly positive integral. Since this is an
obvious contradiction, we have that such a retraction φ : M −→ ∂M cannot exist,
as desired.

2. We want to prove that if F : Bn −→ Bn is a smooth map from the closed n-
dimensional unit ball to itself, then F has a fixed point.

To prove this, suppose F as above has no fixed points, that is, F (x) 6= x for every
x ∈ Bn. Then given x ∈M , consider the half line starting at F (x) and intersecting
x, namely the one parametrized by L(x, t) = F (x)(1 − t) + xt with t ∈ (0,∞).
Since F (x) 6= x, such a half line always exists and thus it is well defined. We note
that since both F (x), x ∈ Bn, this half line must intersect ∂Bn for some time, say
tx, and such an intersection always occurs once (because it is only a half line, we do
not go backwards in time, and we do not pick time t = 0: this is really important
as we will see below because if x ∈ ∂Bn nothing stops us from having F (x) ∈ ∂Bn,
but by not taking t = 0 we make the half line so that F (x) /∈ L(x, t) and thus the
intersection of this half line with the boundary is exactly one point). We define
φ : Bn −→ ∂Bn as φ(x) = L(x, tx), that is, the unique point in L(x, tx) ∩ ∂Bn,
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which clearly is well defined. Moreover, this function is smooth since:

∂φ

∂x
(x) = lim

h→0

1

h
(Lx+h(tx+h)− Lx(tx))

= lim
h→0

1

h
(Lx+h(tx+h)− Lx(tx+h) + Lx(tx+h)− Lx(tx))

= lim
h→0

1

h
(Lx+h(tx+h)− Lx(tx+h)) + lim

h→0

1

h
(Lx(tx+h)− Lx(tx))

=
∂L

∂x
(x, tx + h) +

∂L

∂t
(x, tx),

and this is smooth because L(x, t) is smooth in both variables. Thus we showed
that φ can be differentiated once and that its differential ∂φ/∂x is smooth, hence
φ is smooth. Moreover, if y ∈ ∂Bn then we have that L(y, 1) = y ∈ ∂Bn, and
since we argued above that the intersection point of the line is unique, we have
that ty = 1 and φ(y) = y, so φ is the identity map in ∂Bn. However, the φ we now
constructed is a smooth retraction satisfying the conditions in the above section,
which is a contradiction. Hence any F : Bn −→ Bn must have one fixed point, as
desired.
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Exercise 5

Let f : Mk −→ Rn, g : N l −→ Rn be smooth, M , N compact oriented manifolds
with n = k + l + 1 and f(M) ∩ g(N) = ∅. We define αf,g : M × N −→ Sn−1 by
αf,g(p, q) = (g(q)− f(p))/|g(q)− f(p)| and `(f, g) = deg(αf,g).

1. We want to prove that `(f, g) = (−1)(k+1)(l+1)`(g, f). Note that if we define:

A : Sn−1 −→ Sn−1
x 7−→ −x ,

T : N ×M −→ M ×N
(q, p) 7−→ (p, q)

,

then we have that:

A ◦ αf,g ◦ T (q, p) = A ◦ αf,g(p, q) = A

(
g(q)− f(p)

|g(q)− f(p)|

)
= − g(q)− f(p)

|g(q)− f(p)|
=

f(p)− g(q)

|f(p)− g(q)|
= αg,f (q, p),

meaning that A◦αf,g ◦T = αg,f as functions from N×M to Sn−1. Now, let (x, U),
(y, V ) be charts on M , N respectively, notice that:∫

N×M
T ∗(dx1 ∧ · · · ∧ dxk ∧ dy1 ∧ · · · ∧ dyl) =

∫
M×N

d(x1 ◦ T ) ∧

· · · ∧ d(xk ◦ T ) ∧ d(y1 ◦ T ) ∧ · · · ∧ d(yl ◦ T ) =

∫
M×N

dy1 ∧

· · · ∧ dyl ∧ dx1 ∧ · · · ∧ dxk = (−1)kl
∫
M×N

dx1 ∧ · · · ∧ dxk ∧ dy1 ∧ · · · ∧ dyl,

where we have used [2, Lemma 14.16 (p. 361)]. This proves that deg(T ) = (−1)kl.
Moreover, by the discussion in [1, p. 277] we know that deg(A) = (−1)k+l+1−1 =
(−1)k+l. Finally, using [2, Proposition 17.36 (p. 459)] we have that:

`(g, f) = deg(αg,f ) = deg(A) deg(αf,g) deg(T )

= (−1)k+l+1(−1)kl+1 deg(αf,g) = (−1)(k+1)(l+1)`(f, g),

so multiplying by (−1)(k+1)(l+1) we obtain that `(f, g) = (−1)(k+1)(l+1)`(g, f), the
desired result.

