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Exercise 1.1

1. In X the set of all right-infinite binary words we define dist : X × X −→ R as
dist(x, y) = e−|x∧y| (with |x ∧ y| being the length of the longest common prefix of
x and y) when x 6= y and as dist(x, y) = 0 when x = y. We want to prove that
this is a metric on X. Take x, y, z ∈ X different, then:

(a) By definition, dist(x, y) ≥ 0 since it is an exponential, and dist(x, y) = 0 only
when (thus implying) x = y.

(b) Symmetry: we have dist(x, y) = e−|x∧y| = e−|y∧x| = dist(y, x) (if x = y this
is obvious).

(c) Triangle inequality: we will abuse the fact that for any a, b ∈ R with a ≥ b
then e−a ≥ e−b, having equality in the second one only when we have it in
the first one. First, suppose |x∧z| ≥ |x∧y|, then we have |z∧y| = |x∧y| and
thus dist(x, y) = e−|x∧y| < e−|x∧z|+e−|x∧y| = dist(x, z)+dist(z, y) (if |z∧y| ≥
|x ∧ y| the argument is symmetric). Second, suppose |x ∧ z| < |x ∧ y|, then
|y∧z| < |x∧y| thus both e−|x∧y| < e−|x∧z| and e−|x∧y| < e−|z∧y| hold, meaning
that dist(x, y) = e−|x∧y| < 2e−|x∧y| < e−|x∧z|+ e−|z∧y| = dist(x, z) + dist(z, y)
(if |z ∧ y| < |x ∧ y| the argument is symmetric).

Note that since we are taking different elements in X, the triangle inequality
is strict in both cases (this will be useful for later).

2. Let (Y, d) be a metric space with d being an ultrametric, x, y, z ∈ Y distinct. Then
d(x, y) ≤ max(d(x, z), d(z, y)) < d(x, z) + d(z, y) since all distances are positive
numbers.

3. Let (Y, d) be a metric space with d being an ultrametric, we want to prove that
if two balls in Y intersect nontrivially, then one of them is inside the other. Take
x, y ∈ Y and Bε(x), Bδ(y) two balls with Bε(x) ∩ Bδ(y) 6= ∅. Assume ε ≥ δ,
we prove that Bδ(y) ⊂ Bε(x). Take s ∈ Bε(x) ∩ Bδ(y), we have d(s, y) < δ and
d(s, x) < ε. Take z ∈ Bδ(y), that is d(z, y) < δ, now d(z, s) ≤ max(d(z, y), d(s, y)) <
δ and thus d(z, x) ≤ max(d(z, s), d(s, x)) < max(δ, ε) = ε, meaning that z ∈ Bε(x).

4. We want to see that dist as above is an ultrametric on X, but this is a consequence
of the proof we used to prove the triangle inequality. First if |x∧ z| ≥ |x∧ y|, then
we have |z ∧ y| = |x∧ y| and thus both e−|x∧y| < e−|x∧z| and e−|x∧y| = e−|z∧y| thus
dist(x, y) ≤ max(dist(x, z),dist(z, y)) (if |z ∧ y| ≥ |x∧ y| the argument is symmet-
ric). Second if |x ∧ z| < |x ∧ y|, then |y ∧ z| < |x ∧ y| thus both e−|x∧y| < e−|x∧z|

and e−|x∧y| < e−|z∧y| hold, meaning that dist(x, y) ≤ max(dist(x, z), dist(z, y)) (if
|z ∧ y| < |x∧ y| the argument is symmetric, and in fact, this is a strict inequality).
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Exercise 1.2

We define on a metric space (X, d) two functions by when x, y ∈ X then d(x, y) =
min(1, d(x, y)) and d′(x, y) = d(x, y)/(1 + d(x, y)).

1. We show that d and d′ are both metrics, that is, for x, y, z ∈ X distinct, we must
have in d:

(a) d(x, y) = 0 if and only if d(x, y) = 0 if and only if x = y since d is a metric.

(b) Symmetry: if d(x, y) = 1 then 1 ≤ d(x, y) = d(y, x) and thus d(y, x) = 1, if
d(x, y) = d(x, y) = d(y, z) = d(y, z).

(c) Triangle inequality: we know that d(x, z) ≤ d(x, y)+d(y, z). Consider d(x, z)
and all the possible sums of d(x, y)+d(y, z), which are 2, 1+d(y, z), d(x, y)+1,
d(x, y) + d(y, z). If d(x, z) = 1 (that is d(x, z) ≥ 1) then obviously d(x, z) ≤
d(x, y)+d(y, z) since in the right hand side we always have one plus a positive
number, except in the last case when d(x, z) = 1 ≤ d(x, z) ≤ d(x, y) + d(y, z)
and it also follows. If d(x, z) < 1 (that is d(x, z) < 1) then again d(x, z) ≤
d(x, y) + d(y, z) in the first three cases since in the right hand side we always
have one plus a positive number, while the last case is clear by the triangle
inequality in d.

