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Exercise 13.2

Let R2 have the standard topology, define Y = {(x, 0) : x ∈ R} ∪ {(0, y) : y ∈ R} and
the surjective function f : R2 −→ Y defined as:

f(x, y) =

{
(x, 0) if x 6= 0,

(0, y) if x = 0.

We want to show that under the quotient topology induced by f on Y , this is not a
Hausdorff space.

First, we give a notion of what the function f does. For every “vertical” line of R2,
that is, a subset of the form {a}×R with a ∈ R \ {0}, the image by f is the point (a, 0).
When a = 0, the function f behaves like a bijection from {0} × R onto {0} × R.

We now want to see how are the opens in Y around points (0, b) with b ∈ R. Let
(0, b) ∈ U , notice that U is open when f−1(U) is open in R2. Since f−1(0, b) = (0, b)
and f−1({(0, y) ∈ R2 : b− δ < y < b+ δ}) = {(0, y) ∈ R2 : b− δ < y < b+ δ} for δ > 0,
by the discussion above, we need to add points of R × {0} ⊂ Y to U to make it open.
Note that the open squares trivially generate the same topology than the open circles,
hence we may use the former by commodity. Now any basic open square around (0, b)
is of the form S0,b(ε, δ) = {(x, y) ∈ R2 : −ε < x < ε, b − δ < y < b + δ} with ε, δ > 0,
having image:

f(S0,b(ε, δ)) = {(x, 0) ∈ R2 : −ε < x < ε, x 6= 0} ∪ {(0, y) ∈ R2 : b− δ < y < b+ δ},

where we define Ub(ε, δ) = f(S0,b(ε, δ)). However, these basic open squares are not
saturated since:

f−1(Ub(ε, δ)) = {(x, y) ∈ R2 : −ε < x < ε, x 6= 0} ∪ {(0, y) ∈ R2 : b− δ < y < b+ δ}.

Nevertheless, we have that f−1(Ub(ε, δ)) is open, hence Ub(ε, δ) is open, and we can make
ε and δ as smaller as we desire. Since we are taking preimages of images of basic opens
(the squares S0,b(ε, δ)), we obtain that we are adding just enough points of R × {0} to
{(0, y) ∈ R2 : b− δ < y < b+ δ} so that the result, namely Ub(ε, δ), is open.

The exposition above shows that any open U containing a point (0, b) ∈ Y must at
least contain an open Ub(ε, δ) for some ε, δ > 0. This means that when we have two
distinct points (0, b1), (0, b2) ∈ Y for b1, b2 ∈ R distinct, any two opens U1, U2 containing
them respectively, each of them must respectively contain an open of the form Ub1(ε1, δ1),
Ub2(ε2, δ2) for certain ε1, ε2, δ1, δ2 > 0. This means that one of the epsilons is bigger than
the other, without loss of generality we may assume ε1 < ε2. This means that:

∅ 6= {(x, 0) ∈ R2 : −ε1 < x < ε1, x 6= 0} ⊂ Ub1(ε1, δ1) ∩ Ub2(ε2, δ2) ⊂ U1 ∩ U2,

and thus any two such opens intersect in a non empty way. This proves that Y is not
Hausdorff, as desired.
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Exercise 13.5

Consider the space R/ ∼ where two points x, y ∈ R are related, x ∼ y if and only if
x− y ∈ Q. We want to show that R/ ∼ is an uncountable space with trivial topology.

First, suppose R/ ∼ was countable. Then we have that |R| ≤ |R/ ∼ |· |Q|. Since Q is
countable and we have that multiplication of countable infinities is countable, R would
have to be countable. This is a contradiction because we know R to be uncountable,
hence R/ ∼ must also be uncountable.

Secondly, consider the quotient map π : R −→ R/ ∼ given by π(x) = [x] the class
of x inside R/ ∼. Since we know that the topology on R/ ∼ has as opens the images
π(U) where U is a saturated open of R, we will show that U = R is the only non
empty saturated opens that there exists. First, since U ⊂ R is a nonempty open, it
must contain an interval of the form (a, b). Without loss of generality (changing signs
if necessary or cropping on the positive part), we may assume that a, b ≥ 0. Since U is
saturated, there must exist B ⊂ R/ ∼ with U = π−1(B). Since we have an interval in
U , for every x ∈ (a, b) we have [x] = π(x) ∈ B, hence:

π−1(B) ⊃ {y ∈ R : y = x+ q, x ∈ (a, b), q ∈ Q}.

With the above, we now prove U = R. Let t ∈ R, there are three cases:

1. If t ∈ (a, b) then clearly t ∈ π−1(B).

2. If t ≥ b, then there is a q ∈ Q with t − b < q < t − a because Q is dense. This
means that a < t− q < b hence t− q ∈ (a, b) thus t ∈ π−1(B).

3. If t ≤ a, then there is a q ∈ Q with a − t < q < b − t because Q is dense. This
means that a < t+ q < b hence t+ q ∈ (a, b) thus t ∈ π−1(B).

Thus in every case, t ∈ π−1(B), meaning that R = π−1(B) = U , as desired.
Hence, the only possibilities for opens in R/ ∼ are ∅ and R/ ∼, that is, R/ ∼ has

the trivial topology.
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Exercise 14.1

Show that if Y is a Hausdorff space, then C(X,Y ) with the compact-open topology is
also a Hausdorff space.

Let f, g ∈ C(X,Y ) be two distinct continuous maps, that is, there is a point x ∈ X
such that f(x) 6= g(x). Since Y is Hausdorff, there are non empty opens U, V ⊂ Y
with f(x) ∈ U , g(x) ∈ V and U ∩ V = ∅. Note that in every topological space X, the
singletons are always compact (since we can just pick one non empty open as a finite
subcover). Now we have that F{x},U and F{x},V are non empty opens of C(X,Y ) in the
compact-open topology, f ∈ F{x},U and g ∈ F{x},V . Moreover if h ∈ F{x},U ∩ F{x},V ,
then h(x) ∈ U and h(x) ∈ V , but since U ∩ V = ∅, such a continuous function h cannot
exist. This means that F{x},U ∩F{x},V = ∅ and hence Y is indeed Hausdorff, as desired.
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Exercise 15.1

Let X be a topological space and {Aj}j∈J a locally finite family of sets in X. Show that
{Aj}j∈J a locally finite family of sets in X.

We know that for every x ∈ X there exist an open neighborhood Ux of x such that
Ux ∩ Aj = ∅ for all j ∈ J except for j = i1, · · · , inx , where nx ∈ N (for these, we have
non empty intersection). This means that Aj ⊂ X \Ux for j 6= i1, · · · , inx , and since the
complement of opens is closed, and Aj is the smallest closed containing Aj , we must have
that Aj ⊂ X \ Ux for j 6= i1, · · · , inx . Moreover, having Aj ∩ Ux 6= ∅ for j = i1, · · · , inx

means Aj ∩ Ux 6= ∅ for j = i1, · · · , inx .
We have hence proven that for any x ∈ X, the open neighborhood Ux that intersects

non trivially only a finite number nx of Aj for j ∈ J , namely j = i1, · · · , inx , also
intersects non trivially only a finite number nx of Aj for j ∈ J , namely j = i1, · · · , inx .
That is, for a given x ∈ X the same open and number and indexes that make {Aj}j∈J
a locally finite family of sets are enough to make {Aj}j∈J a locally finite family of sets,
as desired.
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