Differential Geometry I - Homework 8

Pablo Sánchez Ocal
April 19th, 2017

Exercise 1

Consider the function $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{4}$ given by $f(x, y)=(\cos (x), \sin (x), \cos (y), \sin (y))$.

1. We have that f is an immersion, because:

$$
D f=\left[\begin{array}{cc}
-\sin (x) & 0 \\
\cos (x) & 0 \\
0 & -\sin (y) \\
0 & \cos (y)
\end{array}\right]
$$

and thus considering the following minors and their corresponding determinants:

$$
\begin{array}{ll}
M_{1}=\left[\begin{array}{cc}
-\sin (x) & 0 \\
0 & -\sin (y)
\end{array}\right], & \operatorname{det}\left(M_{1}\right)=\sin (x) \sin (y) \\
M_{2}=\left[\begin{array}{cc}
\cos (x) & 0 \\
0 & \cos (y)
\end{array}\right], & \operatorname{det}\left(M_{1}\right)=\cos (x) \cos (y) \\
M_{3}=\left[\begin{array}{cc}
\cos (x) & 0 \\
0 & -\sin (y)
\end{array}\right], & \operatorname{det}\left(M_{1}\right)=-\cos (x) \sin (y) \\
M_{4}=\left[\begin{array}{cc}
-\sin (x) & 0 \\
0 & \cos (y)
\end{array}\right], & \operatorname{det}\left(M_{1}\right)=-\sin (x) \cos (y)
\end{array}
$$

so we have:

$$
\begin{aligned}
\operatorname{det}\left(M_{1}\right)=0 \Longleftrightarrow x=n \pi \text { or } y=n \pi \text { for some } n \in \mathbb{Z} \\
\operatorname{det}\left(M_{2}\right)=0 \Longleftrightarrow x=n \pi-\pi / 2 \text { or } y=n \pi-\pi / 2 \text { for some } n \in \mathbb{Z} .
\end{aligned}
$$

Thus the points having $\operatorname{det}\left(M_{1}\right)=0=\operatorname{det}\left(M_{2}\right)$ are of the form $(n \pi, k \pi-\pi / 2)$ or $(k \pi-\pi / 2, n \pi)$ with $n, k \in \mathbb{Z}$. If $(x, y) \in \mathbb{R}^{2}$ is not of this form, we have a minor with non zero determinant, hence $\operatorname{rank}(D f)=2$. Moreover for $n, k \in \mathbb{Z}$ we have:

$$
\begin{array}{lll}
(n \pi, k \pi-\pi / 2) & \text { has } & \operatorname{det}\left(M_{3}\right) \neq 0 \\
(k \pi-\pi / 2, n \pi) & \text { has } & \operatorname{det}\left(M_{4}\right) \neq 0,
\end{array}
$$

so in both cases we have a minor with non zero determinant. Hence for every $(x, y) \in \mathbb{R}^{2}$ we have a minor with non zero determinant, hence $\operatorname{rank}(D f)=2$ and by the discussion in [2, p. 78] we have that f is an immersion.
Now we observe that since the sine and cosine functions are periodic, to obtain $f\left(\mathbb{R}^{2}\right)$ is enough to have $x, y \in[0,2 \pi)$. Moreover, for each pair these values we have a unique point in $f\left(\mathbb{R}^{2}\right)$, namely $(\cos (x), \sin (x), \cos (y), \sin (y))$. Hence $f\left(\mathbb{R}^{2}\right)=\{(\cos (x), \sin (x), \cos (y), \sin (y)): x, y \in[0,2 \pi)\}$. Consider the function $\psi:$ $f\left(\mathbb{R}^{2}\right) \longrightarrow \mathbb{S}^{1} \times \mathbb{S}^{1}$ defined by $\psi(\cos (x), \sin (x), \cos (y), \sin (y))=(\cos (x), \sin (x), \cos (y), \sin (y))$, which is clearly well defined since $\mathbb{S}^{1}=\{(\cos (t), \sin (t)): t \in[0,2 \pi)\}$ in virtue of the polar coordinates. This function is continuous as composition of continuous functions. Moreover, since both $f\left(\mathbb{R}^{2}\right)$ and $\mathbb{S}^{1} \times \mathbb{S}^{1}$ can be written as the same set,
and this function is a bijective identification between those sets (namely the identity), ψ is both injective and surjective. Finally, the function $\phi: \mathbb{S}^{1} \times \mathbb{S}^{1} \longrightarrow f\left(\mathbb{R}^{2}\right)$ defined as $\phi(\cos (u), \sin (u), \cos (v), \sin (v))=(\cos (u), \sin (u), \cos (v), \sin (v))$ is well defined and continuous by the same reasons that apply to ψ. Clearly we have $\phi \circ \psi=\operatorname{id}_{f\left(\mathbb{R}^{2}\right)}$ and $\psi \circ \phi=\mathrm{id}_{\mathbb{S}^{1} \times \mathbb{S}^{1}}$, so ψ is indeed a homeomorphism. Thus $f\left(\mathbb{R}^{2}\right) \cong \mathbb{S}^{1} \times \mathbb{S}^{1}$, which is a torus.
2. We consider the frame in \mathbb{R}^{2} given by $e_{1}=\partial / \partial x$ and $e_{2}=\partial / \partial y$. To prove that it is orthonormal in $f\left(\mathbb{R}^{2}\right)$ with the induced metric, we compute:

