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Exercise 1

Consider the function f : R2 −→ R4 given by f(x, y) = (cos(x), sin(x), cos(y), sin(y)).

1. We have that f is an immersion, because:

Df =


− sin(x) 0
cos(x) 0

0 − sin(y)
0 cos(y)


and thus considering the following minors and their corresponding determinants:

M1 =

[
− sin(x) 0

0 − sin(y)

]
, det(M1) = sin(x) sin(y)

M2 =

[
cos(x) 0

0 cos(y)

]
, det(M1) = cos(x) cos(y)

M3 =

[
cos(x) 0

0 − sin(y)

]
, det(M1) = − cos(x) sin(y)

M4 =

[
− sin(x) 0

0 cos(y)

]
, det(M1) = − sin(x) cos(y)

so we have:

det(M1) = 0 ⇐⇒ x = nπ or y = nπ for some n ∈ Z
det(M2) = 0 ⇐⇒ x = nπ − π/2 or y = nπ − π/2 for some n ∈ Z.

Thus the points having det(M1) = 0 = det(M2) are of the form (nπ, kπ − π/2) or
(kπ − π/2, nπ) with n, k ∈ Z. If (x, y) ∈ R2 is not of this form, we have a minor
with non zero determinant, hence rank(Df) = 2. Moreover for n, k ∈ Z we have:

(nπ, kπ − π/2) has det(M3) 6= 0

(kπ − π/2, nπ) has det(M4) 6= 0,

so in both cases we have a minor with non zero determinant. Hence for every
(x, y) ∈ R2 we have a minor with non zero determinant, hence rank(Df) = 2 and
by the discussion in [2, p. 78] we have that f is an immersion.

Now we observe that since the sine and cosine functions are periodic, to obtain
f(R2) is enough to have x, y ∈ [0, 2π). Moreover, for each pair these values
we have a unique point in f(R2), namely (cos(x), sin(x), cos(y), sin(y)). Hence
f(R2) = {(cos(x), sin(x), cos(y), sin(y)) : x, y ∈ [0, 2π)}. Consider the function ψ :
f(R2) −→ S1×S1 defined by ψ(cos(x), sin(x), cos(y), sin(y)) = (cos(x), sin(x), cos(y), sin(y)),
which is clearly well defined since S1 = {(cos(t), sin(t)) : t ∈ [0, 2π)} in virtue of
the polar coordinates. This function is continuous as composition of continuous
functions. Moreover, since both f(R2) and S1×S1 can be written as the same set,
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and this function is a bijective identification between those sets (namely the iden-
tity), ψ is both injective and surjective. Finally, the function φ : S1×S1 −→ f(R2)
defined as φ(cos(u), sin(u), cos(v), sin(v)) = (cos(u), sin(u), cos(v), sin(v)) is well
defined and continuous by the same reasons that apply to ψ. Clearly we have
φ ◦ ψ = idf(R2) and ψ ◦ φ = idS1×S1 , so ψ is indeed a homeomorphism. Thus
f(R2) ∼= S1 × S1, which is a torus.

2. We consider the frame in R2 given by e1 = ∂/∂x and e2 = ∂/∂y. To prove that it
is orthonormal in f(R2) with the induced metric, we compute:

〈e1, e1〉f(R2) = 〈f∗(e1), f∗(e1)〉R4 =

〈
∂f

∂x
,
∂f

∂x

〉
= 〈(− sin(x), cos(x), 0, 0), (− sin(x), cos(x), 0, 0)〉
= sin(x)2 + cos(x)2 = 1

〈e2, e2〉f(R2) = 〈f∗(e2), f∗(e2)〉R4 =

〈
∂f

∂y
,
∂f

∂y

〉
= 〈(0, 0,− sin(y), cos(y)), (0, 0,− sin(y), cos(y))〉
= sin(y)2 + cos(y)2 = 1

〈e1, e2〉f(R2) = 〈f∗(e1), f∗(e2)〉R4 =

〈
∂f

∂x
,
∂f

∂y

〉
= 〈(− sin(x), cos(x), 0, 0), (0, 0,− sin(y), cos(y))〉 = 0

〈e2, e1〉f(R2) = 〈e1, e2〉f(R2) = 0,

hence the push-forwards indeed form an orthonormal frame, as desired. We clearly
have that w1 = dx and w2 = dy is a coframe, meaning that dw1 = 0 and dw2 = 0
and since dw1 = w12 ∧ w2 and dw2 = −w12 ∧ w1, that is, the connection form has
those coefficients as components, we must thus have w12 = 0.

