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Exercise 1

We prove that the subgroup of GL2(C) generated by the matrices:

a =

(
0 1
−1 0

)
, b =

(
0 i
i 0

)
is isomorphic to H the quaternion group. To do this, we will see that these two ma-
trices generate three elements a, b, c that follow the characteristic multiplication of the
quaternions:

a2 = b2 = c2 = abc = −1.

Since having this information immediately defines the quaternion group, the isomorphism
will be evident. First, note that:

a2 = −1 = b2,

then define:

c = ab =

(
i 0
0 i

)
that also has c2 = −1. Now:

abc = c2 = −1,

and thus since a3 = a−1, b3 = b−1 and c3 = c−1, we found that the group we are working
with is exactly:

〈a, b〉 = 〈−1, a, b, c|(−1)2 = 1, a2 = b2 = c2 = abc = −1〉 = H

the quaternion group.
To prove that the group of quaternions H cannot be isomorphic to D4 the group of

symmetries of the square, we can use the Exercise 1.5 from the Problem Set 1 of this
same course. I here attach the same solution I gave to that one:

We cannot have H ∼= D4 since i ∈ H is such that i2 = −1, but there is no element in
D4 whose square is the identity element:

1. Any rotation rα with α ∈ {0, π/2, π, 3π/2} has r2α = r2α (obviously r0 is the
identity, different from −r0, and we are working with α modulo a factor 2π),
which are never −r0.

2. Any mirror image along the diagonals or the edges mβ with β ∈ {1, 2, 3, 4} has
d2β = r0.
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Exercise 2

The set Aut(G) of automorphisms of a group G is a group with respect to composition.
Prove that:

1. Aut(Z) ∼= Z/2Z: consider f : Z −→ Z an isomorphism. We note that since f is a
morphism, f(0) = 0 and f is completely determined by the image of 1. Thus for f
to be an isomorphism we can only choose f(1) = 1 or f(1) = −1 (since if f(1) = n
with n ∈ Z then there doesn’t exist any m ∈ Z with f(m) = 1, and thus f is not
surjective). Thus Aut(Z) = {id,−id} with the multiplication table:

id −id
id id −id
−id −id id

which implies Aut(Z) ∼= Z/2Z.

2. Aut(Zn) ∼= GLn(Z): that is, an isomorphism between the group of automorphisms
f : Zn −→ Zn and the group of n× n invertible matrices with integer coefficients
and inverse with integer coefficients.

We first note that since Z is an Euclidean ring, by [1, p. 365 onwards], every ele-
ment in the group GLn(Z) can be obtained from the identity matrix by successive
multiplication by the elementary matrices Tij (which exchanges the i-th and j-th
rows), Di (which changes the sign of the i-th row) and Lij(m) (which adds m ∈ Z
times the i-th row to the j-th row), namely:

1
. . .

0 1
. . .

1 0
. . .

1


,



1
. . .

−1
. . .

1

 ,



1
. . .

1
. . .

m 1
. . .

1


in their respective order. We note that Di can only change the sign, and not

multiply the whole row by an element of Z, since (by [1]) we need that one such
element be a unit, thus the only choices that we have are ±1.

We then note that since f : Zn −→ Zn must be an isomorphism, it must be
invertible. Thus, since we do not have multiplicative inverses in Z, each and
every one of its components must be a linear combination of the original input.
That is, when we write f(m1, . . . ,mn) = (f1(m1, . . . ,mn), . . . , fn(m1, . . . ,mn))
we must have that fi(m1 . . . ,mn) =

∑n
j=1 aijmj for certain aij ∈ Z for every

i, j ∈ {1, . . . , n} (this is just a general expression to say that no divisions are
allowed in the coefficients, but this is not the only restriction, as we treat below).
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Define now the map:
ϕ : Aut(Zn) −→ GLn(Z)

tij 7−→ Tij
di 7−→ Di

lij(m) 7−→ Lij(m)

with tij , di and lij(m) defined as follows:

tij(m1, . . . ,mn) = (m1, . . . ,mj , . . . ,mi, . . . ,mn)
di(m1, . . . ,mn) = (m1, . . . ,−mi, . . . ,mn)

lij(m)(m1, . . . ,mn) = (m1, . . . ,mi, . . . ,mj +m ·mi, . . . ,mn)

thus ϕ is a unequivocal and well defined relation between these kind of isomor-
phisms of Zn and the correspondent matrices. By what we have discussed above,
since any element of GLn(Z) can be obtained from the elementary matrices (and
thus the corresponding composition of isomorphisms determine one element that is
mapped to the desired matrix), ϕ is surjective. Moreover, by definition, it preserves
the group operation.

