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Exercise 5

1. Let D ⊂ S2 (the unit sphere in R3) be a subspace homeomorphic to D2. Let
C = {tx : x ∈ D, t ∈ R+}. Let f : R3 −→ R3 a map such that f(C \{0}) ⊂ C \{0}.
We want to show that there is a non zero x ∈ C such that 0, x and f(x) are
collinear.

Consider first ∂C = {tx : x ∈ ∂D, t ∈ R+} the boundary of C. Now, note that
∂C \ {0} is ∂D with a copy of R+ attached to every point (where given y ∈ D, the
way in which R+ is attached to y is by the straight line going from 0 to y). Since
D ∼= S1 we have that ∂C \ {0} is homotopic to S1 with a copy of R+ attached to
every point as described above. Since this is R2 \ {0}, which is homotopic to S1,
we have that ∂C \ {0} ' R2 \ {0} ' S1.

If we do not like this explanation, we may consider the maps:

α : ∂C \ {0} −→ ∂D
y = tyx 7−→ x

,
β : ∂D −→ ∂C \ {0}

x 7−→ x
,

that are well defined since every y = ∂C can be written uniquely as y = tyx
for certain ty ∈ R+ and x ∈ D (the uniqueness follows because the intersection
of a line passing through the origin of R3 and S2 is a single point), and clearly
∂D ⊂ ∂C \ {0}. These maps are obviously continuous since α is a projection and
β is an injection. Now α ◦ β = id∂D and β ◦ α ' id∂C\{0} via the homotopy:

Hβα : ∂C \ {0} × I −→ ∂C \ {0}
y 7−→ (1− t)α ◦ β(y) + ty

which is continuous as composition of continuous functions. Moreover, H(y, 0) =
α ◦ β(y) and H(y, 1) = y = id∂C\{0}(y). Hence ∂C \ {0} ' ∂D ' ∂D2 ' S1.

In addition, given any D and f as in the statement of the problem, we know
that by a rotation of R3 and re-sizing, both continuous actions, we have that D is
isomorphic to a subspace D̃ ⊂ S2 entirely contained in the open north hemisphere
(in particular C̃ lies completely in the open north hemisphere, and notice how both
D̃ and C̃ are closed). By means of the above rotation and re-sizing, we obtain the
analogous function f̃ : R3 −→ R3 that retains the property of f̃(C̃ \{0}) ⊂ C̃ \{0}.
Thus we may assume without loss of generality that D and C are entirely contained
in the open north hemisphere.

Once that we know this, we proceed by contradiction. Suppose that for every
non zero x ∈ C we have that 0, x and f(x) are not collinear. Because of this,
we have that given x ∈ C the line defined by f(x) and x does not pass through
zero, and since C lies in the open north hemisphere, such line must intersect with
∂C. Starting at f(x) and going in the direction towards x, we name g(x) the
intersection point with ∂C. Clearly g : C \ {0} −→ ∂C \ {0} is well defined by the
non collinearity of 0, x and f(x), and it is continuous by the continuity of f(x)
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and the multiplication of a scalar. If x ∈ ∂C \ {0}, we have that g(x) = x since
x ∈ ∂C. Consider now:

H : C \ {0} × I −→ C \ {0}
(x, t) 7−→ (1− t)x+ tg(x)

which is well defined since (1 − t)x + tg(x) parametrizes a segment from x to
∂C \{0}, that lies inside C \{0} because C \{0} is convex (we again use that C lies
entirely in the north hemisphere). We have that H is continuous by composition
of continuous functions and H(x, 0) = x, H(x, 1) = g(x) and for y ∈ ∂C \ {0}
we have H(y, 1) = g(y) = y. Hence H defines a homotopy between idC\{0} and g
meaning that ∂C \ {0} is a strong deformation retract of C \ {0}.
This means that C \{0} and ∂C \{0} have the same fundamental group. However,
this is a contradiction since C \ {0} retracts to D in the obvious way given by
its definition, and D is isomorphic to D2 hence contractible, meaning that π1(C \
{0}) = {0}, and we already saw that ∂C \ {0} is homotopic to S1, hence π1(∂C \
{0}) = Z, and they are clearly different. Hence we must have that there is at least
one x0 ∈ C \ {0} such that 0, x0, x0 and f(x0) are collinear, the desired result.

2. We want to show using the above result that if A ∈ M3(R) with positive en-
tries, then it has at least one eigenvector with all entries real and positive whose
eigenvalue is also real and positive.

We define f : R3 −→ R3 as f(v) = Av for any given v ∈ R3. We will use
D = {(x, y, z) ∈ R3 : x2 +y2 +z2 = 1}, that is, the closed north hemisphere, which
is clearly isomorphic to D2, meaning that C = {(x, y, z) ∈ R3 : z ≥ 0}. Since A has
positive entries and any v ∈ C \ {0} has at least one positive entry, we have that
f(v) = Av has at least one positive entry, meaning that f(v) ∈ C \ {0}. Thus f
satisfies the hypothesis in the section above, meaning that there is a non-zero point
v0 ∈ C with 0, v0, f(v0) colinear. This means that the line defined by v0 and f(v0)
goes through the origin, thus they are proportional to each other and since both
have real positive entries, the proportionality factor must be positive, thus there
exists λ ∈ R+ positive such that f(v0) = λv0. This means that λv0 = f(v0) = Av0
and thus v0 and λ are the respective eigenvector (with all real positive entries)
and eigenvalue (real and positive) that we desired. Notice in particular that since
v0 6= 0 we have f(v0) 6= thus λ > 0.
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Exercise 6

1. Let f : D2 −→ D2 be a map such that f(x) = x for x ∈ S1. Then there exists
z ∈ D2 \ S1 such that f(z) = z. We claim that this is false, and we will build a
counterexample.