3. Since the Gaussian curvature K satisfies dw12 = −Kw1 ∧ w2, having dw12 = 0
implies K = 0.
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Exercise 2

Consider H2 = {(x, y) ∈ R2 : y > 0}, we define for (x, y) ∈ H2 and u, v ∈ T(x,y)H2 the
inner product 〈u, v〉(x,y) = 〈u, v〉R2/y2 via the standard inner product on R2.

First, this is a Riemannian metric since in the notation above:

〈u, v〉(x,y) =
〈u, v〉R2

y2
=
〈v, u〉R2

y2
= 〈v, u〉(x,y)

〈v, v〉(x,y) =
〈v, v〉R2

y2
≥ 0

〈v, v〉(x,y) = 0 ⇐⇒ 〈v, v〉R2 = 0 ⇐⇒ v = 0,

where for the first we used the symmetry of the standard inner product on R2, on the
second we used that both 〈u · v〉R2 and y2 are positive and on the third we used that the
standard inner product defines a Riemannian metric on R2.

Second, we can compute the curvature considering the frame in R2 given by e1 =
y∂/∂x and e2 = y∂/∂y. To prove that it is orthonormal in H2 with the above metric,
we compute:

〈e1, e1〉(x,y) =
〈y∂/∂x, y∂/∂x〉R2

y2
=
y2

y2

〈
∂

∂x
,
∂

∂x

〉
= 1

〈e2, e2〉(x,y) =
〈y∂/∂y, y∂/∂y〉R2

y2
=
y2

y2

〈
∂

∂y
,
∂

∂y

〉
= 1

〈e1, e2〉(x,y) =
〈y∂/∂x, y∂/∂y〉R2

y2
=
y2

y2

〈
∂

∂x
,
∂

∂y

〉
= 0

〈e2, e1〉(x,y) = 〈e1, e2〉(x,y) = 0,

where we have used that ∂/∂x and ∂/∂y form an orthonormal basis of R2 with the
standard metric. Hence e1 and e2 indeed form an orthonormal frame, as desired. We
clearly have that w1 = (1/y)dx and w2 = (1/y)dy is a coframe, meaning that:

dw1 =
−1

y2
dy ∧ dx =

(
1

y
dx

)
∧
(

1

y
dy

)
=

(
1

y
dx

)
∧ w2

dw2 = 0,

thus since dw1 = w12 ∧ w2 and dw2 = −w12 ∧ w1, we have:

w12 =
1

y
dx

dw12 =
−1

y2
dy ∧ dx = −(−1)

(
1

y
dx

)
∧
(

1

y
dy

)
= −(−1)w1 ∧ w2

so K = −1, as desired.
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Exercise 3

Consider R2 and g : R2 −→ R a strictly positive smooth function. We define for
(x, y) ∈ R2 and u, v ∈ T(x,y)R2 the inner product 〈u, v〉(x,y) = 〈u, v〉R2/g(x, y)2 via the
standard inner product on R2.

We can compute the curvature considering the frame in R2 given by e1 = g(x, y)∂/∂x
and e2 = g(x, y)∂/∂y. To prove that it is orthonormal in H2 with the above metric, we
compute:

〈e1, e1〉(x,y) =
〈g(x, y)∂/∂x, g(x, y)∂/∂x〉R2

g(x, y)2
=
g(x, y)2

g(x, y)2

〈
∂

∂x
,
∂

∂x

〉
= 1

〈e2, e2〉(x,y) =
〈g(x, y)∂/∂y, g(x, y)∂/∂y〉R2

g(x, y)2
=
g(x, y)2

g(x, y)2

〈
∂

∂y
,
∂

∂y

〉
= 1

〈e1, e2〉(x,y) =
〈g(x, y)∂/∂x, g(x, y)∂/∂y〉R2

g(x, y)2
=
g(x, y)2

g(x, y)2

〈
∂

∂x
,
∂

∂y

〉
= 0

〈e2, e1〉(x,y) = 〈e1, e2〉(x,y) = 0,

where we have used that ∂/∂x and ∂/∂y form an orthonormal basis of R2 with the
standard metric. Hence e1 and e2 indeed form an orthonormal frame, as desired. We
clearly have that w1 = (1/g(x, y))dx and w2 = (1/g(x, y))dy is a coframe. From now on,
we omit the variables where we consider g to not overload the notation. We have:

