Topology II - Final Homework

Pablo Sánchez Ocal
May 14th, 2017

Exercise 1

1. Provide a presentation of the fundamental group G of the figure 8 knot. Using the diagram in Figure 1 and the method explained in class, we obtain that we have a, b, c, d as generators and $a c=c d, a d=c a, d b=c d, a b=b d$, thus:

$$
G=\pi_{1}(K)=\langle a, b, c, d \mid a c=c d, a d=c a, d b=c d, a b=b d\rangle
$$

First, we notice that the last equality is a consequence of the other three: we can write $b=c^{-1} a c$ and $d=a^{-1} c a$ and $b=d^{-1} c d$ so that $a b=a d^{-1} c d=$ $a a^{-1} c^{-1} a c a^{-1} c a=c^{-1} a c a^{-1} c a=b d$. Hence deleting the fourth equality and using the first two to express b and d in terms of a and c, we obtain:

$$
G=\left\langle a, c \mid a^{-1} c a c^{-1} a c=c a^{-1} c a\right\rangle=\left\langle x, y \mid y x y^{-1} x y=x y x^{-1} y x\right\rangle
$$

2. We show that K is not the unknot by finding a finite non-abelian quotient of G. For this, we try the dihedral groups of small order $D_{n}=\left\langle x, y \mid x^{2}=1=y^{2},(x y)^{n}=1\right\rangle$.
In particular, identifying $x \in G$ with $x \in D_{n}$ and $y \in G$ with $y \in D_{n}$, we obtain that the relation $y x y^{-1} x y=x y x^{-1} y x$ in D_{n} must be:
$y x y^{-1} x y \stackrel{?}{=} x y x^{-1} y x \Longleftrightarrow y x y x y=x y x y x \Longleftrightarrow x y x y x y x y x y=1 \Longleftrightarrow(x y)^{5}=1$
meaning that our candidate is D_{5}. Now, consider the so called in class "adding a relator crushes one group" Lemma, stating that for every X, R, S, the identity on X can be extended to a surjective homomorphism $\langle X \mid R\rangle \longmapsto\langle X \mid R \cup S\rangle$. Applied to our case (the hypothesis hold by the above reasoning) we obtain $\phi: G \longrightarrow D_{5}$ a surjective homomorphism, meaning that by the First Isomorphism Theorem $G / \operatorname{ker}(\phi) \cong D_{5}$, and we found a finite non-abelian quotient of G. Since quotient of abelian groups are abelian, we must have that G is non-abelian. However, the unknot \mathbb{S}^{1} has an abelian fundamental group, hence $K \nsupseteq \mathrm{~S}^{1}$, as desired.

Figure 1: The figure 8 knot with intersections labeled.

Exercise 2

Denote the unit open ball in Rn by Bn, its closure by Dn, and its boundary by $\mathrm{Sn}-1$. Show that, for every pair of points y and z in Bn, there exists a homeomorphism from Dn to Dn that maps y to z and is the identity on the boundary $\mathrm{Sn}-1$

1. Let \mathbb{B}^{n} be the unit open ball in $\mathbb{R}^{n}, \overline{\mathbb{B}^{n}}=\mathbb{D}^{n}$ and $\partial \mathbb{B}^{n}=\mathbb{S}^{n-1}$. Let $y, z \in \mathbb{B}^{n}$, we construct a homeomorphism $\varphi: \mathbb{D}^{n} \longrightarrow \mathbb{D}^{n}$ with $\left.\varphi\right|_{\mathbb{S}^{n-1}}=\left.\mathrm{id}\right|_{\mathbb{S}^{n-1}}$ and $\varphi(y)=z$.
Given $y, z \in \mathbb{B}^{n}$, if they are equal, the identitiy works, so we will consider them differently, in particular let L be the line containing them. Take any $x \in \mathbb{D}^{n} \backslash L$, we parametrize the half-line from y towards x as $L_{x}(t)=(1-t) y+t \tilde{x}$ with $t \in[0, \infty)$, where \tilde{x} is the unique point where such half line that intersects $\partial \mathbb{B}^{n}$. We note that the whole line lies inside \mathbb{D}^{n}. Since by definition x belongs to this line, we have that there is a time $t_{x}(y) \in(0,1]$ such that $L_{x}\left(t_{x}(y)\right)=x$. We set:

$$
\begin{array}{cccc}
\varphi: \mathbb{D}^{n} \backslash L & \longrightarrow & \mathbb{D}^{n} \backslash L \\
x & \longmapsto & \left(1-t_{x}(y)\right) z+t_{x}(z) \tilde{x}
\end{array}
$$

