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Exercise 1

1. Provide a presentation of the fundamental group G of the figure 8 knot. Using the
diagram in Figure 1 and the method explained in class, we obtain that we have a,
b, c, d as generators and ac = cd, ad = ca, db = cd, ab = bd, thus:

G = π1(K) = 〈a, b, c, d|ac = cd, ad = ca, db = cd, ab = bd〉.

First, we notice that the last equality is a consequence of the other three: we
can write b = c−1ac and d = a−1ca and b = d−1cd so that ab = ad−1cd =
aa−1c−1aca−1ca = c−1aca−1ca = bd. Hence deleting the fourth equality and using
the first two to express b and d in terms of a and c, we obtain:

G = 〈a, c|a−1cac−1ac = ca−1ca〉 = 〈x, y|yxy−1xy = xyx−1yx〉.

2. We show that K is not the unknot by finding a finite non-abelian quotient of G. For
this, we try the dihedral groups of small order Dn = 〈x, y|x2 = 1 = y2, (xy)n = 1〉.
In particular, identifying x ∈ G with x ∈ Dn and y ∈ G with y ∈ Dn, we obtain
that the relation yxy−1xy = xyx−1yx in Dn must be:

yxy−1xy
?
= xyx−1yx ⇐⇒ yxyxy = xyxyx ⇐⇒ xyxyxyxyxy = 1 ⇐⇒ (xy)5 = 1

meaning that our candidate is D5. Now, consider the so called in class ”adding a
relator crushes one group” Lemma, stating that for every X, R, S, the identity on
X can be extended to a surjective homomorphism 〈X|R〉 7−→ 〈X|R ∪ S〉. Applied
to our case (the hypothesis hold by the above reasoning) we obtain φ : G −→ D5

a surjective homomorphism, meaning that by the First Isomorphism Theorem
G/ ker(φ) ∼= D5, and we found a finite non-abelian quotient of G. Since quotient
of abelian groups are abelian, we must have that G is non-abelian. However, the
unknot S1 has an abelian fundamental group, hence K � S1, as desired.

Figure 1: The figure 8 knot with intersections labeled.
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Exercise 2

Denote the unit open ball in Rn by Bn, its closure by Dn, and its boundary by Sn-1.
Show that, for every pair of points y and z in Bn, there exists a homeomorphism from
Dn to Dn that maps y to z and is the identity on the boundary Sn-1

1. Let Bn be the unit open ball in Rn, Bn = Dn and ∂Bn = Sn−1. Let y, z ∈ Bn, we
construct a homeomorphism ϕ : Dn −→ Dn with ϕ|Sn−1 = id|Sn−1 and ϕ(y) = z.

Given y, z ∈ Bn, if they are equal, the identitiy works, so we will consider them
differently, in particular let L be the line containing them. Take any x ∈ Dn\L, we
parametrize the half-line from y towards x as Lx(t) = (1− t)y+ tx̃ with t ∈ [0,∞),
where x̃ is the unique point where such half line that intersects ∂Bn. We note that
the whole line lies inside Dn. Since by definition x belongs to this line, we have
that there is a time tx(y) ∈ (0, 1] such that Lx(tx(y)) = x. We set:

ϕ : Dn \ L −→ Dn \ L
x 7−→ (1− tx(y))z + tx(z)x̃

.

Since the expression for Lx(t) is continuous in t, y and x̃ whenever outside L, we
have that ϕ is continuous. Moreover, it has inverse:

ϕ−1 : Dn \ L −→ Dn \ L
x 7−→ (1− tx(z))y + tx(z)x̃

.

where we have done the same construction buy naming the corresponding time
tx(z). This yields its inverse since doing the same construction starting with z
instead of y, by definition x̃ is the unique point in the intersection of the half-line
from z to ϕ(x) with ∂Bn, meaning that tϕ(x)(z) = tx(y) and thus ϕ−1(ϕ(x)) =
(1− tϕ(x)(z))y + tϕ(x)(z)x̃ = Lx(tx) = x (in particular ϕ is bijective), and the other
equality follows by the same reasoning. If x ∈ Sn−1 \ L we have x = x̃ and thus
tx = 1 so ϕ(x) = x.

We now consider what happens in L. Notice that in L \ {y} we have that ϕ is
well defined and continuous and lands in L \ {z} since we never have time zero,
and similarly in L \ {z} we have that ϕ−1 is well defined and continuous and lands
in L \ {y}. Moreover we have the limits ϕ(x) → z when x → y and ϕ−1(x) → y
when x → z in every open (by continuity in every line, including L) thus we can
extend ϕ(y) = z and ϕ−1(z) → y to obtain ϕ : Dn −→ Dn a bijective continuous
map with continuous inverse, ϕ|Sn−1 = id|Sn−1 and ϕ(y) = z, as desired.