$$
\begin{aligned}
\left\langle e_{1}, e_{1}\right\rangle_{f\left(\mathbb{R}^{2}\right)} & =\left\langle f_{*}\left(e_{1}\right), f_{*}\left(e_{1}\right)\right\rangle_{\mathbb{R}^{4}}=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial x}\right\rangle \\
& =\langle(-\sin (x), \cos (x), 0,0),(-\sin (x), \cos (x), 0,0)\rangle \\
& =\sin (x)^{2}+\cos (x)^{2}=1 \\
\left\langle e_{2}, e_{2}\right\rangle_{f\left(\mathbb{R}^{2}\right)} & =\left\langle f_{*}\left(e_{2}\right), f_{*}\left(e_{2}\right)\right\rangle_{\mathbb{R}^{4}}=\left\langle\frac{\partial f}{\partial y}, \frac{\partial f}{\partial y}\right\rangle \\
& =\langle(0,0,-\sin (y), \cos (y)),(0,0,-\sin (y), \cos (y))\rangle \\
& =\sin (y)^{2}+\cos (y)^{2}=1 \\
\left\langle e_{1}, e_{2}\right\rangle_{f\left(\mathbb{R}^{2}\right)} & =\left\langle f_{*}\left(e_{1}\right), f_{*}\left(e_{2}\right)\right\rangle_{\mathbb{R}^{4}}=\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right\rangle \\
& =\langle(-\sin (x), \cos (x), 0,0),(0,0,-\sin (y), \cos (y))\rangle=0 \\
\left\langle e_{2}, e_{1}\right\rangle_{f\left(\mathbb{R}^{2}\right)} & =\left\langle e_{1}, e_{2}\right\rangle_{f\left(\mathbb{R}^{2}\right)}=0,
\end{aligned}
$$

hence the push-forwards indeed form an orthonormal frame, as desired. We clearly have that $w_{1}=d x$ and $w_{2}=d y$ is a coframe, meaning that $d w_{1}=0$ and $d w_{2}=0$ and since $d w_{1}=w_{12} \wedge w_{2}$ and $d w_{2}=-w_{12} \wedge w_{1}$, that is, the connection form has those coefficients as components, we must thus have $w_{12}=0$.
3. Since the Gaussian curvature K satisfies $d w_{12}=-K w_{1} \wedge w_{2}$, having $d w_{12}=0$ implies $K=0$.

Exercise 2

Consider $\mathbb{H}^{2}=\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}$, we define for $(x, y) \in \mathbb{H}^{2}$ and $u, v \in T_{(x, y)} \mathbb{H}^{2}$ the inner product $\langle u, v\rangle_{(x, y)}=\langle u, v\rangle_{\mathbb{R}^{2}} / y^{2}$ via the standard inner product on \mathbb{R}^{2}.