Since the expression for $L_{x}(t)$ is continuous in t, y and \tilde{x} whenever outside L, we have that φ is continuous. Moreover, it has inverse:

$$
\begin{array}{cccc}
\varphi^{-1}: \mathbb{D}^{n} \backslash L & \longrightarrow & \mathbb{D}^{n} \backslash L \\
& x & \longmapsto & \left(1-t_{x}(z)\right) y+t_{x}(z) \tilde{x}
\end{array}
$$

where we have done the same construction buy naming the corresponding time $t_{x}(z)$. This yields its inverse since doing the same construction starting with z instead of y, by definition \tilde{x} is the unique point in the intersection of the half-line from z to $\varphi(x)$ with $\partial \mathbb{B}^{n}$, meaning that $t_{\varphi(x)}(z)=t_{x}(y)$ and thus $\varphi^{-1}(\varphi(x))=$ $\left(1-t_{\varphi(x)(z)}\right) y+t_{\varphi(x)(z)} \tilde{x}=L_{x}\left(t_{x}\right)=x$ (in particular φ is bijective), and the other equality follows by the same reasoning. If $x \in \mathbb{S}^{n-1} \backslash L$ we have $x=\tilde{x}$ and thus $t_{x}=1$ so $\varphi(x)=x$.
We now consider what happens in L. Notice that in $L \backslash\{y\}$ we have that φ is well defined and continuous and lands in $L \backslash\{z\}$ since we never have time zero, and similarly in $L \backslash\{z\}$ we have that φ^{-1} is well defined and continuous and lands in $L \backslash\{y\}$. Moreover we have the limits $\varphi(x) \rightarrow z$ when $x \rightarrow y$ and $\varphi^{-1}(x) \rightarrow y$ when $x \rightarrow z$ in every open (by continuity in every line, including L) thus we can extend $\varphi(y)=z$ and $\varphi^{-1}(z) \rightarrow y$ to obtain $\varphi: \mathbb{D}^{n} \longrightarrow \mathbb{D}^{n}$ a bijective continuous map with continuous inverse, $\left.\varphi\right|_{\mathbb{S}^{n-1}}=\left.\mathrm{id}\right|_{\mathbb{S}^{n-1}}$ and $\varphi(y)=z$, as desired.
2. From now onward, let M be a path-connected n-manifold for $n>0$ with $\partial M=\emptyset$. We show that for every point $x \in M$ there is an open neighborhood $U_{x} \ni x$ such that for every pair $y, z \in U_{x}$ there is a homeomorphism from M to M mapping y to z.
Since M is a manifold, it is second countable and thus has a countable basis, say $\mathcal{B}=\left\{U_{i}\right\}_{i \in \mathbb{N}}$. Moreover, given $x \in M$, since M is locally euclidean there is
$W_{x} \ni x$ an open in M homeomorphic to a ball $\mathbb{B}^{n}(x, \delta)$. Since \mathcal{B} is a basis, we can assume (making δ as small as necessary) that $\overline{W_{x}} \subset U_{j}$ for certain $j \in \mathbb{N}$. Setting $\psi: W_{x} \cong \mathbb{B}^{n}(x, \delta)$ the homeomorphism above restricted as necessary, we consider $U_{x}=\psi^{-1}\left(\mathbb{B}^{n}(x, \epsilon)\right)$ for certain $0<\epsilon<\delta$. Given any $y, z \in U_{x}$ we have $\psi(y), \psi(z) \in \mathbb{B}^{n}(x, \epsilon)$, thus using the section above we know that there exists a homeomorphism $\varphi: \mathbb{D}^{n}(x, \epsilon) \stackrel{\cong}{\Longrightarrow} \mathbb{D}^{n}(x, \epsilon)$ with $\varphi(\psi(y))=\psi(z)$. Consider $\phi=\left.\psi^{-1} \circ \varphi\right|_{\mathbb{B}^{n}(x, \epsilon)} \circ \psi: U_{x} \xrightarrow{\cong} U_{x}$ a homeomorphism with $\phi(y)=z$. This trivially extends to $\phi: \overline{U_{x}} \cong \overline{U_{x}}$ and since ϕ is defined through maps that are the identity on the boundary, we have that $\left.