Topology II - Homework 3

Pablo Sánchez Ocal
March 6th, 2017

Exercise 5

1. Let $D \subset S^{2}$ (the unit sphere in \mathbb{R}^{3}) be a subspace homeomorphic to D^{2}. Let $C=\left\{t x: x \in D, t \in \mathbb{R}^{+}\right\}$. Let $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ a map such that $f(C \backslash\{0\}) \subset C \backslash\{0\}$. We want to show that there is a non zero $x \in C$ such that $0, x$ and $f(x)$ are collinear.
Consider first $\partial C=\left\{t x: x \in \partial D, t \in \mathbb{R}^{+}\right\}$the boundary of C. Now, note that $\partial C \backslash\{0\}$ is ∂D with a copy of \mathbb{R}^{+}attached to every point (where given $y \in D$, the way in which \mathbb{R}^{+}is attached to y is by the straight line going from 0 to y). Since $D \cong S^{1}$ we have that $\partial C \backslash\{0\}$ is homotopic to S^{1} with a copy of \mathbb{R}^{+}attached to every point as described above. Since this is $\mathbb{R}^{2} \backslash\{0\}$, which is homotopic to S^{1}, we have that $\partial C \backslash\{0\} \simeq \mathbb{R}^{2} \backslash\{0\} \simeq S^{1}$.
If we do not like this explanation, we may consider the maps:

$$
\begin{array}{rllcccc}
\alpha: \partial C \backslash\{0\} & \longrightarrow & \longrightarrow D & \beta & : \partial D & \longrightarrow & \partial C \backslash\{0\} \\
y=t_{y} x & \longmapsto & x
\end{array},
$$

that are well defined since every $y=\partial C$ can be written uniquely as $y=t_{y} x$ for certain $t_{y} \in \mathbb{R}^{+}$and $x \in D$ (the uniqueness follows because the intersection of a line passing through the origin of \mathbb{R}^{3} and S^{2} is a single point), and clearly $\partial D \subset \partial C \backslash\{0\}$. These maps are obviously continuous since α is a projection and β is an injection. Now $\alpha \circ \beta=\operatorname{id}_{\partial D}$ and $\beta \circ \alpha \simeq \operatorname{id}_{\partial C \backslash\{0\}}$ via the homotopy:

$$
\begin{array}{cccc}
H_{\beta \alpha}: \partial C \backslash\{0\} \times I & \longrightarrow & \partial C \backslash\{0\} \\
y & \longmapsto & (1-t) \alpha \circ \beta(y)+t y
\end{array}
$$

which is continuous as composition of continuous functions. Moreover, $H(y, 0)=$ $\alpha \circ \beta(y)$ and $H(y, 1)=y=\operatorname{id}_{\partial C \backslash\{0\}}(y)$. Hence $\partial C \backslash\{0\} \simeq \partial D \simeq \partial D^{2} \simeq S^{1}$.
In addition, given any D and f as in the statement of the problem, we know that by a rotation of \mathbb{R}^{3} and re-sizing, both continuous actions, we have that D is isomorphic to a subspace $\tilde{D} \subset S^{2}$ entirely contained in the open north hemisphere (in particular \tilde{C} lies completely in the open north hemisphere, and notice how both \tilde{D} and \tilde{C} are closed). By means of the above rotation and re-sizing, we obtain the analogous function $\tilde{f}: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ that retains the property of $\tilde{f}(\tilde{C} \backslash\{0\}) \subset \tilde{C} \backslash\{0\}$. Thus we may assume without loss of generality that D and C are entirely contained in the open north hemisphere.
Once that we know this, we proceed by contradiction. Suppose that for every non zero $x \in C$ we have that $0, x$ and $f(x)$ are not collinear. Because of this, we have that given $x \in C$ the line defined by $f(x)$ and x does not pass through zero, and since C lies in the open north hemisphere, such line must intersect with ∂C. Starting at $f(x)$ and going in the direction towards x, we name $g(x)$ the intersection point with ∂C. Clearly $g: C \backslash\{0\} \longrightarrow \partial C \backslash\{0\}$ is well defined by the non collinearity of $0, x$ and $f(x)$, and it is continuous by the continuity of $f(x)$
and the multiplication of a scalar. If $x \in \partial C \backslash\{0\}$, we have that $g(x)=x$ since $x \in \partial C$. Consider now:

$$
\begin{array}{ccc}
H: C \backslash\{0\} \times I & \longrightarrow & C \backslash\{0\} \\
(x, t) & \longmapsto & (1-t) x+\operatorname{tg}(x)
\end{array}
$$