First, this is a Riemannian metric since in the notation above:

$$
\begin{aligned}
\langle u, v\rangle_{(x, y)} & =\frac{\langle u, v\rangle_{\mathbb{R}^{2}}}{y^{2}}=\frac{\langle v, u\rangle_{\mathbb{R}^{2}}}{y^{2}}=\langle v, u\rangle_{(x, y)} \\
\langle v, v\rangle_{(x, y)} & =\frac{\langle v, v\rangle_{\mathbb{R}^{2}}}{y^{2}} \geq 0 \\
\langle v, v\rangle_{(x, y)} & =0 \Longleftrightarrow\langle v, v\rangle_{\mathbb{R}^{2}}=0 \Longleftrightarrow v=0
\end{aligned}
$$

where for the first we used the symmetry of the standard inner product on \mathbb{R}^{2}, on the second we used that both $\langle u \cdot v\rangle_{\mathbb{R}^{2}}$ and y^{2} are positive and on the third we used that the standard inner product defines a Riemannian metric on \mathbb{R}^{2}.

Second, we can compute the curvature considering the frame in \mathbb{R}^{2} given by $e_{1}=$ $y \partial / \partial x$ and $e_{2}=y \partial / \partial y$. To prove that it is orthonormal in \mathbb{H}^{2} with the above metric, we compute:

$$
\begin{aligned}
\left\langle e_{1}, e_{1}\right\rangle_{(x, y)} & =\frac{\langle y \partial / \partial x, y \partial / \partial x\rangle_{\mathbb{R}^{2}}}{y^{2}}=\frac{y^{2}}{y^{2}}\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial x}\right\rangle=1 \\
\left\langle e_{2}, e_{2}\right\rangle_{(x, y)} & =\frac{\langle y \partial / \partial y, y \partial / \partial y\rangle_{\mathbb{R}^{2}}}{y^{2}}=\frac{y^{2}}{y^{2}}\left\langle\frac{\partial}{\partial y}, \frac{\partial}{\partial y}\right\rangle=1 \\
\left\langle e_{1}, e_{2}\right\rangle_{(x, y)} & =\frac{\langle y \partial / \partial x, y \partial / \partial y\rangle_{\mathbb{R}^{2}}}{y^{2}}=\frac{y^{2}}{y^{2}}\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right\rangle=0 \\
\left\langle e_{2}, e_{1}\right\rangle_{(x, y)} & =\left\langle e_{1}, e_{2}\right\rangle_{(x, y)}=0
\end{aligned}
$$

where we have used that $\partial / \partial x$ and $\partial / \partial y$ form an orthonormal basis of \mathbb{R}^{2} with the standard metric. Hence e_{1} and e_{2} indeed form an orthonormal frame, as desired. We clearly have that $w_{1}=(1 / y) d x$ and $w_{2}=(1 / y) d y$ is a coframe, meaning that:

$$
\begin{aligned}
& d w_{1}=\frac{-1}{y^{2}} d y \wedge d x=\left(\frac{1}{y} d x\right) \wedge\left(\frac{1}{y} d y\right)=\left(\frac{1}{y} d x\right) \wedge w_{2} \\
& d w_{2}=0
\end{aligned}
$$

thus since $d w_{1}=w_{12} \wedge w_{2}$ and $d w_{2}=-w_{12} \wedge w_{1}$, we have:

$$
\begin{aligned}
w_{12} & =\frac{1}{y} d x \\
d w_{12} & =\frac{-1}{y^{2}} d y \wedge d x=-(-1)\left(\frac{1}{y} d x\right) \wedge\left(\frac{1}{y} d y\right)=-(-1) w_{1} \wedge w_{2}
\end{aligned}
$$

so $K=-1$, as desired.

Exercise 3

Consider \mathbb{R}^{2} and $g: \mathbb{R}^{2} \longrightarrow \mathbb{R}$ a strictly positive smooth function. We define for $(x, y) \in \mathbb{R}^{2}$ and $u, v \in T_{(x, y)} \mathbb{R}^{2}$ the inner product $\langle u, v\rangle_{(x, y)}=\langle u, v\rangle_{\mathbb{R}^{2}} / g(x, y)^{2}$ via the standard inner product on \mathbb{R}^{2}.

