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Exercise 8.1

Show that a sequence is a universal net if and only if it is eventually constant. We first
notice that given {xn}n∈N a sequence, since N is a directed set with the usual order ≤
and letting X =

⋃
n∈N xn (with the discrete topology), we have that φ : N −→ X defined

by φ(n) = xn is a net.
=⇒) We will proceed by contrapositive. Suppose we have a sequence {xn}n∈N that

is not eventually constant, we will build a set A ⊂ X such that φ is neither eventually
in A or Ac, meaning that φ is not universal. Given such a sequence, we can select an
infinite (countable) subsequence {yi}i∈N with yj 6= yj+1 for j ∈ N. Define A =

⋃
i∈N y2i,

we have
⋃

n∈N y2i+1 ⊂ Ac.
Now φ cannot be eventually in A since for any n ∈ N fixed we have that there exists

k ≥ n with yk ∈ {yi}i∈N (because {yi}i∈N is a countable subsequence) and for such k we
have φ(2k + 1) = y2k+1 ∈ Ac (thus φ(2k + 1) /∈ A for 2k + 1 > n).

However, φ cannot be eventually in Ac since for any n ∈ N fixed we have that there
exists k ≥ n with yk ∈ {yi}i∈N (again because {yi}i∈N is a countable subsequence) and
for such k we have φ(2k) = y2k ∈ A (thus φ(2k) /∈ Ac for 2k > n).
⇐=) Let {xn}n∈N be a sequence eventually constant, that is, there exists a fixed

N ∈ N such that for n ≥ N we have xn = x for x fixed. We prove that for every subset
A ⊂ X we have φ eventually in either A or Ac:

1. If x ∈ A, then φ is eventually in A since for N ∈ N we have that for every n ≥ N
then φ(n) = xn = x ∈ A.

2. If x ∈ Ac, then φ is eventually in Ac since for N ∈ N we have that for every n ≥ N
then φ(n) = xn = x ∈ Ac.
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Exercise 8.3

Let φ : D −→ X be a net that is eventually in A and frequently in B for some A,B ⊂ X.
Show that φ is frequently in A ∩ B ,that is, we want to see that for every α ∈ D there
exists β ∈ D such that α ≤ β and φ(β) ∈ A ∩ B. For this, we notice that since φ is
eventually in A, there is some fixed αA ∈ D such that if β ≥ αA then φ(β) ∈ A.

Let now α ∈ D be fixed:

1. Suppose α ≥ αA, since φ is frequently in B (applied to α), there exists βB ∈ D
with βB ≥ α and φ(βB) ∈ B. Moreover βB ≥ α ≥ αA and by the observation
above we have φ(βB) ∈ A, thus φ(βB) ∈ A ∩B as desired.

2. Suppose α ≤ αA, since φ is frequently in B (applied to αA), there exists βB ∈ D
with βB ≥ αA ≥ α and φ(βB) ∈ B. Again by the observation above we have
φ(βB) ∈ A, thus φ(βB) ∈ A ∩B as desired.

Hence φ is frequently in A ∩B.
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Exercise 9.2

1. Show that arbitrary product of Hausdorff spaces is Hausdorff: let {Xj}j∈J be a
family of Hausdorff spaces, X =

∏
j∈J Xj . Let x, y ∈ X with x 6= y, because

of this we have that there exists i ∈ J with x(i) 6= y(i), x(i), y(i) ∈ Xi. Since
Xi is Hausdorff, there exist Ui, Vi ⊂ Xi opens with x(i) ∈ Ui, y(i) ∈ Vi and
Ui ∩ Vi = ∅. Consider Wi,Ui ,Wi,Vi ⊂ X opens. We have that x ∈ Wi,Ui and
y ∈ Wi,Vi by construction, and if z ∈ Wi,Ui ∩Wi,Vi then z(i) ∈ Ui ∩ Vi = ∅ hence
Wi,Ui ∩Wi,Vi = ∅, as desired. Thus X is Hausdorff.

2. Show that arbitrary product of regular spaces is regular: let {Xj}j∈J be a family of
regular spaces, X =

∏
j∈J Xj . We will use the characterization of regular spaces as

the ones where the closed neighborhoods form a neighborhood basis at any given
point: given a point and a basic open, we will find a closed subset inside said
open. Let x ∈ X with x ∈ Wj1,...,jn,U1,...,Un a basic open, we have x(ji) ∈ Ui ⊂ Xi

for i = 1, . . . , n. Since Xi is regular for i ∈ J , there are closed Ci ⊂ Ui with
x(ji) ∈ Ci. Since the projections πi : X −→ Xi are continuous for every i ∈ J ,
we have that π−1i (Ci) is closed and by the above x ∈ π−1i (Ci) ⊂ π−1i (Ui) = Wji,Ui .
Hence considering C = π−1i (C1) ∩ · · · ∩ π−1i (Cn) which is a finite intersection of
closed thus closed. Moreover we have x ∈ C ⊂Wj1,...,jn,U1,...,Un since z ∈ C implies
z(ji) ∈ Ci ⊂ Ui for i = 1, . . . , n, thus z ∈ Wj1,...,jn,U1,...,Un . As desired, we found a
closed inside our basic open, hence the closed sets form a neighborhood basis, thus
X is regular.
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Exercise 9.3

Let X be a topological space, ∆ = {(x, x) : x ∈ X}. Show that X is Hausdorff if and
only if ∆ is closed in X ×X.

=⇒) Let X be Hausdorff, we will prove that ∆c is open, hence ∆ is open. Let
(x, y) ∈ ∆c, that is, x, y ∈ X with x 6= y. Since X is Hausdorff, there are opens
U, V ⊂ X with x ∈ U , y ∈ V and U ∩ V = ∅ (notice U × V = W1,2,U,V by construction,
we will use the former for commodity). Moreover, we have that ∆ ∩ U × V = ∅ since
(z, z) ∈ U ×V implies z ∈ U ∩V = ∅. Now U ×V is an open in X×X and U ×V ⊂ ∆c,
hence ∆c open as desired.
⇐=) Let ∆ be closed, we want to prove that X is Hausdorff. Let x, y ∈ X with x 6= y,

we then have (x, y) ∈ ∆c which is open. Thus, there is a basic open, say W1,2,U,V ⊂ ∆c

with (x, y) ∈ W1,2,U,V (notice that since the open must be a subset of ∆c, it cannot be
of the form W1,U because this would mean that for x ∈ U we have (x, x) ∈ W1,U but
(x, x) /∈ ∆c, a contradiction. An analogous argument shows that the open cannot be of
the form W2,V ). Now x ∈ U , y ∈ V both open and U ∩V = ∅ since if z ∈ U ∩V for some
z ∈ X we have (z, z) ∈W1,2,U,V meaning W1,2,U,V * ∆c, a contradiction. We found two
opens separating x and y, hence X is Hausdorff.
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