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Exercise 6.5

Let f : X −→ X be an injective continuous function with X compact Hausdorff. We
will show that there exists a nonempty closed subset A of X with f(A) = A without
using injectivity. Thus we will answer the first, second (i.e. we never used injectivity)
and third questions at the same time.

With all the information about X and f (except injectivity), we know that f contin-
uous is closed since the domain is compact and the codomain is Hausdorff. Thus f(T )
is closed for any T ⊂ X closed. Consider X and the images fn(X) for n ∈ N. Since
f(X) ⊂ X, we have the decreasing sequence:

X ⊇ f(X) ⊇ f2(X) ⊇ · · · ⊇ fn(X) ⊇ · · ·

If at any point this sequence stabilizes, that is fn(X) = fn+1(X) = f(fn(X)), then
taking A = fn(X) (closed since f closed) we have A = f(A) as desired.

Suppose this sequence never stabilizes, that is the inclusions are strict:

X ) f(X) ) f2(X) ) · · · ) fn(X) ) · · ·

This means that F = {fn(X) : n ∈ N} is a family of closed sets with the finite in-
tersection property, since for n1, . . . , nk ∈ N with k ∈ N and n1 < · · · < nk we have
fn1(X) ∩ · · · ∩ fnk(X) = fnk(X) 6= ∅ since f is a function. Thus by compactness of
X, we have that A =

⋂∞
n=0 f

n(X) closed (since it is intersection of closed sets) is non
empty. We claim that f(A) = A, which will show what we wanted:
⊆) f(A) ⊂

⋂∞
n=0 f(fn(X)) =

⋂∞
n=1 f

n(X) ⊂
⋂∞

n=0 f
n(X) = A, since intersecting

with f0(X) = X does nothing.
⊇) Let a ∈ A, we want to see that a ∈ f(A). Consider B = f−1(a), which is non

empty since a ∈ A in particular means a ∈ f(X). Consider Bn = B∩fn(X) which is non
empty since a ∈ A in particular means a ∈ fn+1(X) hence f(fn(x)) = a for some x ∈ X
thus for xn = fn(x) (i.e. xn ∈ fn(X)) we have f(xn) = a (i.e. xn ∈ B). This means that
FB = {Bn : n ∈ N} is a family of closed sets that has the finite intersection property for
the same reason the family F has it, and thus by compactness ∅ 6=

⋂∞
n=0B ∩ fn(X) ⊂ A.

In particular there is an element b ∈ B in A, thus we found b ∈ A with f(b) = a hence
a ∈ f(A).
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Exercise 6.7

Let A, B be compact subspaces of X a topological space.

1. Show that A ∪ B is compact: let A ∪ B ⊂
⋃

j∈J Uj be an open cover, now A ⊂⋃
j∈J Uj ∩A and B ⊂

⋃
j∈J Uj ∩B are open covers of A and B respectively. Thus

by compactness we must have A ⊂
⋃

j∈JA Uj ∩A and B ⊂
⋃

j∈JB Uj ∩B two
finite open subcovers, that is, JA and JB are finite subsets of J . Then A ∪ B ⊂⋃

j∈JA∪JB Uj is a finite subcover since JA ∪ JB is finite, meaning that A ∪ B is
compact.

2. Give an example of X, A and B where A∩B is not compact. Consider N with the
discrete topology τN and x, y two points not in N. Let X = N ∪ {x, y} with the
topology τ = τN ∪ {{x} ∪ N, {y} ∪ N, {x, y} ∪ N} (that is, the only opens different
from the total that contain x or y are {x} ∪ N and {y} ∪ N respectively). This is
a clearly a topology, but a fast proof is:

(a) ∅ ∈ τN ⊂ τ , X ∈ τ .

(b) The unions of opens in τN stay in τN. Whenever we have a union containing
only {x} ∪ N and elements of τN, this is just {x} ∪ N (and equivalently for
{y}∪N). Whenever we have both {x}∪N and {y}∪N or {x, y}∪N the union
is the whole X. And all of the above are open.

(c) The finite intersections of opens in τN stay in τN. Whenever we have a inter-
section containing {x} ∪ N, {y} ∪ N or {x, y} ∪ N and elements of τN, this is
just in τN (and equivalently for {y} ∪ N). Whenever we have only {x} ∪ N
with {y} ∪ N the intersection is N (and including {x, y} ∪ N does not affect
anything and thus may be omitted). And all of the above are open.

Now, any cover of {x} ∪N must contain {x} ∪N (and analogously for or {y} ∪N)
thus both A = {x} ∪ N and B = {y} ∪ N are compact. However, A ∩ B = N is
infinite and discrete, thus cannot be compact.
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Exercise 7.1

Show that the Axiom of Choice is equivalent to the existence of sections for surjective
functions.
⇒) Let J be nonempty, {Aj}j∈J a family of non empty sets, we know that there

exists f : J −→
⋃

j∈J Aj with f(j) ∈ Aj for every j ∈ J .

