Topology I - Homework 3

Pablo Sánchez Ocal
September 27th, 2016

Exercise 5.1

Let X be a topological space, $A \subset X$ and x is a limit point of A (every neighborhood of x contains a point from $A \backslash\{x\})$.

1. Show that if X is T_{1}, then every neighborhood of x contains infinitely many points from A : suppose there is an open neighborhood U of x with $(A \backslash\{x\}) \cap U$ finite, say $(A \backslash\{x\}) \cap U=\left\{y_{1}, \ldots, y_{n}\right\}$. Then, since X is T_{1}, for every $y_{i} \in(A \backslash\{x\}) \cap U$ there exists $U_{y_{i}} \ni x$ open with $y_{i} \notin U_{y_{i}}$, and thus $x \in U \cap U_{y_{i}}$ is an open neighborhood but $y \notin U \cap U_{y_{i}}$. This means that $x \in U \cap U_{y_{1}} \cap \cdots \cap U_{y_{n}}$ is an open neighborhood, but $(A \backslash\{x\}) \cap U \cap U_{y_{1}} \cap \cdots \cap U_{y_{n}}=\emptyset$, which would imply that x is not a limit point, a contradiction. Thus, $(A \backslash\{x\})$ must be infinite.
2. Give an example of a T_{0} space X and a neighborhood of x that contains only finitely many points from A : consider $X=\{a, b\}=A$ with $\tau=\{\emptyset,\{a\}, X\}$. This is T_{0} (since we have $a \in\{a\} b \notin\{a\}$) and b is a limit point of A since its only neighborhood is X and $(A \backslash\{b\}) \cap X=\{a\}$, with $|A \backslash\{b\}|=|\{a\}|=1$, finite.

Exercise 5.2

Let $f, g: X \longrightarrow Y$ be continuous functions between topological spaces.

1. Show that if Y is Hausdorff, then $X_{f=g}=\{x \in X: f(x)=g(x)\}$ is closed (in $X)$. Equivalently, we will show that $X \backslash X_{f=g}$ is open. Take $x \in X \backslash X_{f=g}$, that is, $f(x) \neq g(x)$ in Y. Since Y is Hausdorff, there are $f(x) \in U_{f}, g(x) \in U_{g}$ opens with $U_{f} \cap U_{g}=\emptyset$. Now by continuity $f^{-1}\left(U_{f}\right)$ and $g^{-1}\left(U_{g}\right)$ are opens with $x \in$ $f^{-1}\left(U_{f}\right) \cap g^{-1}\left(U_{g}\right)$ an open neighborhood of x. Moreover, if $y \in f^{-1}\left(U_{f}\right) \cap g^{-1}\left(U_{g}\right)$, then $f(y) \in U_{f}$ and $g(y) \in U_{g}$, and since they do not intersect, $f(y) \neq g(y)$ meaning that $f^{-1}\left(U_{f}\right) \cap g^{-1}\left(U_{g}\right) \subset X \backslash X_{f=g}$, and thus $X \backslash X_{f=g}$ is open, as desired.
2. Give an example in which Y is not Hausdorff and $X_{f=g}$ is not closed. Consider $X=\{a, b\}=Y$ with $\tau=\{\emptyset,\{a\}, X\}$. This is not T_{1} (and thus in particular not T_{2}, that is Hausdorff) because X is the only open neighborhood of b and $a \in X$. Now consider:

$$
\begin{aligned}
f: X & \longrightarrow \\
a & \longmapsto
\end{aligned} \quad g \quad: \quad X \quad l \begin{array}{llll}
& \longrightarrow & & \\
b & & & \\
b & & &
\end{array}
$$

that are both continuous since $f^{-1}(\emptyset)=\emptyset, f^{-1}(\{a\})=\{a\}, f^{-1}(X)=X, g^{-1}(\emptyset)=$ $\emptyset, g^{-1}(\{a\})=X$ and $g^{-1}(X)=X$. Moreover, $f(a)=a=g(a), f(b)=b \neq a=$ $g(a)$, thus $X_{f=g}=\{a\}$ which is open but not closed, since $X \backslash\{a\}=\{b\} \notin \tau$.

Exercise 6.3

Let X be Hausdorff topologicla space, $Y \subset X$ a compact subspace and $x \in X \backslash Y$. Show that there are U and V disjoint opens with $x \in U$ and $Y \subset V$.