which is well defined since $(1-t) x+\operatorname{tg}(x)$ parametrizes a segment from x to $\partial C \backslash\{0\}$, that lies inside $C \backslash\{0\}$ because $C \backslash\{0\}$ is convex (we again use that C lies entirely in the north hemisphere). We have that H is continuous by composition of continuous functions and $H(x, 0)=x, H(x, 1)=g(x)$ and for $y \in \partial C \backslash\{0\}$ we have $H(y, 1)=g(y)=y$. Hence H defines a homotopy between $\operatorname{id}_{C \backslash\{0\}}$ and g meaning that $\partial C \backslash\{0\}$ is a strong deformation retract of $C \backslash\{0\}$.
This means that $C \backslash\{0\}$ and $\partial C \backslash\{0\}$ have the same fundamental group. However, this is a contradiction since $C \backslash\{0\}$ retracts to D in the obvious way given by its definition, and D is isomorphic to D^{2} hence contractible, meaning that $\pi_{1}(C \backslash$ $\{0\})=\{0\}$, and we already saw that $\partial C \backslash\{0\}$ is homotopic to S^{1}, hence $\pi_{1}(\partial C \backslash$ $\{0\})=\mathbb{Z}$, and they are clearly different. Hence we must have that there is at least one $x_{0} \in C \backslash\{0\}$ such that $0, x_{0}, x_{0}$ and $f\left(x_{0}\right)$ are collinear, the desired result.
2. We want to show using the above result that if $A \in M_{3}(\mathbb{R})$ with positive entries, then it has at least one eigenvector with all entries real and positive whose eigenvalue is also real and positive.
We define $f: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ as $f(v)=A v$ for any given $v \in \mathbb{R}^{3}$. We will use $D=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\}$, that is, the closed north hemisphere, which is clearly isomorphic to D^{2}, meaning that $C=\left\{(x, y, z) \in \mathbb{R}^{3}: z \geq 0\right\}$. Since A has positive entries and any $v \in C \backslash\{0\}$ has at least one positive entry, we have that $f(v)=A v$ has at least one positive entry, meaning that $f(v) \in C \backslash\{0\}$. Thus f satisfies the hypothesis in the section above, meaning that there is a non-zero point $v_{0} \in C$ with $0, v_{0}, f\left(v_{0}\right)$ colinear. This means that the line defined by v_{0} and $f\left(v_{0}\right)$ goes through the origin, thus they are proportional to each other and since both have real positive entries, the proportionality factor must be positive, thus there exists $\lambda \in \mathbb{R}^{+}$positive such that $f\left(v_{0}\right)=\lambda v_{0}$. This means that $\lambda v_{0}=f\left(v_{0}\right)=A v_{0}$ and thus v_{0} and λ are the respective eigenvector (with all real positive entries) and eigenvalue (real and positive) that we desired. Notice in particular that since $v_{0} \neq 0$ we have $f\left(v_{0}\right) \neq$ thus $\lambda>0$.

Exercise 6

1. Let $f: D^{2} \longrightarrow D^{2}$ be a map such that $f(x)=x$ for $x \in S^{1}$. Then there exists $z \in D^{2} \backslash S^{1}$ such that $f(z)=z$. We claim that this is false, and we will build a counterexample.
First, we note that this is already not true in lower dimensions, since the continuous function $g: I \longrightarrow I$ given by $g(t)=t^{2}$ for $t \in I$ is such that $g(0)=0, g(1)=1$ but $g(t) \neq t$ for every $t \in(0,1)$. What we want is to generalize this idea by building a function that applies this map in each vertical sections of the disc.
First, we parametrize the vertical sections of the disc as segments. Let $(x, y) \in D^{2}$, fix $x \in[-1,1]$, we want to parametrize the vertical segment via $y_{x}(t)$. Since we know that $x^{2}+y_{x}(t)^{2} \leq 1$ and at the top boundary and bottom boundary of the disc (which we want to be the origin and end points of our segment respectively) we have $x^{2}+y_{x}(t)^{2}=1$, we must have that at the endpoints $y_{x}(t)= \pm \sqrt{1-x^{2}}$ for certain $0 \leq t \leq 1$. By setting $y_{x}(0)=-\sqrt{1-x^{2}}$ and $y_{x}(1)=\sqrt{1-x^{2}}$, we parametrize the vertical segment inside the disc going from $\left(x,-\sqrt{1-x^{2}}\right)$ to $\left(x, \sqrt{1-x^{2}}\right)$ as:

$$
y_{x}(t)=-(1-t) \sqrt{1-x^{2}}+t \sqrt{1-x^{2}} \quad \text { with } \quad 0 \leq t \leq 1
$$