Consider g : X −→ Y a surjective function. Thus for every y ∈ Y we have g−1(y) 6= ∅.
Apply the Axiom of Choice with J = Y and {Aj}j∈J = {Ay = g−1(y)}y∈Y (notice⋃

y∈Y g
−1(y) = g−1(Y ) = X). This gives us a function f : Y −→ X with f(y) ∈ g−1(y)

for every y ∈ Y , meaning that g ◦ f(y) = y for every y ∈ Y , thus g ◦ f = 1B is the
identity and f is a right inverse of g.
⇐) Let sections of surjective functions exist, let J be non empty and {Aj}j∈J a

family of non empty sets. We will need an intermediate step, for which we will use the
disjoint union of sets

⊔
j∈J Aj that has for elements the pairs (a, j) with given j ∈ J

that a ∈ Aj . Notice that the function g :
⊔

j∈J Aj −→ J defined by g(a, j) = j (we have

a ∈ Aj) is surjective, thus there exists f̃ : J −→
⊔

j∈J Aj with f̃(j) = (a, j) for certain

a ∈ Aj for every j ∈ J . Now notice that the composition f = ι ◦ f̃ : J −→
⋃

j∈J Aj with
ι :

⊔
j∈J Aj −→

⋃
j∈J Aj defined by ι(a, j) = a (we have a ∈ Aj) for every j ∈ J is such

that f(j) = a ∈ Aj for every j ∈ J , thus this f is the function satisfying the Axiom of
Choice that we wanted.

Notice that the naive approach of simply setting g :
⋃

j∈J Aj −→ J defined by
g(a) = j when a ∈ Aj is not necessarily a well defined function, and if we manage to
make it a function it may not be surjective:

1. We may have Al ∩Ak 6= ∅, l, k ∈ J with l 6= k and such intersection not contained
in any other element of the family. Hence the naive definition would want to send
elements in the intersection to both l and k, meaning that g is not a well defined
function.

2. We may want to narrow the naive definition of g to “choose” one of the indexes
when the case above happens. However, this does not solve all our problems:
we may have Aj = A a fixed set for every j ∈ J , and since for every element
a ∈

⋃
j∈J Aj then a ∈ Aj0 for a fixed j0 ∈ J , we may “choose” to set g constant

to this j0 ∈ J to fix the problem of definition faced above. This is at least is a
function and satisfies a narrower naive definition of g, but is clearly not surjective.

This is why we need to be more careful and refine the argument and use the disjoint
union of sets to properly define g so that it satisfies what we want.
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Exercise 7.2

Show that Zorn’s Lemma implies the existence of a basis in every vector space.
Let V be a vector space (over some field K). If V = {~0}, then B = {} = ∅ is a

basis. Suppose we have ~v ∈ V with ~v 6= ~0, notice that this means that {~v} is linearly
independent. Let L be the set of linearly independent subsets of V (ordered by inclusion)
that contain {~v}, notice {~v} ∈ L and thus L 6= ∅. We will use Zorn’s Lemma on L to
see that it has a maximal element M ∈ L, and we will then prove that this maximal
element must be a basis: it is linearly independent and it spans V (and of course is non
empty since ~v ∈M because {~v} ⊂M).

Let {Cj}j∈J be a chain of elements of L, set C =
⋃

j∈J Cj . We claim C ∈ L. Suppose
not, we will achieve a contradiction. We clearly have ~v ∈ C. Suppose then C is linearly
dependent, there exist ~v1, . . . , ~vn ∈ C and k1, . . . , kn ∈ K \{0} with k1 ~v1+· · ·+kn ~vn = 0.
Now we have ~v1 ∈ Cj1 , . . . , ~vn ∈ Cjn with Cjk ∈ L for 1 ≤ k ≤ n. Since {Cj}j∈J is a
chain, we have that Cj1 ∪ · · · ∪ Cjn = Cjk for some 0 ≤ k ≤ n and thus we have
~v1, . . . , ~vn ∈ Cjk , meaning that Cjk is linearly dependent, a contradiction since Cjk ∈ L.
Thus C is linearly independent. This means that L is a partially ordered set where every
chain has an upper bound, thus by Zorn’s Lemma, L has a maximal element M ∈ L.

Since M ∈ L, M is linearly independent and ~v ∈M , hence we just have to show that
M spans V . Suppose not, we achieve a contradiction. If there is an element ~u ∈ V such
that the span of M does not contain ~u, then M ∪ {~u} ∈ L since ~v ∈M ⊂M ∪ {~u} and
M ∪{~u} is linearly independent (if it were not, we could write ~u as a linear combination
of elements in M , thus it would belong in the span of M). However, M ( M ∪ {~u},
contradicting the maximality of M in L, thus M spans V .

We found M a non empty linearly independent subset of V that spans V , thus by
definition M is a basis of V .
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