2. Given homotopies H between f , f and K between g, g, we clearly have:

h : M ×N × [0, 1] −→ Sn−1

(p, q, t) 7−→ g(q)−H(p,t)
|g(q)−H(p,t)|

,
k : M ×N × [0, 1] −→ Sn−1

(p, q, t) 7−→ K(q,t)−f(p)
|K(q,t)−f(p)|

,

that are both smooth as composition of smooth functions, and the fact that
{H(p, t) : p ∈ M} ∩ {K(q, t) : q ∈ N} = ∅ for every t ∈ [0, 1] guarantees that
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they are well defined and indeed we can divide. Moreover, notice how:

h(p, q, 0) =
g(q)−H(p, 0)

|g(q)−H(p, 0)|
= αf,g(p, q), k(p, q, 0) =

K(q, 0)− f(p)

|K(q, 0)− f(p)|
= αf,g(p, q),

h(p, q, 1) =
g(q)−H(p, 1)

|g(q)−H(p, 1)|
= αf,g(p, q), k(p, q, 1) =

K(q, 1)− f(p)

|K(q, 1)− f(p)|
= αf,g(p, q),

hence h is a smooth homotopy between αf,g, αf,g and k between is a smooth
homotopy between αf,g, αf,g. Thus applying [2, Proposition 17.36 (p. 459)] we
have that if two smooth maps are homotopic, then they have the same degree,
hence `(f, g) = deg(αf,g) = deg(αf,g) = deg(αf,g) = `(f, g), what we wanted.

3. For f, g : S1 −→ R3 we want to explicitly compute `(f, g). For this, we will use [2,
Theorem 17.35 (p. 457)], that assures us of:

deg(αf,g)

∫
S2
w =

∫
S1×S1

α∗f,g(w)

where w is the differential form of our choice, the only condition is that its integral
is non zero. Before integrating everything, we make some tweaks to our functions
and our coordinate systems so that we will obtain the desired result. First, since
S1 is diffeomorphic to the unit interval by gluing 0 and 1, we will take the functions
f, g : S1 −→ R3 as functions f, g : [0, 1] −→ R3 with f(0) = f(1) and g(0) = g(1),
and we name their coordinates u, v respectively. Second, we notice that S2 ⊂ R3

so we may take Cartesian coordinates for our choice of w we look at Exercise 2
above and choose w = xdy ∧ dz − ydx ∧ dz + zdx ∧ dy, that we already know that
integrates to 4π, obtaining that:

deg(αf,g) =
1

4π

∫
S1×S1

α∗f,g(xdy ∧ dz − ydx ∧ dz + zdx ∧ dy).

Once we are here, the pain begins. Since f, g : S1 −→ R3 we may write them in
components as (f1(u), f2(u), f3(u)), (g1(v), g2(v), g3(v)) respectively. Since αf,g :
S1×S1 −→ R3, by looking at its definition we can write the components of αf,g as
(α1(u, v), α2(u, v), α3(u, v))/r(u, v) with αi(u, v) = gi(v)− fi(u) for i = 1, 2, 3 and
r(u, v) = |g(v) − f(u)|. Equipped with these horrible expressions, we can use [2,
Lemma 14.16 (p. 361)] to explicitly compute the pullback:

α∗f,g(xdy ∧ dz − ydx ∧ dz + zdx ∧ dy) = (x ◦ αf,g)d(y ◦ αf,g) ∧ d(z ◦ αf,g)
−(y ◦ αf,g)d(x ◦ αf,g) ∧ d(z ◦ αf,g) + (z ◦ αf,g)d(x ◦ αf,g) ∧ d(y ◦ αf,g)

so:

α∗f,g(xdy ∧ dz − ydx ∧ dz + zdx ∧ dy) =
α1(u, v)

r(u, v)
d

(
α2(u, v)

r(u, v)

)
∧ d
(
α3(u, v)

r(u, v)

)
− α2(u, v)

r(u, v)
d

(
α1(u, v)

r(u, v)

)
∧ d
(
α3(u, v)

r(u, v)

)
+

α3(u, v)

r(u, v)
d

(
α1(u, v)

r(u, v)

)
∧ d
(
α2(u, v)

r(u, v)

)
.
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Now, we have to expand this madness and rearrange the terms to integrate along
du ∧ dv. To do so, we notice that we have r(u, v) dividing everywhere, and the
expressions look very symmetric. In fact, the way to proceed is to explicitly dif-
ferentiate αi(u, v) for i = 1, 2, 3 to obtain the derivatives of fi(u) and gi(v) for
i = 1, 2, 3, but whenever we encounter the derivative of 1/r(u, v), we do not ex-
pand it and leave it formally. It turns out that all the terms with those derivatives
cancel out, but since we want to preserve both ours and the reader’s mental health,
we will not present the computation here. Thus a posteriori we can apply the prod-
uct rule by taking the term 1/r(u, v) as constant, meaning that in fact we can factor
it out to obtain:

α∗f,g(w) =
α1(u, v)

r(u, v)3
d(α2(u, v)) ∧ d(α3(u, v))

− α2(u, v)

r(u, v)3
d(α1(u, v)) ∧ d(α3(u, v))

+
α3(u, v)

r(u, v)3
d(α1(u, v)) ∧ d(α2(u, v)).