We can compute the curvature considering the frame in \mathbb{R}^{2} given by $e_{1}=g(x, y) \partial / \partial x$ and $e_{2}=g(x, y) \partial / \partial y$. To prove that it is orthonormal in \mathbb{H}^{2} with the above metric, we compute:

$$
\begin{aligned}
&\left\langle e_{1}, e_{1}\right\rangle_{(x, y)}=\frac{\langle g(x, y) \partial / \partial x, g(x, y) \partial / \partial x\rangle_{\mathbb{R}^{2}}}{g(x, y)^{2}}=\frac{g(x, y)^{2}}{g(x, y)^{2}}\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial x}\right\rangle=1 \\
&\left\langle e_{2}, e_{2}\right\rangle_{(x, y)}=\frac{\langle g(x, y) \partial / \partial y, g(x, y) \partial / \partial y\rangle_{\mathbb{R}^{2}}}{g(x, y)^{2}}=\frac{g(x, y)^{2}}{g(x, y)^{2}}\left\langle\frac{\partial}{\partial y}, \frac{\partial}{\partial y}\right\rangle=1 \\
&\left\langle e_{1}, e_{2}\right\rangle_{(x, y)}=\frac{\langle g(x, y) \partial / \partial x, g(x, y) \partial / \partial y\rangle_{\mathbb{R}^{2}}}{g(x, y)^{2}}=\frac{g(x, y)^{2}}{g(x, y)^{2}}\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right\rangle=0 \\
&\left\langle e_{2}, e_{1}\right\rangle_{(x, y)}=\left\langle e_{1}, e_{2}\right\rangle_{(x, y)}=0,
\end{aligned}
$$

where we have used that $\partial / \partial x$ and $\partial / \partial y$ form an orthonormal basis of \mathbb{R}^{2} with the standard metric. Hence e_{1} and e_{2} indeed form an orthonormal frame, as desired. We clearly have that $w_{1}=(1 / g(x, y)) d x$ and $w_{2}=(1 / g(x, y)) d y$ is a coframe. From now on, we omit the variables where we consider g to not overload the notation. We have:

$$
\begin{aligned}
& d w_{1}=\frac{-1}{g^{2}} \frac{\partial g}{\partial y} d y \wedge d x=\left(\frac{1}{g} \frac{\partial g}{\partial y} d x\right) \wedge\left(\frac{1}{g} d y\right)=\left(\frac{1}{g} \frac{\partial g}{\partial y} d x\right) \wedge w_{2} \\
& d w_{2}=\frac{-1}{g^{2}} \frac{\partial g}{\partial x} d x \wedge d y=\left(\frac{1}{g} \frac{\partial g}{\partial x} d y\right) \wedge\left(\frac{1}{g} d x\right)=\left(\frac{1}{g} \frac{\partial g}{\partial x} d y\right) \wedge w_{1},
\end{aligned}
$$

thus since $d w_{1}=w_{12} \wedge w_{2}$ and $d w_{2}=-w_{12} \wedge w_{1}$, we have:

$$
\begin{aligned}
w_{12} & =\frac{1}{g} \frac{\partial g}{\partial y} d x-\frac{1}{g} \frac{\partial g}{\partial x} d y \\
d w_{12} & =\frac{\partial}{\partial y}\left(\frac{1}{g} \frac{\partial g}{\partial y}\right) d y \wedge d x-\frac{\partial}{\partial y}\left(\frac{1}{g} \frac{\partial g}{\partial x}\right) d x \wedge d y \\
& =\left(\frac{-1}{g^{2}} \frac{\partial g}{\partial y} \frac{\partial g}{\partial y}+\frac{1}{g} \frac{\partial^{2} g}{\partial y^{2}}\right) d y \wedge d x-\left(\frac{-1}{g^{2}} \frac{\partial g}{\partial x} \frac{\partial g}{\partial x}+\frac{1}{g} \frac{\partial^{2} g}{\partial x^{2}}\right) d x \wedge d y \\
& =-\left(-\left(\frac{\partial g}{\partial y}\right)^{2}+g \frac{\partial^{2} g}{\partial y^{2}}\right)\left(\frac{1}{g} d x\right) \wedge\left(\frac{1}{g} d y\right)-\left(-\left(\frac{\partial g}{\partial x}\right)^{2}+g \frac{\partial^{2} g}{\partial x^{2}}\right)\left(\frac{1}{g} d x\right) \wedge\left(\frac{1}{g} d y\right) \\
& =-\left(g\left(\frac{\partial^{2} g}{\partial y^{2}}+\frac{\partial^{2} g}{\partial x^{2}}\right)-\left(\left(\frac{\partial g}{\partial y}\right)^{2}+\left(\frac{\partial g}{\partial x}\right)^{2}\right)\right) w_{1} \wedge w_{2}
\end{aligned}
$$