First, assume the above, we prove that every compact Hausdorff space is regular: take $T \subset X$ closed, $x \in X \backslash T$. Since T is closed inside Hausdorff, it is compact, thus by the above there are disjoint opens U_{x}, U_{T} with $x \in U_{x}$ and $T \subset U_{T}$, the definition of X being regular.

We will prove now the first statement. For each $y \in Y$ we have $x \neq y$, and since X is Hausdorff there are U_{y}, V_{y} disjoint opens with $x \in U_{y}, y \in V_{y}$. Now $Y \subset \bigcup_{y \in Y} V_{y}$, and since Y is compact, there are a finite number of points y_{1}, \ldots, y_{n} in Y with $Y \subset \bigcup_{i=1}^{n} V_{y_{i}}$. Consider $U=\bigcap_{i=1}^{n} U_{y_{i}}$ open and $V=\cup_{y \in Y} V_{y}$ open. We have $x \in U$ (since it belongs to each element in the intersection), $Y \subset V$ and $U \cap V=\emptyset$ since $U \cap V_{y_{i}}=\emptyset$ for every $i=1, \ldots, n$. Thus these are the opens we wanted.

Exercise 6.4

Let (X, τ) be a compact Hausdorff space, τ^{\prime} and $\tau^{\prime \prime}$ topologies on X with $\tau^{\prime} \subsetneq \tau \subsetneq \tau^{\prime \prime}$.

1. Show that $\left(X, \tau^{\prime}\right)$ is compact: consider $\left\{U_{x}^{\prime}\right\}_{x \in X}$ a collection of open sets in τ^{\prime} with $x \in U_{x}^{\prime}$ for every $x \in X$ (such a collection exists because $x \in X$ which is always open). Now $X=\bigcup_{x \in X} U_{x}^{\prime}$ is an open cover with $U_{x}^{\prime} \in \tau^{\prime} \subsetneq \tau$, thus since (X, τ) is compact, there are a finite number of points x_{1}, \ldots, x_{n} with $X=\bigcup_{i=1}^{n} U_{x_{i}}^{\prime}$. However, each $U_{x_{i}}^{\prime} \in \tau^{\prime}$ for every $i=1, \ldots, n$ because the original cover was from τ^{\prime}. This means that (X, τ^{\prime}) is also compact.
Show that $\left(X, \tau^{\prime}\right)$ is not Hausdorff: by contrapositive, suppose $\left(X, \tau^{\prime}\right)$ is Hausdorff. We will prove that any open $Y \in \tau$ is also $Y \in \tau^{\prime}$, which is a contradiction since $\tau^{\prime} \subsetneq \tau$. Since Y is open, $X \backslash Y$ is closed in (X, τ), which is compact, and thus $X \backslash Y$ is compact (in τ). By the argument above, covering $X \backslash Y$ by opens in τ^{\prime}, they are opens in τ (compact) and we obtain that $X \backslash Y$ is compact in τ^{\prime}. Now $X \backslash Y$ is compact inside $\left(X, \tau^{\prime}\right)$ Hausdorff, thus closed (in τ^{\prime}). This means that $Y \in \tau^{\prime}$, the desired contradiction.
2. Show that $\left(X, \tau^{\prime \prime}\right)$ is Hausdorff: consider x, y two different points in X, then since (X, τ) is Hausdorff, there are disjoint opens $U \ni x, V \ni y$ in τ. However, since $\tau \subsetneq \tau^{\prime \prime}$, we have $U, V \in \tau^{\prime \prime}$ and thus ($X, \tau^{\prime \prime}$) is Hausdorff.
Show that ($X, \tau^{\prime \prime}$) is not compact: by contrapositive, suppose ($X, \tau^{\prime \prime}$) is compact. We will prove that any open $Y \in \tau^{\prime \prime}$ is also $Y \in \tau$, which is a contradiction since $\tau \subsetneq \tau^{\prime \prime}$. Consider $X \backslash Y$ closed in $\left(X, \tau^{\prime \prime}\right)$ (since Y is open in $\left.\tau^{\prime \prime}\right)$, since $\left(X, \tau^{\prime \prime}\right)$ is compact, $X \backslash Y$ is compact. By the argument also used above, covering $X \backslash Y$ by opens in τ, they are opens in $\tau^{\prime \prime}$ (compact) and we obtain that $X \backslash Y$ is compact in τ. Now $X \backslash Y$ is compact inside (X, τ) Hausdorff, thus closed (in $\tau)$. This means that $Y \in \tau$, the desired contradiction.