dw1 =
−1

g2
∂g

∂y
dy ∧ dx =

(
1

g

∂g

∂y
dx

)
∧
(

1

g
dy

)
=

(
1

g

∂g

∂y
dx

)
∧ w2

dw2 =
−1

g2
∂g

∂x
dx ∧ dy =

(
1

g

∂g

∂x
dy

)
∧
(

1

g
dx

)
=

(
1

g

∂g

∂x
dy

)
∧ w1,

thus since dw1 = w12 ∧ w2 and dw2 = −w12 ∧ w1, we have:

w12 =
1

g

∂g

∂y
dx− 1

g

∂g

∂x
dy

dw12 =
∂

∂y

(
1

g

∂g

∂y

)
dy ∧ dx− ∂

∂y

(
1

g

∂g

∂x

)
dx ∧ dy

=

(
−1

g2
∂g

∂y

∂g

∂y
+

1

g

∂2g

∂y2

)
dy ∧ dx−

(
−1

g2
∂g

∂x

∂g

∂x
+

1

g

∂2g

∂x2

)
dx ∧ dy

= −

(
−
(
∂g

∂y

)2

+ g
∂2g

∂y2

)(
1

g
dx

)
∧
(

1

g
dy

)
−

(
−
(
∂g

∂x

)2

+ g
∂2g

∂x2

)(
1

g
dx

)
∧
(

1

g
dy

)

= −

(
g

(
∂2g

∂y2
+
∂2g

∂x2

)
−

((
∂g

∂y

)2

+

(
∂g

∂x

)2
))

w1 ∧ w2

so:

K = g

(
∂2g

∂y2
+
∂2g

∂x2

)
−

((
∂g

∂y

)2

+

(
∂g

∂x

)2
)

as desired.
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Exercise 4

Let S2 be the unit sphere inside R3 with the induced metric from the latter.

1. The antipodal map A : S2 −→ S2 given by A(x, y, z) = (−x,−y,−z) is an isometry
because for (x1, y1, z1), (x1, y1, z1) ∈ S2 we have:

〈A(x1, y1, z1), A(x2, y2, z2)〉 = 〈(−x1,−y1,−z1), (−x1,−y1,−z1)〉
= x1x2 + y1y2 + z1z2 = 〈(x1, y1, z1), (x1, y1, z1)〉.

2. To compute the curvature of the sphere we consider its parametrization given by
f : R2 −→ R3 defined as f(θ, φ) = (sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)) and the
frame in R2 given by e1 = ∂/∂θ and e2 = (1/ sin(θ))∂/∂φ, in an appropriate open
where it is defined. To prove that it is orthonormal in f(R2) with the induced
metric, we compute:

〈e1, e1〉f(R2) = 〈f∗(e1), f∗(e1)〉R3 =

〈
∂f

∂θ
,
∂f

∂θ

〉
= 〈(cos(θ) cos(φ), cos(θ) sin(φ),− sin(θ)),

(cos(θ) cos(φ), cos(θ) sin(φ),− sin(θ))〉
= cos(θ)2 sin(φ)2 + sin(φ)2 cos(θ)2 + sin(θ)2 = 1

〈e2, e2〉f(R2) = 〈f∗(e2), f∗(e2)〉R3 =
1

sin(θ)2

〈
∂f

∂φ
,
∂f

∂y

〉
=

1

sin(θ)2
〈(− sin(θ) sin(φ), sin(θ) cos(φ), 0),

(− sin(θ) sin(φ), sin(θ) cos(φ), 0)〉

=
1

sin(θ)2
(sin(θ)2 sin(φ)2 + sin(θ)2 cos(φ)2) = 1

〈e1, e2〉f(R2) = 〈f∗(e1), f∗(e2)〉R3 =
1

sin(θ)

〈
∂f

∂θ
,
∂f

∂φ

〉
=

1

sin(θ)
〈(cos(θ) cos(φ), cos(θ) sin(φ),− sin(θ)),

(− sin(θ) sin(φ), sin(θ) cos(φ), 0)〉 = 0

〈e2, e1〉f(R2) = 〈e1, e2〉f(R2) = 0,

hence the push-forwards indeed form an orthonormal frame, as desired. We clearly
have that w1 = dθ and w2 = sin(θ)dφ is a coframe, meaning that:

dw1 = 0

dw2 = cos(θ)dθ ∧ dφ = −(cos(θ)dφ) ∧ dθ = −(cos(θ)dφ) ∧ w1,

thus since dw1 = w12 ∧ w2 and dw2 = −w12 ∧ w1, we have:

w12 = cos(θ)dφ

dw12 = − sin(θ)dθ ∧ dφ = −w1 ∧ w2
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so K = 1.