so:

$$
K=g\left(\frac{\partial^{2} g}{\partial y^{2}}+\frac{\partial^{2} g}{\partial x^{2}}\right)-\left(\left(\frac{\partial g}{\partial y}\right)^{2}+\left(\frac{\partial g}{\partial x}\right)^{2}\right)
$$

as desired.

Exercise 4

Let \mathbb{S}^{2} be the unit sphere inside \mathbb{R}^{3} with the induced metric from the latter.

1. The antipodal map $A: \mathbb{S}^{2} \longrightarrow \mathbb{S}^{\neq}$given by $A(x, y, z)=(-x,-y,-z)$ is an isometry because for $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{1}, y_{1}, z_{1}\right) \in \mathbb{S}^{2}$ we have:

$$
\begin{array}{r}
\left\langle A\left(x_{1}, y_{1}, z_{1}\right), A\left(x_{2}, y_{2}, z_{2}\right)\right\rangle=\left\langle\left(-x_{1},-y_{1},-z_{1}\right),\left(-x_{1},-y_{1},-z_{1}\right)\right\rangle \\
=x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}=\left\langle\left(x_{1}, y_{1}, z_{1}\right),\left(x_{1}, y_{1}, z_{1}\right)\right\rangle .
\end{array}
$$

2. To compute the curvature of the sphere we consider its parametrization given by $f: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$ defined as $f(\theta, \phi)=(\sin (\theta) \cos (\phi), \sin (\theta) \sin (\phi), \cos (\theta))$ and the frame in \mathbb{R}^{2} given by $e_{1}=\partial / \partial \theta$ and $e_{2}=(1 / \sin (\theta)) \partial / \partial \phi$, in an appropriate open where it is defined. To prove that it is orthonormal in $f\left(\mathbb{R}^{2}\right)$ with the induced metric, we compute:

$$
\begin{aligned}
\left\langle e_{1}, e_{1}\right\rangle_{f\left(\mathbb{R}^{2}\right)}= & \left\langle f_{*}\left(e_{1}\right), f_{*}\left(e_{1}\right)\right\rangle_{\mathbb{R}^{3}}=\left\langle\frac{\partial f}{\partial \theta}, \frac{\partial f}{\partial \theta}\right\rangle \\
= & \langle(\cos (\theta) \cos (\phi), \cos (\theta) \sin (\phi),-\sin (\theta)), \\
& (\cos (\theta) \cos (\phi), \cos (\theta) \sin (\phi),-\sin (\theta))\rangle \\
= & \cos (\theta)^{2} \sin (\phi)^{2}+\sin (\phi)^{2} \cos (\theta)^{2}+\sin (\theta)^{2}=1 \\
\left\langle e_{2}, e_{2}\right\rangle_{f\left(\mathbb{R}^{2}\right)}= & \left\langle f_{*}\left(e_{2}\right), f_{*}\left(e_{2}\right)\right\rangle_{\mathbb{R}^{3}}=\frac{1}{\sin (\theta)^{2}}\left\langle\frac{\partial f}{\partial \phi}, \frac{\partial f}{\partial y}\right\rangle \\
= & \frac{1}{\sin (\theta)^{2}}\langle(-\sin (\theta) \sin (\phi), \sin (\theta) \cos (\phi), 0), \\
& (-\sin (\theta) \sin (\phi), \sin (\theta) \cos (\phi), 0)\rangle \\
= & \frac{1}{\sin (\theta)^{2}}\left(\sin (\theta)^{2} \sin (\phi)^{2}+\sin (\theta)^{2} \cos (\phi)^{2}\right)=1 \\
= & \left\langle f_{*}\left(e_{1}\right), f_{*}\left(e_{2}\right)\right\rangle_{\mathbb{R}^{3}}=\frac{1}{\sin (\theta)}\left\langle\frac{\partial f}{\partial \theta}, \frac{\partial f}{\partial \phi}\right\rangle \\
\left\langle e_{1}, e_{2}\right\rangle_{f\left(\mathbb{R}^{2}\right)}= & \frac{1}{\sin (\theta)}\langle(\cos (\theta) \cos (\phi), \cos (\theta) \sin (\phi),-\sin (\theta)), \\
& (-\sin (\theta) \sin (\phi), \sin (\theta) \cos (\phi), 0)\rangle=0 \\
\left\langle e_{2}, e_{1}\right\rangle_{f\left(\mathbb{R}^{2}\right)}= & \left\langle e_{1}, e_{2}\right\rangle_{f\left(\mathbb{R}^{2}\right)}=0,
\end{aligned}
$$

