Topology I - Homework 1

Pablo Sánchez Ocal

September 13th, 2016

Exercise 1.1

- 1. In X the set of all right-infinite binary words we define dist : $X \times X \longrightarrow \mathbb{R}$ as $\operatorname{dist}(x, y) = e^{-|x \wedge y|}$ (with $|x \wedge y|$ being the length of the longest common prefix of x and y) when $x \neq y$ and as $\operatorname{dist}(x, y) = 0$ when x = y. We want to prove that this is a metric on X. Take $x, y, z \in X$ different, then:
 - (a) By definition, $dist(x, y) \ge 0$ since it is an exponential, and dist(x, y) = 0 only when (thus implying) x = y.
 - (b) Symmetry: we have $dist(x, y) = e^{-|x \wedge y|} = e^{-|y \wedge x|} = dist(y, x)$ (if x = y this is obvious).
 - (c) Triangle inequality: we will abuse the fact that for any $a, b \in \mathbb{R}$ with $a \geq b$ then $e^{-a} \geq e^{-b}$, having equality in the second one only when we have it in the first one. First, suppose $|x \wedge z| \geq |x \wedge y|$, then we have $|z \wedge y| = |x \wedge y|$ and thus $\operatorname{dist}(x, y) = e^{-|x \wedge y|} < e^{-|x \wedge z|} + e^{-|x \wedge y|} = \operatorname{dist}(x, z) + \operatorname{dist}(z, y)$ (if $|z \wedge y| \geq$ $|x \wedge y|$ the argument is symmetric). Second, suppose $|x \wedge z| < |x \wedge y|$, then $|y \wedge z| < |x \wedge y|$ thus both $e^{-|x \wedge y|} < e^{-|x \wedge z|}$ and $e^{-|x \wedge y|} < e^{-|z \wedge y|}$ hold, meaning that $\operatorname{dist}(x, y) = e^{-|x \wedge y|} < 2e^{-|x \wedge y|} < e^{-|x \wedge z|} + e^{-|z \wedge y|} = \operatorname{dist}(x, z) + \operatorname{dist}(z, y)$ (if $|z \wedge y| < |x \wedge y|$ the argument is symmetric).

Note that since we are taking different elements in X, the triangle inequality is strict in both cases (this will be useful for later).

- 2. Let (Y, d) be a metric space with d being an ultrametric, $x, y, z \in Y$ distinct. Then $d(x, y) \leq \max(d(x, z), d(z, y)) < d(x, z) + d(z, y)$ since all distances are positive numbers.
- 3. Let (Y, d) be a metric space with d being an ultrametric, we want to prove that if two balls in Y intersect nontrivially, then one of them is inside the other. Take $x, y \in Y$ and $B_{\varepsilon}(x)$, $B_{\delta}(y)$ two balls with $B_{\varepsilon}(x) \cap B_{\delta}(y) \neq \emptyset$. Assume $\varepsilon \geq \delta$, we prove that $B_{\delta}(y) \subset B_{\varepsilon}(x)$. Take $s \in B_{\varepsilon}(x) \cap B_{\delta}(y)$, we have $d(s, y) < \delta$ and $d(s, x) < \varepsilon$. Take $z \in B_{\delta}(y)$, that is $d(z, y) < \delta$, now $d(z, s) \leq \max(d(z, y), d(s, y)) < \delta$ and thus $d(z, x) \leq \max(d(z, s), d(s, x)) < \max(\delta, \varepsilon) = \varepsilon$, meaning that $z \in B_{\varepsilon}(x)$.
- 4. We want to see that dist as above is an ultrametric on X, but this is a consequence of the proof we used to prove the triangle inequality. First if $|x \wedge z| \ge |x \wedge y|$, then we have $|z \wedge y| = |x \wedge y|$ and thus both $e^{-|x \wedge y|} < e^{-|x \wedge z|}$ and $e^{-|x \wedge y|} = e^{-|z \wedge y|}$ thus dist $(x, y) \le \max(\operatorname{dist}(x, z), \operatorname{dist}(z, y))$ (if $|z \wedge y| \ge |x \wedge y|$ the argument is symmetric). Second if $|x \wedge z| < |x \wedge y|$, then $|y \wedge z| < |x \wedge y|$ thus both $e^{-|x \wedge y|} < e^{-|x \wedge z|}$ and $e^{-|x \wedge y|} < e^{-|x \wedge z|}$ hold, meaning that dist $(x, y) \le \max(\operatorname{dist}(x, z), \operatorname{dist}(z, y))$ (if $|z \wedge y| < |x \wedge y|$ the argument is symmetric, and in fact, this is a strict inequality).