2. From now onward, let M be a path-connected n-manifold for n > 0 with ∂M = ∅.
We show that for every point x ∈ M there is an open neighborhood Ux 3 x such
that for every pair y, z ∈ Ux there is a homeomorphism from M to M mapping y
to z.

Since M is a manifold, it is second countable and thus has a countable basis,
say B = {Ui}i∈N. Moreover, given x ∈ M , since M is locally euclidean there is

3



Wx 3 x an open in M homeomorphic to a ball Bn(x, δ). Since B is a basis, we
can assume (making δ as small as necessary) that Wx ⊂ Uj for certain j ∈ N.

Setting ψ : Wx
∼=−→ Bn(x, δ) the homeomorphism above restricted as necessary,

we consider Ux = ψ−1(Bn(x, ε)) for certain 0 < ε < δ. Given any y, z ∈ Ux
we have ψ(y), ψ(z) ∈ Bn(x, ε), thus using the section above we know that there

exists a homeomorphism ϕ : Dn(x, ε)
∼=−→ Dn(x, ε) with ϕ(ψ(y)) = ψ(z). Consider

φ = ψ−1 ◦ ϕ|Bn(x,ε) ◦ψ : Ux
∼=−→ Ux a homeomorphism with φ(y) = z. This trivially

extends to φ : Ux
∼=−→ Ux and since φ is defined through maps that are the identity

on the boundary, we have that φ|∂Ux
= id|∂Ux

. Now we use the Gluing Lemma to

extend to Φ : Wx
∼=−→ Wx by setting Φ(u) = u if u ∈ Wx \ Ux and Φ(u) = φ(u) if

u ∈ Ux: clearly Wx \Ux and Ux are closed and both are the identity on ∂Ux, their
intersection, so Φ is continuous and in fact a homeomorphism (it has continuous
inverse the same construction using φ−1). We use the Gluing Lemma again to

extend it to Θ : Uj
∼=−→ Uj by setting Θ(u) = u if u ∈ Uj \ Ux and Θ(u) = Φ(u) if

u ∈Wx: clearly Uj\Ux and Wx are open and both are the identity on Wx\Ux, their
intersection, so Θ is continuous and in fact a homeomorphism (it has continuous
inverse the same construction using Φ−1). Finally, we use the Gluing Lemma

again to extend it to Ψ : M
∼=−→ M by setting Ψ(u) = u if u ∈ Ui with i 6= j

and Ψ(u) = Θ(u) if u ∈ Uj : clearly Ui are open for i ∈ N, and since we chose Ux
so that its closure was fully contained only in Uj , the intersection Ui ∩ Uk never
contains Ux and everything is the identity there, so Ψ is continuous and in fact a
homeomorphism (it has continuous inverse the same construction using Θ−1). By
construction, we see that Ψ(y) = φ(y) = z, hence we obtained the desired result.

3. We show that for every pair of points y, z ∈M there is a homeomorphism from M
to M mapping y to z. Here we use that M is path connected, say γ : [0, 1] −→M
being the path connecting y to z with γ(0) = y and γ(1) = z. Since [0, 1] is
compact we know that im(γ) is compact, and using the notation and the result in
the section above we have that clearly {Ux}x∈im(γ) is an open cover of im(γ) (here
Ux 3 x is such that for every pair y, z ∈ Ux there is a homeomorphism from M to
M mapping y to z, using the section above). Hence there is a finite open subcover
{Ui}ni=1 of im(γ), where the order is chosen as the opens that we find when t ∈ [0, 1]
increases, that is, we have y ∈ U1, z ∈ Un and Ui ∩ Ui+1 6= ∅ for i = 1, . . . , n − 1.
Picking xi ∈ Ui ∩ Ui+1 for i = 1, . . . , n − 1, we have that y, x1 ∈ U1, x1, x2 ∈ U2,
..., xn−1, z ∈ Un. Applying the section above, there are homeomorphisms Φ1 :
M −→ M , Φ2 : M −→ M , ..., Φn : M −→ M with Φ1(y) = x1, Φ2(x1) = x2, ...,
Φn(xn−1) = z. Hence the map Φ = Φn ◦ · · · ◦ Φ1 : M −→M is a homeomorphism
with Φ(y) = z, as desired.
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