hence the push-forwards indeed form an orthonormal frame, as desired. We clearly have that $w_{1}=d \theta$ and $w_{2}=\sin (\theta) d \phi$ is a coframe, meaning that:

$$
\begin{aligned}
& d w_{1}=0 \\
& d w_{2}=\cos (\theta) d \theta \wedge d \phi=-(\cos (\theta) d \phi) \wedge d \theta=-(\cos (\theta) d \phi) \wedge w_{1},
\end{aligned}
$$

thus since $d w_{1}=w_{12} \wedge w_{2}$ and $d w_{2}=-w_{12} \wedge w_{1}$, we have:

$$
\begin{aligned}
w_{12} & =\cos (\theta) d \phi \\
d w_{12} & =-\sin (\theta) d \theta \wedge d \phi=-w_{1} \wedge w_{2}
\end{aligned}
$$

so $K=1$.
We now consider $\tilde{e}_{3}=f_{*}\left(e_{1}\right) \times f_{*}\left(e_{2}\right)=(\cos (\phi) \sin (\theta), \sin (\phi) \cos (\theta), \cos (\theta))$, the cross product of our frame (recall that we denote $\tilde{e}_{1}=f_{*}\left(e_{1}\right)$ and $\left.\tilde{e}_{2}=f_{*}\left(e_{2}\right)\right)$. We have:

$$
\begin{aligned}
d \tilde{e}_{3} & =\frac{\partial \tilde{e}_{3}}{\partial \theta} d \theta+\frac{\partial \tilde{e}_{3}}{\partial \phi} d \phi=(\cos (\theta) \cos (\phi), \cos (\theta) \sin (\phi),-\sin (\theta)) d \theta \\
& +(-\sin (\theta) \sin (\phi), \sin (\theta) \cos (\phi), 0) d \phi=d \theta \tilde{e}_{1}+\sin (\theta) d \phi \tilde{e}_{2}
\end{aligned}
$$

and since $d \tilde{e}_{3}=w_{31} \tilde{e}_{1}+w_{32} \tilde{e}_{2}$, we find that $w_{13}=-w_{31}=-d \theta$ and $w_{23}=-w_{32}=$ $-\sin (\theta) d \phi$. We can compute:

$$
w_{13} \wedge w_{2}+w_{1} \wedge w_{23}=(-d \theta) \wedge(\sin (\theta) d \phi)+d \theta \wedge(-\sin (\theta) d \phi)=-2 w_{1} \wedge w_{2}
$$

thus since we know that $2 H w_{1} \wedge w_{2}=w_{13} \wedge w_{2}+w_{1} \wedge w_{23}$, we have that $H=-1$. Finally, using that \mathbb{S}^{2} is symmetric, we can compute this at every single point provided we rotate the sphere so that our point of interest lies where our frame is well defined. Hence we always have $K=1$ and $H=-1$.

Exercise 5

Suppose $h, g: \mathbb{R} \longrightarrow \mathbb{R}$ are two smooth functions satisfying $h \neq 0$ and $(\partial h / \partial s)^{2}+$ $(\partial g / \partial s)^{2}=1$. Let $U=\left\{(s, v) \in \mathbb{R}^{2}: s \in \mathbb{R}, v \in(0,2 \pi)\right\}$ and $x: U \longrightarrow \mathbb{R}^{3}$ given by $x(s, v)=(h(s) \cos (v), h(s) \sin (v), g(s))$.