Exercise 1.2

We define on a metric space (X, d) two functions by when $x, y \in X$ then $\overline{d}(x, y) = \min(1, d(x, y))$ and d'(x, y) = d(x, y)/(1 + d(x, y)).

- 1. We show that \overline{d} and d' are both metrics, that is, for $x, y, z \in X$ distinct, we must have in \overline{d} :
 - (a) $\overline{d}(x,y) = 0$ if and only if d(x,y) = 0 if and only if x = y since d is a metric.
 - (b) Symmetry: if $\overline{d}(x,y) = 1$ then $1 \le d(x,y) = d(y,x)$ and thus d(y,x) = 1, if $\overline{d}(x,y) = d(x,y) = d(y,z) = \overline{d}(y,z)$.
 - (c) Triangle inequality: we know that $d(x, z) \leq d(x, y) + d(y, z)$. Consider $\overline{d}(x, z)$ and all the possible sums of $\overline{d}(x, y) + \overline{d}(y, z)$, which are 2, 1 + d(y, z), d(x, y) + 1, d(x, y) + d(y, z). If $\overline{d}(x, z) = 1$ (that is $d(x, z) \geq 1$) then obviously $\overline{d}(x, z) \leq \overline{d}(x, y) + \overline{d}(y, z)$ since in the right we always have one plus a positive number, except in the last case when $\overline{d}(x, z) = 1 \leq d(x, z) \leq d(x, y) + d(y, z)$ and it also follows. If $\overline{d}(x, z) < 1$ (that is d(x, z) < 1) then again $\overline{d}(x, z) \leq \overline{d}(x, y) + \overline{d}(y, z)$ in the first three cases since in the right we always have one plus a positive number, while the last case is clear by the triangle inequality in d.

Which is obviously bounded by 1. And in d':

- (a) d'(x,y) = 0 if and only if d(x,y) = 0 if and only if x = y since d is a metric.
- (b) d'(x,y) = d(x,y)/(1+d(x,y)) = d(y,x)/(1+d(y,x)) = d'(y,z).
- (c) We have that $d'(x, z) = d(x, z)/(1+d(x, z)) \le (d(x, y)+d(y, z))/(1+d(x, y)+d(y, z)) = d(x, z)/(1+d(x, y)+d(y, z)) + d(y, z)/(1+d(x, y)+d(y, z)) \le d(x, y)/(1+d(x, y)) + d(y, z)/(1+d(y, z)) = d'(x, y) + d'(y, z)$, the first inequality being true since $d(x, z) + d(x, z)d(x, y) + d(x, z)d(y, z) \le d(x, y) + d(y, z)/(1+d(x, z)d(y, z)) \le d(x, y) + d(y, z) + d(x, z)d(y, z) = d(x, y) + d(y, z) + d(x, z)d(y, z) = d(x, y) + d(y, z) + d(y, z) + d(x, z)d(y, z) \le d(x, y) + d(y, z) + d(y,$

Which is obviously also bounded by 1.

- 2. We want to see that the topologies on X induced by d, \overline{d} and d', say $\tau, \overline{\tau}$ and τ' , are the same. For this, we will prove that $\tau \subset \overline{\tau} \subset \tau' \subset \tau$ (it is enough to prove this for balls since they form a basis of the topology).
 - (a) $\tau \subset \overline{\tau}$: take $B^d_{\varepsilon}(x) \in \tau$. Note that we can make ε as small as we want (balls are open). Thus when $\varepsilon < 1$, we have for every $y \in B^d_{\varepsilon}(x)$ that $d(y, x) < \varepsilon$, and that $\overline{d}(y, x) = d(y, x) < \varepsilon$, thus $y \in B^{\overline{d}}_{\varepsilon}(x) \in \overline{\tau}$ and $B^{\overline{d}}_{\varepsilon}(x) \subset B^d_{\varepsilon}(x)$.