We now consider ẽ3 = f∗(e1) × f∗(e2) = (cos(φ) sin(θ), sin(φ) cos(θ), cos(θ)), the
cross product of our frame (recall that we denote ẽ1 = f∗(e1) and ẽ2 = f∗(e2)).
We have:

dẽ3 =
∂ẽ3
∂θ

dθ +
∂ẽ3
∂φ

dφ = (cos(θ) cos(φ), cos(θ) sin(φ),− sin(θ))dθ

+ (− sin(θ) sin(φ), sin(θ) cos(φ), 0)dφ = dθẽ1 + sin(θ)dφẽ2,

and since dẽ3 = w31ẽ1+w32ẽ2, we find that w13 = −w31 = −dθ and w23 = −w32 =
− sin(θ)dφ. We can compute:

w13 ∧ w2 + w1 ∧ w23 = (−dθ) ∧ (sin(θ)dφ) + dθ ∧ (− sin(θ)dφ) = −2w1 ∧ w2,

thus since we know that 2Hw1 ∧w2 = w13 ∧w2 +w1 ∧w23, we have that H = −1.

Finally, using that S2 is symmetric, we can compute this at every single point
provided we rotate the sphere so that our point of interest lies where our frame is
well defined. Hence we always have K = 1 and H = −1.
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Exercise 5

Suppose h, g : R −→ R are two smooth functions satisfying h 6= 0 and (∂h/∂s)2 +
(∂g/∂s)2 = 1. Let U = {(s, v) ∈ R2 : s ∈ R, v ∈ (0, 2π)} and x : U −→ R3 given by
x(s, v) = (h(s) cos(v), h(s) sin(v), g(s)).

To compute the curvature we consider the frame in U given by e1 = ∂/∂s and
e2 = (1/h(s))∂/∂v, defined in the whole U . From now on, we omit the variables where
we consider h to not overload the notation. To prove that it is orthonormal in x(U) with
the induced metric, we compute:

〈e1, e1〉x(U) = 〈x∗(e1), x∗(e1)〉R3 =

〈
∂x

∂s
,
∂x

∂s

〉
=

〈(
∂h

∂s
cos(v),

∂h

∂s
sin(v),

∂g

∂s

)
,

(
∂h

∂s
cos(v),

∂h

∂s
sin(v),

∂g

∂s

)〉
=

(
∂h

∂s

)2

cos(v)2 +

(
∂h

∂s

)2

sin(v)2 +

(
∂g

∂s

)2

= 1

〈e2, e2〉x(U) = 〈x∗(e2), x∗(e2)〉R3 =
1

h2

〈
∂x

∂v
,
∂x

∂v

〉
=

1

h2
〈(−h sin(v), h cos(v), 0), (−h sin(v), h cos(v), 0)〉

=
1

h2
(h2 sin(v)2 sin(φ)2 + h2 cos(v)2) = 1

〈e1, e2〉x(U) = 〈f∗(e1), f∗(e2)〉R3 =
1

h

〈
∂x

∂s
,
∂x

∂v

〉
=

1

h

〈(
∂h

∂s
cos(v),

∂h

∂s
sin(v),

∂g

∂s

)
, (−h sin(v), h cos(v), 0)

〉
= 0

〈e2, e1〉x(U) = 〈e1, e2〉x(U) = 0,

hence the push-forwards indeed form an orthonormal frame, as desired. We clearly have
that w1 = ds and w2 = hdv is a coframe, meaning that:

dw1 = 0

dw2 =
∂h

∂s
dθ ∧ dv = −

(
∂h

∂s
dv

)
∧ ds = −

(
∂h

∂s
dv

)
∧ w1,

thus since dw1 = w12 ∧ w2 and dw2 = −w12 ∧ w1, we have:

w12 =
∂h

∂s
dv

dw12 =
∂2h

∂s2
ds ∧ dv =

∂2h

∂s2
1

h
ds ∧ (hdv) = −

(
−∂

2h

∂s2
1

h

)
w1 ∧ w2

so indeed:

K = −∂
2h

∂s2
1

h
=
h′′

h
.
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