Topology I - Homework 7

Pablo Sánchez Ocal
November 1st, 2016

Exercise 10.4

We have X a completely regular topological space, $A, B \subset X$ disjoint with A closed, B compact. We want to find a continuous function $f: X \longrightarrow I$ such that $f(A)=0$ and $f(B)=1$. Notice that if instead we find a continuous function $g: X \longrightarrow I$ such that $g(A)=1$ and $g(B)=0$, we can build the f desired by $f(x)=g(1-x)$, which is continuous because is the composition of continuous functions ($1-x$ is continuous from I to I). This is what we will do.

Consider now a point $b \in B$, we have $b \notin A$. By the Lemma 10.14 of the class notes, there exists a neighborhood U_{b} of b and a function $g_{b}: X \longrightarrow I$ such that $g_{b}\left(U_{b}\right)=0$ and $g(A)=1$ (notice that in particular this means $U_{b} \cap A=\emptyset$). By this process, for every $b \in B$ we have such U_{b} and g_{b}, hence $\left\{U_{b}\right\}_{b \in B}$ is an open cover of B. By compactness, we can reduce this to a finite subcover, say the given by the points b_{i} for $i=1, \ldots, n$. Then we have functions $f_{b_{i}}: X \longrightarrow I$ and opens $U_{b_{i}}$ for $i=1, \ldots, n$ that together cover B. We want to build a continuous function g that is 0 when all $g_{b_{i}}$ are and that is 1 when all $g_{b_{i}}$ are. For this, consider the composition:

$$
g: X \xrightarrow{\left(g_{b_{1}}, \ldots, g_{b_{n}}\right)} I^{n} \xrightarrow{\prod_{i=1}^{n} x_{i}} I,
$$

we have in practice that $g(x)=\prod_{i=1}^{n} g_{b_{i}}(x)$. The first function is continuous by pointwise continuity, and the second is continuous because is the multiplication of the components. Since composition of continuous functions is continuous, g is continuous. Moreover:

$$
\left\{\begin{array}{l}
g(b)=0 \text { for any } b \in U_{b_{i}} \text { for any } i=1, \ldots, n, \\
g(a)=1 \text { for any } a \in A,
\end{array}\right.
$$

hence $g(A)=1$ and $g(B)=0$, as desired.