We immediately check that $y_{ \pm 1}(t)=0$ for every $0 \leq t \leq 1$, that is, when $x= \pm 1$ we indeed are at the points $(-1,0)$ and $(1,0)$, and our parametrization has shrunk the segment to a point. We clearly have that $D^{2}=\left\{\left(x, y_{x}(t)\right):-1 \leq x \leq 1,0 \leq t \leq 1\right\}$. Moreover, by construction and the uniqueness of the parametrization of $y_{x}(t)$ for both $t \in[0,1]$ and $x \in(-1,1)$, we have that given $(x, y) \in D^{2} \backslash\{(1,0),(0,1)\}$ there is only one value of $t \in[0,1]$ such that $y=y_{x}(t)$ and thus $(x, y)=\left(x, y_{x}(t)\right)$. Notice that we have seen above that if $x= \pm 1$ then we do not have uniqueness for $t \in[0,1]$. However, if $(x, y) \in D^{2} \backslash S^{1}$, we do have this uniqueness in both $t \in(0,1)$ and $x \in(-1,1)$.
Consider the function:

$$
\begin{array}{cccc}
f: & D^{2} & \longrightarrow & D^{2} \\
\left(x, y_{x}(t)\right) & \longrightarrow & \left(x, y_{x}\left(t^{2}\right)\right)
\end{array}
$$

which is continuous as componentwise composition of continuous functions. Since by the above there is a bijection between $(x, t) \in(0,1) \times(-1,1)$ and $(x, y) \in D^{2} \backslash S^{1}$, if $\left(x, y_{x}(t)\right) \in D^{2} \backslash S^{2}$ then $\left(x, y_{x}(t)\right) \neq\left(x, y_{x}\left(t^{2}\right)\right)$ because $\left.y_{x}(t)\right) \neq y_{x}\left(t^{2}\right)$ because $t^{2} \neq t$ because $t \in(0,1)$ and $x \in(-1,1)$. Thus f has no fixed points in $D^{2} \backslash S^{1}$. Moreover, suppose $(x, y) \in S^{1}$. This means by construction of our parametrization that either $x= \pm 1$ and we already saw that $f\left(\pm 1, y_{ \pm}(t)\right)=$ $\left(\pm 1, y_{ \pm}\left(t^{2}\right)\right)=(\pm 1,0)=\left(\pm 1, y_{ \pm 1}(t)\right)$ for every $t \in[0,1]$, either $t=0$ and $f\left(x, y_{x}(0)\right)=\left(x, y_{x}\left(0^{2}\right)\right)=\left(x, y_{x}(0)\right)$ for every $x \in[-1,1]$, or $t=1$ and $f\left(x, y_{x}(1)\right)=$ $\left(x, y_{x}\left(1^{2}\right)\right)=\left(x, y_{x}(1)\right)$ for every $x \in[-1,1]$. In any of the four cases, we have that $f(x, y)=(x, y)$ for $(x, y) \in S^{1}$.

Thus $f: D^{2} \longrightarrow D^{2}$ is a map such that $f(x, y)=(x, y)$ for $(x, y) \in S^{1}$ and $f(z) \neq z$ for every $z \in D^{2} \backslash S^{1}$, thus it is a desired counterexample of the statement.
2. Let $f: D^{2} \longrightarrow D^{2}$ be a map such that $f(x)=x$ for $x \in S^{1}$, then f is surjective. We claim that this is true.

We proceed by contradiction. Suppose there is $y \in D^{2}$ but $y \notin \operatorname{im}(f)$. By composition with a translation if necessary, we may assume that $y=0$. We define the function:

$$
\begin{array}{rccc}
g: D^{2} & \longrightarrow & S^{1} \\
x & \longrightarrow & f(x) /\|f(x)\|_{2}
\end{array}
$$

which is well defined since $0 \notin \operatorname{im}(f)$ thus $f(x) \neq 0$ for every $x \in D^{2}$, and it is clearly continuous as composition of continuous functions. Consider now:

$$
\begin{array}{cccc}
H: & D^{2} \times I & \longrightarrow & D^{2} \\
& (x, t) & \longmapsto & (1-t) x+\operatorname{tg}(x)
\end{array}
$$

which is well defined since $(1-t) x+t g(x)$ parametrizes a segment between elements in D^{2}, that lies inside D^{2} because it is convex. We have that H is continuous by composition of continuous functions and $H(x, 0)=x, H(x, 1)=g(x)$ and for $y \in S^{1}$ we have $H(y, 1)=g(y)=f(y) /\|y\|_{2}=y / 1=y$. Hence H defines a homotopy between $\operatorname{id}_{D^{2}}$ and g meaning that S^{1} is a strong deformation retract of D^{2}.

This is a contradiction since it would mean that D^{2} and S^{1} have the same fundamental group. However, we know that D^{2} is contractible, meaning that $\pi_{1}\left(D^{2}\right)=$ $\{0\}$, and $\pi_{1}\left(S^{1}\right)=\mathbb{Z}$, where they are clearly different. Hence we must have that every $y \in D^{2}$ is $y \in \operatorname{im}(f)$, thus f is surjective, as desired.