Hence what we have proven so far is that:

deg(αf,g) =
1

4π

∫
S1×S1

ν

r(u, v)3

where:

ν = α1(u, v)d(α2(u, v)) ∧ d(α3(u, v))

− α2(u, v)d(α1(u, v)) ∧ d(α3(u, v))

+ α3(u, v)d(α1(u, v)) ∧ d(α2(u, v)).

This is some progress, but the calculations remain more than tedious. Bracing
ourselves, we start computing: differentiating using the discussion on [2, p. 363]
and selecting only the crossed terms of the form du∧ dv and dv ∧ du. The ensuing
mess of summands can only be described as the closest thing to chaos that we have
ever experienced, we fell in a seeming bottomless hole of terms that tried to suck
us in and never let us go. The details will be spared since if we stare at the abyss
for too long, the abyss eventually stares back, a risk that we need to avoid at all
costs. Somehow, we managed to see the light and simplify the monstrosity into a
more bearable freak1 (in the sign given by du ∧ dv):

−f ′1(u)g′2(v)g3(v) + f ′1(u)g′2(v)f3(u)− f ′1(u)g′3(v)g2(v) + f ′1(u)g′3(v)f2(u)

−g′1(v)f ′2(u)g3(v) + g′1(v)f ′2(u)f3(u)− g′1(v)f ′3(u)g2(v) + g′1(v)f ′3(u)f2(u)

+g1(u)f ′2(u)g′3(v) + f1(u)f ′2(u)g′3(v)− g1(u)f ′3(u)g′2(v) + f1(u)f ′3(u)g′2(v)

1Since there are so many signs in the expression below, it is possible that some of them were tran-
scribed as negative when they were positive and vice versa. We apologize if it is the case. However, the
final result has been checked multiple times to ensure that it is correct.
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almost inexplicably, this can be simplified to:

f ′1(u)(g′2(v)(g3(v)− f3(u)) + g′3(v)(g2(v)− f2(u)))− g′1(v)(f ′2(u)(g3(v)

−f3(u)) + f ′3(u)(g2(v)− f2(u))) + (g1(u)− f1(u))(f ′2(u)g′3(v) + f ′3(u)g′2(v))

which is precisely the determinant of the following matrix, but with sign changed: f ′1(u) f ′2(u) f ′3(u)
g′1(v) g′2(v) g′3(v)

g1(v)− f1(u) g2(v)− f2(u) g3(v)− f3(u)


thus:

deg(αf,g) =
1

4π

∫
S1×S1

−A(u, v)du ∧ dv
r(u, v)3

=
−1

4π

∫ 1

0

∫ 1

0

A(u, v)

r(u, v)3
,

precisely what we wanted to obtain.

4. We want to show that if f , g are coplanar, then `(f, g) = 0.

First, we suppose f , g are coplanar in the first two coordinates. This means
that instead of having the image of αf,g contained in Sn−1 = {(x0, . . . , xn−1) :
x20 + · · · + x2n−1 = 1}, we actually have that the image of αf,g is contained in
{(x0, . . . , xn−1) : x20 + x21 = 1, xi = 0 if i 6= 0, 1}. In virtue of the discussion
on [2, p. 78], we have that the rank of Dαf,g

the differential of αf,g is less than
or equal than 1, the maximum dimension of the image of αf,g. In particular
rank(Dαf,g

) ≤ 1 < n − 1 assuming that M , N have both at least dimension 1.
Since then Dαf,g

is a (n − 1) × (n − 1) matrix with rank strictly less than n − 1,
this means that Jαf,g

= det(Dαf,g
) = 0, that is, the Jacobian of αf,g is zero. Now

letting dV being a volume form in Sn−1 and using [2, Proposition 14.20 (p. 361)]
we have that α∗f,g(dV ) = 0 because it has multiplying the Jacobian of αf,g, which
we just saw is zero. Finally, using the definition of the degree of αf,g, that is using
[2, Theorem 17.35 (p. 457)] we obtain that:

deg(αf,g) =

∫
M×N α

∗
f,g(dV )∫

Sn−1 dV
= 0

because the numerator is zero. Thus `(f, g) = 0, as desired.

Now, suppose f , g are coplanar in a general plane. Then by the usual completion
of a basis of a vector space, we may take coordinates in Rn so that this plane is
precisely defined by the first and second components. Thus applying the above we
obtain that indeed `(f, g) = 0, as desired.
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