# Algebra I - Homework 1 

Pablo Sánchez Ocal
September 9th, 2016

## Exercise 1

We have a group $G$, a set $A$ and $G^{A}$ the set of all maps $f: A \longrightarrow G$ equipped with the pointwise multiplication: $f, g \in G^{A}$, then we define $f \cdot g \in G^{A}$ by setting $f \cdot g(x)=$ $f(x) g(x)$ for every $x \in A$. For it to be a group we just have to check:

1. Associativity: for $f, h, g \in G^{A}$, we have:

$$
(f \cdot g) \cdot h(x)=(f \cdot g(x)) h(x)=f(x) g(x) h(x)=f(x)(g \cdot h(x))=f \cdot(g \cdot h)(x) .
$$

2. Identity element: consider the map $i d \in G^{A}$ given by $i d(x)=e$ for every $x \in A$, now for any $f \in G^{A}$ we have:

$$
f \cdot i d(x)=f(x) i d(x)=f(x) e=f(x)=e f(x)=i d(x) f(x)=i d \cdot f(x) .
$$

3. Inverse: let $f \in G^{A}$, consider the map $g \in G^{A}$ given by $g(x)=f(x)^{-1}$ for every $x \in A$, now we have $g=f^{-1}$ since:

$$
f \cdot g(x)=f(x) g(x)=f(x) f(x)^{-1}=e=f(x)^{-1} f(x)=g(x) f(x)=g \cdot f(x) .
$$

## Exercise 2

When $G$ is a group with $g^{2}=1$ for every $g \in G$, in particular we have $g=g^{-1}$ for every $g \in G$, and thus for every pair $g, h \in G$ we have $g h \in G$ meaning that:

$$
g h g h=(g h)^{2}=1 \Longrightarrow g h=(g h)^{-1}=h^{-1} g^{-1}=h g,
$$

making $G$ commutative.

## Exercise 3

We have a group $G$ and $A \subset G$ an arbitrary subset. We want to verify that $Z(A)=$ $\{g \in G: g h=h g \forall h \in A\}$ is a subgroup of $G$, so we just have to check:

1. Closed under multiplication: let $g_{1}, g_{2} \in Z(A)$, then $g_{1} g_{2} \in Z(A)$ since:

$$
\left(g_{1} g_{2}\right) h=g_{1}\left(g_{2} h\right)=g_{1}\left(h g_{2}\right)=\left(g_{1} h\right) g_{2}=\left(h g_{1}\right) g_{2}=h\left(g_{1} g_{2}\right) \text { for every } h \in A .
$$

2. Closed under inverses: let $g \in Z(A)$, then $g^{-1} \in Z(A)$ since:

$$
g h=h g \Longrightarrow h g^{-1}=g^{-1}(g h) g^{-1}=g^{-1}(h g) g^{-1}=g^{-1} h .
$$

## Exercise 4

We want the kernel and image of the homomorphism $f: D_{6} \longrightarrow S_{3}$ defined by the permutations on the diagonals (see Figure 1) induced by the symmetries of the hexagon.


Figure 1: The three diagonals of the regular hexagon, [1].

We begin by making a list of the elements of $D_{6}$, where we taking as starting point the right vertex in Figure 1 and measure the angles counterclockwise. We have six rotations $r_{\alpha}$ with $\alpha \in\{0, \pi / 3,2 \pi / 3, \pi, 4 \pi / 3,5 \pi / 3\}$, three mirror symmetries along the edges $e_{\beta}$ with $\beta \in\{\pi / 6, \pi / 2,5 \pi / 6\}$ and three mirror symmetries along the diagonals $d_{\gamma}$ with $\gamma \in\{0, \pi / 3,2 \pi / 3\}$. These diagonals will be referred as 1,2 and 3 respectively when considered as elements of $S_{3}$, to ease notation.