\phi\right|_{\partial U_{x}}=\left.\mathrm{id}\right|_{\partial U_{x}}$. Now we use the Gluing Lemma to extend to $\Phi: \overline{W_{x}} \cong \stackrel{W_{x}}{\cong}$ by setting $\Phi(u)=u$ if $u \in \overline{W_{x}} \backslash U_{x}$ and $\Phi(u)=\phi(u)$ if $u \in \overline{U_{x}}$: clearly $\overline{W_{x}} \backslash U_{x}$ and $\overline{U_{x}}$ are closed and both are the identity on ∂U_{x}, their intersection, so Φ is continuous and in fact a homeomorphism (it has continuous inverse the same construction using ϕ^{-1}). We use the Gluing Lemma again to extend it to $\Theta: U_{j} \xrightarrow{\cong} U_{j}$ by setting $\Theta(u)=u$ if $u \in U_{j} \backslash \overline{U_{x}}$ and $\Theta(u)=\Phi(u)$ if $u \in W_{x}$: clearly $U_{j} \backslash \overline{U_{x}}$ and W_{x} are open and both are the identity on $W_{x} \backslash \overline{U_{x}}$, their intersection, so Θ is continuous and in fact a homeomorphism (it has continuous inverse the same construction using Φ^{-1}). Finally, we use the Gluing Lemma again to extend it to $\Psi: M \stackrel{\cong}{\cong} M$ by setting $\Psi(u)=u$ if $u \in U_{i}$ with $i \neq j$ and $\Psi(u)=\Theta(u)$ if $u \in U_{j}$: clearly U_{i} are open for $i \in \mathbb{N}$, and since we chose U_{x} so that its closure was fully contained only in U_{j}, the intersection $U_{i} \cap U_{k}$ never contains U_{x} and everything is the identity there, so Ψ is continuous and in fact a homeomorphism (it has continuous inverse the same construction using Θ^{-1}). By construction, we see that $\Psi(y)=\phi(y)=z$, hence we obtained the desired result.
3. We show that for every pair of points $y, z \in M$ there is a homeomorphism from M to M mapping y to z. Here we use that M is path connected, say $\gamma:[0,1] \longrightarrow M$ being the path connecting y to z with $\gamma(0)=y$ and $\gamma(1)=z$. Since $[0,1]$ is compact we know that $\operatorname{im}(\gamma)$ is compact, and using the notation and the result in the section above we have that clearly $\left\{U_{x}\right\}_{x \in \operatorname{im}(\gamma)}$ is an open cover of $\operatorname{im}(\gamma)$ (here $U_{x} \ni x$ is such that for every pair $y, z \in U_{x}$ there is a homeomorphism from M to M mapping y to z, using the section above). Hence there is a finite open subcover $\left\{U_{i}\right\}_{i=1}^{n}$ of $\operatorname{im}(\gamma)$, where the order is chosen as the opens that we find when $t \in[0,1]$ increases, that is, we have $y \in U_{1}, z \in U_{n}$ and $U_{i} \cap U_{i+1} \neq \emptyset$ for $i=1, \ldots, n-1$. Picking $x_{i} \in U_{i} \cap U_{i+1}$ for $i=1, \ldots, n-1$, we have that $y, x_{1} \in U_{1}, x_{1}, x_{2} \in U_{2}$, $\ldots, x_{n-1}, z \in U_{n}$. Applying the section above, there are homeomorphisms Φ_{1} : $M \longrightarrow M, \Phi_{2}: M \longrightarrow M, \ldots, \Phi_{n}: M \longrightarrow M$ with $\Phi_{1}(y)=x_{1}, \Phi_{2}\left(x_{1}\right)=x_{2}, \ldots$, $\Phi_{n}\left(x_{n-1}\right)=z$. Hence the $\operatorname{map} \Phi=\Phi_{n} \circ \cdots \circ \Phi_{1}: M \longrightarrow M$ is a homeomorphism with $\Phi(y)=z$, as desired.

