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Exercise 5.1

Let X be a topological space, A ⊂ X and x is a limit point of A (every neighborhood of
x contains a point from A \ {x}).

1. Show that if X is T1, then every neighborhood of x contains infinitely many points
from A: suppose there is an open neighborhood U of x with (A\{x})∩U finite, say
(A\{x})∩U = {y1, . . . , yn}. Then, since X is T1, for every yi ∈ (A\{x})∩U there
exists Uyi 3 x open with yi /∈ Uyi , and thus x ∈ U ∩ Uyi is an open neighborhood
but y /∈ U ∩Uyi . This means that x ∈ U ∩Uy1 ∩ · · ·∩Uyn is an open neighborhood,
but (A \ {x}) ∩ U ∩ Uy1 ∩ · · · ∩ Uyn = ∅, which would imply that x is not a limit
point, a contradiction. Thus, (A \ {x}) must be infinite.

2. Give an example of a T0 space X and a neighborhood of x that contains only
finitely many points from A: consider X = {a, b} = A with τ = {∅, {a}, X}. This
is T0 (since we have a ∈ {a} b /∈ {a}) and b is a limit point of A since its only
neighborhood is X and (A \ {b}) ∩X = {a}, with |A \ {b}| = |{a}| = 1, finite.
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Exercise 5.2

Let f, g : X −→ Y be continuous functions between topological spaces.

1. Show that if Y is Hausdorff, then Xf=g = {x ∈ X : f(x) = g(x)} is closed (in
X). Equivalently, we will show that X \Xf=g is open. Take x ∈ X \Xf=g, that
is, f(x) 6= g(x) in Y . Since Y is Hausdorff, there are f(x) ∈ Uf , g(x) ∈ Ug opens
with Uf ∩ Ug = ∅. Now by continuity f−1(Uf ) and g−1(Ug) are opens with x ∈
f−1(Uf )∩g−1(Ug) an open neighborhood of x. Moreover, if y ∈ f−1(Uf )∩g−1(Ug),
then f(y) ∈ Uf and g(y) ∈ Ug, and since they do not intersect, f(y) 6= g(y) meaning
that f−1(Uf ) ∩ g−1(Ug) ⊂ X \Xf=g, and thus X \Xf=g is open, as desired.

2. Give an example in which Y is not Hausdorff and Xf=g is not closed. Consider
X = {a, b} = Y with τ = {∅, {a}, X}. This is not T1 (and thus in particular not
T2, that is Hausdorff) because X is the only open neighborhood of b and a ∈ X.
Now consider:

f : X −→ X
a 7−→ a
b 7−→ b

g : X −→ X
a 7−→ a
b 7−→ a

that are both continuous since f−1(∅) = ∅, f−1({a}) = {a}, f−1(X) = X, g−1(∅) =
∅, g−1({a}) = X and g−1(X) = X. Moreover, f(a) = a = g(a), f(b) = b 6= a =
g(a), thus Xf=g = {a} which is open but not closed, since X \ {a} = {b} /∈ τ .
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Exercise 6.3

Let X be Hausdorff topologicla space, Y ⊂ X a compact subspace and x ∈ X \Y . Show
that there are U and V disjoint opens with x ∈ U and Y ⊂ V .

First, assume the above, we prove that every compact Hausdorff space is regular:
take T ⊂ X closed, x ∈ X \T . Since T is closed inside Hausdorff, it is compact, thus by
the above there are disjoint opens Ux, UT with x ∈ Ux and T ⊂ UT , the definition of X
being regular.

We will prove now the first statement. For each y ∈ Y we have x 6= y, and since X is
Hausdorff there are Uy, Vy disjoint opens with x ∈ Uy, y ∈ Vy. Now Y ⊂

⋃
y∈Y Vy, and

since Y is compact, there are a finite number of points y1, . . . , yn in Y with Y ⊂
⋃n

i=1 Vyi .
Consider U =

⋂n
i=1 Uyi open and V = ∪y∈Y Vy open. We have x ∈ U (since it belongs

to each element in the intersection), Y ⊂ V and U ∩ V = ∅ since U ∩ Vyi = ∅ for every
i = 1, . . . , n. Thus these are the opens we wanted.
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Exercise 6.4

Let (X, τ) be a compact Hausdorff space, τ ′ and τ ′′ topologies on X with τ ′ ( τ ( τ ′′.

1. Show that (X, τ ′) is compact: consider {U ′x}x∈X a collection of open sets in τ ′ with
x ∈ U ′x for every x ∈ X (such a collection exists because x ∈ X which is always
open). Now X =

⋃
x∈X U ′x is an open cover with U ′x ∈ τ ′ ( τ , thus since (X, τ)

is compact, there are a finite number of points x1, . . . , xn with X =
⋃n

i=1 U
′
xi

.
However, each U ′xi

∈ τ ′ for every i = 1, . . . , n because the original cover was from
τ ′. This means that (X, τ ′) is also compact.

Show that (X, τ ′) is not Hausdorff: by contrapositive, suppose (X, τ ′) is Hausdorff.
We will prove that any open Y ∈ τ is also Y ∈ τ ′, which is a contradiction since
τ ′ ( τ . Since Y is open, X \ Y is closed in (X, τ), which is compact, and thus
X \ Y is compact (in τ). By the argument above, covering X \ Y by opens in τ ′,
they are opens in τ (compact) and we obtain that X \ Y is compact in τ ′. Now
X \ Y is compact inside (X, τ ′) Hausdorff, thus closed (in τ ′). This means that
Y ∈ τ ′, the desired contradiction.

2. Show that (X, τ ′′) is Hausdorff: consider x, y two different points in X, then since
(X, τ) is Hausdorff, there are disjoint opens U 3 x, V 3 y in τ . However, since
τ ( τ ′′, we have U, V ∈ τ ′′ and thus (X, τ ′′) is Hausdorff.

Show that (X, τ ′′) is not compact: by contrapositive, suppose (X, τ ′′) is compact.
We will prove that any open Y ∈ τ ′′ is also Y ∈ τ , which is a contradiction since
τ ( τ ′′. Consider X \ Y closed in (X, τ ′′) (since Y is open in τ ′′), since (X, τ ′′) is
compact, X \ Y is compact. By the argument also used above, covering X \ Y by
opens in τ , they are opens in τ ′′ (compact) and we obtain that X \Y is compact in
τ . Now X \ Y is compact inside (X, τ) Hausdorff, thus closed (in τ). This means
that Y ∈ τ , the desired contradiction.
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