- (b) $\overline{\tau} \subset \tau'$: take $B_{\varepsilon}^{\overline{d}}(x) \in \overline{\tau}$. We can again make ε as small as we want, thus when $\varepsilon < 1$ we have for every $y \in B_{\varepsilon}^{\overline{d}}(x)$ that $d(y, x) = \overline{d}(y, z) < \varepsilon$. Thus $d'(y, x) = d(y, x)/(1 + d(y, x)) < \varepsilon/(1 + \varepsilon)$, meaning that taking $\delta = \varepsilon/(1 + \varepsilon)$ we have $y \in B_{\delta}^{d'}(x) \in \tau'$ and $B_{\delta}^{d'}(x) \subset B_{\varepsilon}^{\overline{d}}(x)$.
- (c) $\tau' \subset \tau$: take $B_{\varepsilon}^{d'}(x) \in \tau'$. We have for every $y \in B_{\varepsilon}^{d'}(x)$ that $d(y,x)/(1 + d(y,x)) = d'(y,x) < \varepsilon$. We can again make ε as small as we want, thus when $\varepsilon < 1$ we have $d(x,y) < \varepsilon/(1-\varepsilon)$ well defined, and setting $\delta = \varepsilon/(1-\varepsilon)$, we obtain that $y \in B_{\delta}^{d}(x) \in \tau$ and $B_{\delta}^{d}(x) \subset B_{\varepsilon}^{d'}(x)$.

Exercise 2.1

We say that $A \subset \mathbb{Z}$ is a symmetric subset when for every $x \in A$ we have $-x \in A$. Consider τ_S the set containing all symmetric subsets of \mathbb{Z} .

- 1. Prove that τ_S is a topology. We just check that the three conditions are satisfied:
 - (a) $Z \in \tau_S$ and $\emptyset \in \tau_S$ obvoiusly (the condition on the empty set is empty, and thus it is symmetric).
 - (b) Given $\{U_j\}_{j\in J}$ with $U_j \in \tau_S$ for every $j \in J$, consider $x \in \bigcup_{j\in J} U_j$. This means that $x \in U_j$ for certain $j \in J$ and thus $-x \in U_j$ (since $U_j \in \tau_S$) and thus $-x \in \bigcup_{j\in J} U_j$, that is, $\bigcup_{j\in J} U_j \in \tau_S$.
 - (c) Given $U, V \in \tau_S$, consider $x \in U \cap V$. This means that $x \in U$ and $x \in V$ and thus $-x \in U$ and $-x \in V$ (by hypothesis), meaning that $-x \in U \cap V$, that is, $U \cap V \in \tau_S$.
- 2. Prove that (\mathbb{Z}, τ_S) is a second countable space, that is, it admits a countable basis. We simply have to consider the set $\mathcal{B} = \{\{-x, x\} : n \in \mathbb{Z}\}$. This is a basis since given $U \in \tau_S$ we have $U = \bigcup_{x \in U} \{-x, x\}$ (because U is symmetric), and it is countable since by definition the map $f : \mathbb{Z} \longrightarrow \mathcal{B}$ given by $f(x) = \{-x, x\}$ is a bijection, and \mathbb{Z} is countable.

Exercise 2.2

Let X be a topological space with basis \mathcal{B} and $A \subset X$. Show that $\mathcal{B}_A = \{A \cap B : B \in \mathcal{B}\}$ is a basis for the subspace topology on A.

We know that the subspace topology is $\tau_A = \{A \cap U : U \text{ open in } X\}$. Take $A \cap U \in \tau_A$. Since U is open, we can express $U = \bigcup_{i \in I} B_i$ for certain $B_i \in \mathcal{B}$ for every $i \in I$. Now $A \cap U = A \cap (\bigcup_{i \in I} B_i) = \bigcup_{i \in I} (A \cap B_i)$, where $A \cap B_i \in \mathcal{B}_A$ for every $i \in I$. Thus this is an expression of $A \cap U$ as union of elements of \mathcal{B}_A , that is, \mathcal{B}_A is a basis for the subspace topology.