Topology II - Homework 1

Pablo Sánchez Ocal
February 13th, 2017

Exercise 1

Prove that every faithful and transitive action of an abelian group is a free action. That is, we have an abelian group G acting on a set X which is transitive (for any $x, y \in X$ there is a $g \in G$ with $y=g x$) and faithful (the function $\rho: G \longrightarrow \operatorname{Sym}(X)$ where $\rho(g)$ is the symmetry induced by $g \in G$ on X, is injective). Given $x \in X$, we want to see that $G_{x}=\{g \in G: g x=x\}$ is trivial.

Clearly we have that the identity element $1 \in G$ belongs to G_{x} since $1 x=x$. Suppose that $g \in G_{x}$, that is, $g x=x$. By transitivity, for every $y \in X$ there is an element $h_{y} \in G$ with $h_{y} y=x$. This means that:

$$
g x=x \Longleftrightarrow g\left(h_{y} y\right)=h_{y} y \Longleftrightarrow h_{y} g y=h_{y} y \Longleftrightarrow h_{y}^{-1} h_{y} g y=h_{y}^{-1} h_{y} y \Longleftrightarrow g y=y
$$

where we have used that G is abelian and the axioms of an action. This means that $g \in G_{y}$ for very $y \in X$. Thus:

$$
\left.\begin{array}{rl}
\rho(1)
\end{array}: \begin{array}{rlc}
X & \longrightarrow X \\
y & \longmapsto y
\end{array}, \quad \rho(g) \quad: \quad X \quad \longrightarrow \begin{array}{r}
X \\
y
\end{array}\right) \longmapsto g y=y
$$

and $\rho(1)=\rho(g)$. Since the action is faithful, ρ is injective and $1=g$. This proves that $G_{x}=\{1\}$, it is trivial, as desired.

Exercise 2

Let G act by isometries on a proper metric space X. Show that the action is properly discontinuous if and only if, for every point $x \in X$ and $D \in \mathbb{R}^{+}$the set $\{g \in G$: $d(x, g x)<D\}$ is finite.
$\Rightarrow)$ Let G acting on X be properly discontinuous, let $x \in X$ and $D \in \mathbb{R}^{+}$. Notice how if we have $g \in G$ with $d(x, g x)<D$, then $g x \in \overline{B(x, D)}$. Defining $K=\overline{B(x, D)}$, we have that $g x \in K$ by the above and since $x \in K$, we also have $g x \in g K$, hence $g x \in g K \cap K \neq \emptyset$. Thus:

$$
\{g \in G: d(x, g x)<D\} \subset\{g \in G: g K \cap K \neq \emptyset\} .
$$

Now K is compact because X is proper, and the action being properly discontinuous means that we have that $\{g \in G: g K \cap K \neq \emptyset\}$ is finite, meaning that $\{g \in G$: $d(x, g x)<D\}$ is finite, as desired.
$\Leftrightarrow)$ Let K be compact and $g \in G$ with $g K \cap K \neq \emptyset$, by this compactness we have that $K=\cup_{i=1}^{n} B\left(x_{i}, d_{i}\right)$ for $x_{i} \in X, d_{i} \in \mathbb{R}^{+}$for $i=1, \ldots, n$ (we can take $d_{i}=d$ for $i=1, \ldots, n$ if we wish so, but we do not have to). Now:

$$
g K=\cup_{i=1}^{n} g B\left(x_{i}, d_{i}\right)=\cup_{i=1}^{n} B\left(g x_{i}, d_{i}\right)
$$

where we have used in the last equality that G acts by isometries, hence preserves distances: a ball around $z \in X$ is mapped to a ball around $g z$, with the same radius. Since $g K \cap K \neq \emptyset$, there are elements $x, y \in X$ with $x=g y$, meaning that $d(x, g x)=$ $d(g y, g x)=g(y, x)<\sum_{i=1}^{n} d_{i}$, where we have used that G acts by isometries and two elements in K cannot be further away than the sum of the radius of the balls covering K. Hence:

$$
\{g \in G: g K \cap K \neq \emptyset\} \subset\left\{g \in G: d(x, g x)<\sum_{i=1}^{n} d_{i}\right\},
$$

with $\sum_{i=1}^{n} d_{i} \in \mathbb{R}^{+}$. By hypothesis, the right hand set is finite, hence $\{g \in G: g K \cap K \neq$ $\emptyset\}$ is finite. Since we have proven this for a generic compact set K, we obtain that the action of G on X is properly discontinuous, as desired.