To compute the curvature we consider the frame in U given by $e_{1}=\partial / \partial s$ and $e_{2}=(1 / h(s)) \partial / \partial v$, defined in the whole U. From now on, we omit the variables where we consider h to not overload the notation. To prove that it is orthonormal in $x(U)$ with the induced metric, we compute:

$$
\begin{aligned}
\left\langle e_{1}, e_{1}\right\rangle_{x(U)} & =\left\langle x_{*}\left(e_{1}\right), x_{*}\left(e_{1}\right)\right\rangle_{\mathbb{R}^{3}}=\left\langle\frac{\partial x}{\partial s}, \frac{\partial x}{\partial s}\right\rangle \\
& =\left\langle\left(\frac{\partial h}{\partial s} \cos (v), \frac{\partial h}{\partial s} \sin (v), \frac{\partial g}{\partial s}\right),\left(\frac{\partial h}{\partial s} \cos (v), \frac{\partial h}{\partial s} \sin (v), \frac{\partial g}{\partial s}\right)\right\rangle \\
& =\left(\frac{\partial h}{\partial s}\right)^{2} \cos (v)^{2}+\left(\frac{\partial h}{\partial s}\right)^{2} \sin (v)^{2}+\left(\frac{\partial g}{\partial s}\right)^{2}=1 \\
\left\langle e_{2}, e_{2}\right\rangle_{x(U)} & =\left\langle x_{*}\left(e_{2}\right), x_{*}\left(e_{2}\right)\right\rangle_{\mathbb{R}^{3}}=\frac{1}{h^{2}}\left\langle\frac{\partial x}{\partial v}, \frac{\partial x}{\partial v}\right\rangle \\
& =\frac{1}{h^{2}}\langle(-h \sin (v), h \cos (v), 0),(-h \sin (v), h \cos (v), 0)\rangle \\
& =\frac{1}{h^{2}}\left(h^{2} \sin (v)^{2} \sin (\phi)^{2}+h^{2} \cos (v)^{2}\right)=1 \\
& =\left\langle f_{*}\left(e_{1}\right), f_{*}\left(e_{2}\right)\right\rangle_{\mathbb{R}^{3}}=\frac{1}{h}\left\langle\frac{\partial x}{\partial s}, \frac{\partial x}{\partial v}\right\rangle \\
\left\langle e_{1}, e_{2}\right\rangle_{x(U)} & \frac{1}{h}\left\langle\left(\frac{\partial h}{\partial s} \cos (v), \frac{\partial h}{\partial s} \sin (v), \frac{\partial g}{\partial s}\right),(-h \sin (v), h \cos (v), 0)\right\rangle=0 \\
\left\langle e_{2}, e_{1}\right\rangle_{x(U)} & =\left\langle e_{1}, e_{2}\right\rangle_{x(U)}=0,
\end{aligned}
$$

hence the push-forwards indeed form an orthonormal frame, as desired. We clearly have that $w_{1}=d s$ and $w_{2}=h d v$ is a coframe, meaning that:

$$
\begin{aligned}
d w_{1} & =0 \\
d w_{2} & =\frac{\partial h}{\partial s} d \theta \wedge d v=-\left(\frac{\partial h}{\partial s} d v\right) \wedge d s=-\left(\frac{\partial h}{\partial s} d v\right) \wedge w_{1}
\end{aligned}
$$

thus since $d w_{1}=w_{12} \wedge w_{2}$ and $d w_{2}=-w_{12} \wedge w_{1}$, we have:

$$
\begin{aligned}
w_{12} & =\frac{\partial h}{\partial s} d v \\
d w_{12} & =\frac{\partial^{2} h}{\partial s^{2}} d s \wedge d v=\frac{\partial^{2} h}{\partial s^{2}} \frac{1}{h} d s \wedge(h d v)=-\left(-\frac{\partial^{2} h}{\partial s^{2}} \frac{1}{h}\right) w_{1} \wedge w_{2}
\end{aligned}
$$

so indeed:

$$
K=-\frac{\partial^{2} h}{\partial s^{2}} \frac{1}{h}=\frac{h^{\prime \prime}}{h}
$$

References

[1] M. Spivak, A Comprehensive Introduction to Differential Geometry - Volume 1, Publish or Perish INC., 2005.
[2] J. M. Lee, Introduction to Smooth Manifolds (Second Edition), Springer-Verlag, 2013.