First, we note that this is already not true in lower dimensions, since the continuous
function g : I −→ I given by g(t) = t2 for t ∈ I is such that g(0) = 0, g(1) = 1 but
g(t) 6= t for every t ∈ (0, 1). What we want is to generalize this idea by building a
function that applies this map in each vertical sections of the disc.

First, we parametrize the vertical sections of the disc as segments. Let (x, y) ∈ D2,
fix x ∈ [−1, 1], we want to parametrize the vertical segment via yx(t). Since we
know that x2 + yx(t)2 ≤ 1 and at the top boundary and bottom boundary of the
disc (which we want to be the origin and end points of our segment respectively)
we have x2 + yx(t)2 = 1, we must have that at the endpoints yx(t) = ±

√
1− x2

for certain 0 ≤ t ≤ 1. By setting yx(0) = −
√

1− x2 and yx(1) =
√

1− x2,
we parametrize the vertical segment inside the disc going from (x,−

√
1− x2) to

(x,
√

1− x2) as:

yx(t) = −(1− t)
√

1− x2 + t
√

1− x2 with 0 ≤ t ≤ 1.

We immediately check that y±1(t) = 0 for every 0 ≤ t ≤ 1, that is, when x = ±1 we
indeed are at the points (−1, 0) and (1, 0), and our parametrization has shrunk the
segment to a point. We clearly have thatD2 = {(x, yx(t)) : −1 ≤ x ≤ 1, 0 ≤ t ≤ 1}.
Moreover, by construction and the uniqueness of the parametrization of yx(t) for
both t ∈ [0, 1] and x ∈ (−1, 1), we have that given (x, y) ∈ D2 \ {(1, 0), (0, 1)}
there is only one value of t ∈ [0, 1] such that y = yx(t) and thus (x, y) = (x, yx(t)).
Notice that we have seen above that if x = ±1 then we do not have uniqueness
for t ∈ [0, 1]. However, if (x, y) ∈ D2 \ S1, we do have this uniqueness in both
t ∈ (0, 1) and x ∈ (−1, 1).

Consider the function:

f : D2 −→ D2

(x, yx(t)) −→ (x, yx(t2))

which is continuous as componentwise composition of continuous functions. Since
by the above there is a bijection between (x, t) ∈ (0, 1)×(−1, 1) and (x, y) ∈ D2\S1,
if (x, yx(t)) ∈ D2 \ S2 then (x, yx(t)) 6= (x, yx(t2)) because yx(t)) 6= yx(t2) be-
cause t2 6= t because t ∈ (0, 1) and x ∈ (−1, 1). Thus f has no fixed points
in D2 \ S1. Moreover, suppose (x, y) ∈ S1. This means by construction of our
parametrization that either x = ±1 and we already saw that f(±1, y±(t)) =
(±1, y±(t2)) = (±1, 0) = (±1, y±1(t)) for every t ∈ [0, 1], either t = 0 and
f(x, yx(0)) = (x, yx(02)) = (x, yx(0)) for every x ∈ [−1, 1], or t = 1 and f(x, yx(1)) =
(x, yx(12)) = (x, yx(1)) for every x ∈ [−1, 1]. In any of the four cases, we have that
f(x, y) = (x, y) for (x, y) ∈ S1.
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Thus f : D2 −→ D2 is a map such that f(x, y) = (x, y) for (x, y) ∈ S1 and f(z) 6= z
for every z ∈ D2 \ S1, thus it is a desired counterexample of the statement.

2. Let f : D2 −→ D2 be a map such that f(x) = x for x ∈ S1, then f is surjective.
We claim that this is true.

We proceed by contradiction. Suppose there is y ∈ D2 but y /∈ im(f). By compo-
sition with a translation if necessary, we may assume that y = 0. We define the
function:

g : D2 −→ S1

x −→ f(x)/||f(x)||2

which is well defined since 0 /∈ im(f) thus f(x) 6= 0 for every x ∈ D2, and it is
clearly continuous as composition of continuous functions. Consider now:

H : D2 × I −→ D2

(x, t) 7−→ (1− t)x+ tg(x)

which is well defined since (1−t)x+tg(x) parametrizes a segment between elements
in D2, that lies inside D2 because it is convex. We have that H is continuous by
composition of continuous functions and H(x, 0) = x, H(x, 1) = g(x) and for
y ∈ S1 we have H(y, 1) = g(y) = f(y)/||y||2 = y/1 = y. Hence H defines a
homotopy between idD2 and g meaning that S1 is a strong deformation retract of
D2.

This is a contradiction since it would mean that D2 and S1 have the same funda-
mental group. However, we know that D2 is contractible, meaning that π1(D

2) =
{0}, and π1(S

1) = Z, where they are clearly different. Hence we must have that
every y ∈ D2 is y ∈ im(f), thus f is surjective, as desired.
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