Which is obviously bounded by 1. And in d′:

(a) d′(x, y) = 0 if and only if d(x, y) = 0 if and only if x = y since d is a metric.

(b) d′(x, y) = d(x, y)/(1 + d(x, y)) = d(y, x)/(1 + d(y, x)) = d′(y, z).

(c) We have that d′(x, z) = d(x, z)/(1+d(x, z)) ≤ (d(x, y)+d(y, z))/(1+d(x, y)+
d(y, z)) = d(x, z)/(1 + d(x, y) + d(y, z)) + d(y, z)/(1 + d(x, y) + d(y, z)) ≤
d(x, y)/(1 + d(x, y)) + d(y, z)/(1 + d(y, z)) = d′(x, y) + d′(y, z), the first in-
equality being true since d(x, z) + d(x, z)d(x, y) + d(x, z)d(y, z) ≤ d(x, y) +
d(y, z) + d(x, z)d(x, y) + d(x, z)d(y, z) by the triangle inequality of d and the
second inequality being true since we decrease the denominator in both frac-
tions.

Which is obviously also bounded by 1.

2. We want to see that the topologies on X induced by d, d and d′, say τ , τ and τ ′,
are the same. For this, we will prove that τ ⊂ τ ⊂ τ ′ ⊂ τ (it is enough to prove
this for balls since they form a basis of the topology).

(a) τ ⊂ τ : take Bd
ε (x) ∈ τ . Note that we can make ε as small as we want (balls

are open). Thus when ε < 1, we have for every y ∈ Bd
ε (x) that d(y, x) < ε,

and that d(y, x) = d(y, x) < ε, thus y ∈ Bd
ε (x) ∈ τ and Bd

ε (x) ⊂ Bd
ε (x).
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(b) τ ⊂ τ ′: take Bd
ε (x) ∈ τ . We can again make ε as small as we want, thus

when ε < 1 we have for every y ∈ Bd
ε (x) that d(y, x) = d(y, z) < ε. Thus

d′(y, x) = d(y, x)/(1 + d(y, x)) < ε/(1 + ε), meaning that taking δ = ε/(1 + ε)

we have y ∈ Bd′
δ (x) ∈ τ ′ and Bd′

δ (x) ⊂ Bd
ε (x).

(c) τ ′ ⊂ τ : take Bd′
ε (x) ∈ τ ′. We have for every y ∈ Bd′

ε (x) that d(y, x)/(1 +
d(y, x)) = d′(y, x) < ε. We can again make ε as small as we want, thus when
ε < 1 we have d(x, y) < ε/(1− ε) well defined, and setting δ = ε/(1− ε), we
obtain that y ∈ Bd

δ (x) ∈ τ and Bd
δ (x) ⊂ Bd′

ε (x).
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Exercise 2.1

We say that A ⊂ Z is a symmetric subset when for every x ∈ A we have −x ∈ A.
Consider τS the set containing all symmetric subsets of Z.

1. Prove that τS is a topology. We just check that the three conditions are satisfied:

(a) Z ∈ τS and ∅ ∈ τS obvoiusly (the condition on the empty set is empty, and
thus it is symmetric).

(b) Given {Uj}j∈J with Uj ∈ τS for every j ∈ J , consider x ∈
⋃
j∈J Uj . This

means that x ∈ Uj for certain j ∈ J and thus −x ∈ Uj (since Uj ∈ τS) and
thus −x ∈

⋃
j∈J Uj , that is,

⋃
j∈J Uj ∈ τS .

(c) Given U, V ∈ τS , consider x ∈ U ∩ V . This means that x ∈ U and x ∈ V and
thus −x ∈ U and −x ∈ V (by hypothesis), meaning that −x ∈ U ∩ V , that
is, U ∩ V ∈ τS .

2. Prove that (Z, τS) is a second countable space, that is, it admits a countable basis.
We simply have to consider the set B = {{−x, x} : n ∈ Z}. This is a basis since
given U ∈ τS we have U =

⋃
x∈U {−x, x} (because U is symmetric), and it is

countable since by definition the map f : Z −→ B given by f(x) = {−x, x} is a
bijection, and Z is countable.
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Exercise 2.2

Let X be a topological space with basis B and A ⊂ X. Show that BA = {A∩B : B ∈ B}
is a basis for the subspace topology on A.

We know that the subspace topology is τA = {A∩U : U open in X}. Take A∩U ∈ τA.
Since U is open, we can express U =

⋃
i∈I Bi for certain Bi ∈ B for every i ∈ I. Now

A∩U = A∩
(⋃

i∈I Bi
)

=
⋃
i∈I (A ∩Bi), where A∩Bi ∈ BA for every i ∈ I. Thus this is

an expression of A∩U as union of elements of BA, that is, BA is a basis for the subspace
topology.
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