Topology I - Homework 6

Pablo Sánchez Ocal

October 25th, 2016

Exercise 9.5

We consider **S** the real line with the right half open interval topology. We want to see that $D = \{(x, -x) \in \mathbf{S} \times \mathbf{S} : x \in \mathbb{R}\}$ is a discrete subspace of $\mathbf{S} \times \mathbf{S}$.

To do this, we will prove that every point $(x, -x) \in D$ for $x \in \mathbb{R}$ is open. Since we can write any subset $A \subset D$ as $A = \bigcup_{a \in A} a$, proving that a is open automatically means that A, a union of opens, is open. This means that the subspace topology on D is the discrete topology. Since the opens $W_{1,2,U,V}$ (with U, V opens in \mathbf{S}) form a basis of $\mathbf{S} \times \mathbf{S}$, and the opens in D are of the form $W \cap D$ where W is an open in $\mathbf{S} \times \mathbf{S}$, it is enough to prove that given $x \in \mathbb{R}$ there is an open as above (an element of the basis of the topology in $\mathbf{S} \times \mathbf{S}$) such that $\{(x, -x)\} = W_{1,2,U,V} \cap D$.

Consider $U=[x,x+1), V=[-x,-x+1)\subset \mathbf{S}$ both open. We obviously have that $(x,-x)\in W_{1,2,U,V}\cap D$. Now suppose we have $a,b\in \mathbb{R}$ with $(a,b)\in W_{1,2,U,V}\cap D$, since they are in D we have b=-a, thus we consider elements $(a,-a)\in W_{1,2,U,V}$. This means that $a\in [x,x+1)$ and $-a\in [-x,-x+1)$, in particular $a\geq x$ and $a\leq x$ (since $-a\geq -x$), thus x=a. This proves $\{(x,-x)\}=W_{1,2,U,V}\cap D$, and the desired result follows.

Exercise 10.1

Let X be a compact Hausdorff space, we show that X is metrizable if and only if X is second countable.

- \Rightarrow) Suppose X is metrizable, since it is compact by hypothesis, we can apply Exercise 6.1 and obtain directly that X is second countable.
- \Leftarrow) Since X is compact and Hausdorff, we can apply Exercise 6.3 and obtain that X is regular. Now we have that X is regular and second countable by hypothesis, then applying the Urysohn Metrization Theorem we obtain that X is metrizable.

Exercise 10.2

Let X be compact Hausdorff, $n \ge 1$ and $\{f_i : X \longrightarrow \mathbb{R}\}_{i=1}^n$ a finite family of continuous functions such that for each $x, y \in X$, $x \ne y$ there is $1 \le i \le n$ with $f_i(x) \ne f_i(y)$. We show that X is homeomorphic to a subspace of \mathbb{R}^n .

To do this, we consider the following function:

which is continuous by pointwise continuity $(f_i \text{ continuous for } 1 \leq i \leq n)$. Moreover, since when $x,y \in X$ are such that $x \neq y$ we have that there is $1 \leq i \leq n$ with $f_i(x) \neq f_i(y)$, this means that $f(x) \neq f(y)$, proving that f is injective. In particular, f is a bijection from X to f(X). Since X is compact and \mathbb{R}^n is Hausdorff (because it is metric), we can apply the Midnight Theorems and say that f is automatically a homeomorphism, and hence X is homeomorphic to $f(X) \subset \mathbb{R}^n$. Thus we embedded X in \mathbb{R}^n , as desired.