We now proceed by computing the images of the elements in $D_{6}$ by $f$ (since we are said that $f$ is a homomorphism, that fact will not be verified):

$$
\begin{array}{rllc}
f: & D_{6} & \longrightarrow & S_{3} \\
r_{0} & \longrightarrow & \text { id } \\
r_{\pi / 3} & \longrightarrow & (1,2,3) \\
r_{2 \pi / 3} & \longrightarrow & (1,3,2) \\
r_{\pi} & \longrightarrow & \text { id } \\
r_{4 \pi / 3} & \longrightarrow & (1,2,3) \\
r_{5 \pi / 3} & \longrightarrow & (1,3,2) \\
e_{\pi / 6} & \longrightarrow & (1,2) \\
e_{\pi / 3} & \longrightarrow & (2,3) \\
e_{5 \pi / 6} & \longrightarrow & (1,2) \\
d_{0} & \longrightarrow & (2,3) \\
d_{\pi / 3} & \longrightarrow & (1,3) \\
d_{2 \pi / 3} & \longrightarrow & (1,2)
\end{array}
$$

meaning that $\operatorname{im}(f)=S_{3}$ and $\operatorname{ker}(f)=\left\{r_{0}, r_{\pi}\right\}$, that is, the homomorphism is surjective and the kernel is the group formed by the identity and the rotation of an angle $\pi$ (which is the only rotation of order 2 ).

## Exercise 5

The group of quaternions $\mathbb{H}$ cannot be isomorphic to $D_{4}$ the group of symmetries of the square: $i \in \mathbb{H}$ is such that $i^{2}=-1$, but there is no element in $D_{4}$ whose square is the identity element:

1. Any rotation $r_{\alpha}$ with $\alpha \in\{0, \pi / 2, \pi, 3 \pi / 2\}$ has $r_{\alpha}^{2}=r_{2 \alpha}$ (obviously $r_{0}$ is the identity, different from $-r_{0}$, and we are working with $\alpha$ modulo a factor $2 \pi$ ), which are never $-r_{0}$.
2. Any mirror image along the diagonals or the edges $m_{\beta}$ with $\beta \in\{1,2,3,4\}$ has $d_{\beta}^{2}=r_{0}$.

## Exercise 6

We want to give subgroups of $\mathrm{GL}_{2}(\mathbb{R})$ isomorphic to:.

1. $(\mathbb{R},+)$ : consider the set $\operatorname{SUT}_{2}(\mathbb{R})$ (upper triangular matrices with determinant 1) formed by matrices with 1 in the diagonal and $r \in \mathbb{R}$ in the upper right entry, we have the obvious bijection:

$$
\begin{aligned}
f:(\mathbb{R},+) & \longrightarrow \mathrm{SUT}_{2}(\mathbb{R}) \\
r & \longmapsto\left(\begin{array}{cc}
1 & r \\
0 & 1
\end{array}\right)
\end{aligned}
$$

and equipping $\operatorname{SUT}_{2}(\mathbb{R})$ with the usual matrix multiplication, it becomes a group:
(a) $\left(\begin{array}{ll}1 & r \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & s \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}1 & r+s \\ 0 & 1\end{array}\right)$,
(b) $\left(\begin{array}{ll}1 & r \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & r \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & r \\ 0 & 1\end{array}\right)$,
(c) $\left(\begin{array}{ll}1 & r \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}1 & -r \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}1 & -r \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & r \\ 0 & 1\end{array}\right)$,
and obviously $f$ becomes an isomorphism, as we wanted.
2. $\left(\mathbb{R}^{*}, \cdot\right)$ : consider the set $\mathrm{FE}_{2}(\mathbb{R})$ formed by matrices with $r \in \mathbb{R}^{*}$ in the first entry in the diagonal and 1 in the second, we have the obvious bijection:

$$
\begin{aligned}
f:\left(\mathbb{R}^{*}, \cdot\right) & \longrightarrow \mathrm{FE}_{2}(\mathbb{R}) \\
r & \longmapsto\left(\begin{array}{ll}
r & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

and equipping $\mathrm{FE}_{2}(\mathbb{R})$ with the usual matrix multiplication, it becomes a group:
(a) $\left(\begin{array}{ll}r & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}s & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}r s & 0 \\ 0 & 1\end{array}\right)$,
(b) $\left(\begin{array}{ll}r & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}r & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}r & 0 \\ 0 & 1\end{array}\right)$,
(c) $\left(\begin{array}{ll}r & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}1 / r & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}1 / r & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}r & 0 \\ 0 & 1\end{array}\right)$,
and obviously $f$ becomes an isomorphism, as we wanted.

## References

[1] ontrack-media.net, gm2l/7test.html, cited 2016. [Available online at http://www.ontrack-media.net/geometry/Geometry\ Tests/gm2l7test.html.]