We now have to see that every element in Aut(Zn) can be also written composition
of the isomorphisms tij , di and lij(m), and thus ϕ will be completely well defined.
To do so, take f ∈ Aut(Zn): f(m1, . . . ,mn) = (f1(m1, . . . ,mn), . . . , f2(m1, . . . ,mn)).
We note that by means of tij , we can start without loss of generality by first
determining f1, then determining f2 and so on until finally determining fn (per-
muting the variables and/or the components yields analogous situations). The
possible linear combinations for f1 do not allow having kf1,1 · m1 for kf1,1 6= ±1
since that would make f not invertible, thus the only ones are f1(m1, . . . ,mn) =
±m1 +kf1,2 ·m2 + · · ·+kf1,n ·mn with kf1,j ∈ Z for 1 ≤ j ≤ n, j 6= 1. For the same
reason, if we want f invertible we need f2(m1, . . . ,mn) = kf2,1 · f1(m1, . . . ,mn)±
m2 + kf2,3 · m3 + · · · + kf2,n · mn with kf2,j ∈ Z for 1 ≤ j ≤ n, j 6= 2, as since
f1 is already determined, we must deal with it as a whole. This argument can
be readily generalized for fj with 1 ≤ j ≤ n, the final one being that we need
fn(m1, . . . ,mn) = kfn,1 · f1(m1, . . . ,mn) + · · · + kfn,n−1 · fn−1(m1, . . . ,mn) ± mn

with kfn,j
∈ Z for 1 ≤ j ≤ n, j 6= n, again because since fj for 1 ≤ j ≤ n − 1 are

already determined, we must deal with them as a whole. This clearly means that
f has the desired form as composition of functions, and thus ϕ(f) is well defined.

Now injectivity follows from the fact that ϕ is a morphism and determines a bijec-
tion of tij , di and lij(m) to Tij , Di and Lij(m), meaning that ϕ is an isomorphism,
as desired.
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Exercise 3

Let M , N be subgroups of G of finite index, we want to prove that M ∩N is a subgroup
of finite index. We already know that the intersection of groups is a group, but the proof
is easy:

1. Closed under multiplication: let g, h ∈ M ∩N , then g, h ∈ M,N thus gh ∈ M,N
thus gh ∈M ∩N .

2. Associativity: let f, g, h ∈M ∩N , then then f, g, h ∈M,N thus f(gh) = (fg)h in
M , N thus in M ∩N .

3. Identity: e ∈ M,N thus e ∈ M ∩N and for every g ∈ M ∩N we have g ∈ M,N
with ge = g = eg in M , N thus in M ∩N .

4. Inverses: let g ∈ M ∩N , then g ∈ M,N with g−1 ∈ M,N so that g−1 ∈ M ∩N ,
with gg−1 = e = g−1g in M , N thus in M ∩N .

To prove that the index of M ∩N is finite, we use that M ∩N < M and M ∩N < N
so that by [2, p. 39] we have:

[G : M ∩N ] = [G : M ][M : M ∩N ] ≤ [G : M ][G : N ]

and [G : M ∩N ] is finite.
For an infinite group such that the intersection of all its subgroups of finite index

is trivial, consider Z with dZ for d ∈ N+. We clearly have [Z : dZ] = d for d ∈ N+.
However,

⋂
d∈N+ dZ = {0}, as desired.
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Exercise 4

We want subgroups H and K of D4 with H / K / D4 but H 6 D4. We already know
that D4 has the special Klein group, so that will be our candidate for K. We will
consider D4 < S4, thus the notation here used will be the one of permutations. Set
H = 〈(12)(34)〉 = {id, (12)(34)} and K = K4 = {id, (12)(34), (13)(24), (14)(23)} the
Klein group. Since [D4 : K] = 2 and [K : H] = 2, it follows that H /K, and K /D4.

However, we have that H 6 D4 since for (1234) ∈ D4 and (12)(34) ∈ H we have:

(1234)(12)(34)(1234)−1 = (1234)(12)(34)(1432) = (14)(23) /∈ H.
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Exercise 5

Suppose that H ≤ G and N / G, we want to prove that H ∩ N / H. Take h ∈ H,
g ∈ H ∩N . Since g ∈ H we have hg ∈ H, since g ∈ N we have that there exists g′ ∈ N
with hg = g′h by normality. Now g′ = hgh−1 ∈ H, thus g′ ∈ H ∩N and hg = g′h with
g, g′ ∈ H ∩N , meaning that H ∩N /H.
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Exercise 6

We want to find all normal subgroups of Dn for n ∈ N+. We begin with a few generalities.
By [2, p. 50] we know that Dn = 〈R,S|Rn = S2 = (RS)2 = 1, Rm 6= 1 if 1 < m < n〉,
where R represents a rotation and S a symmetry. In particular, this means that any
element of D4 can be written as:

1. Rotation: Rm for 0 ≤ m < n.

2. Symmetry: RmS for 0 ≤ m < n.

The characterization of the normal subgroups that we will use is that a group is normal
if and only if it is union of conjugacy classes.To prove this, let N be a subgroup of a
group G and [h] = {ghg−1|g ∈ G}. We know that N is normal if and only if when n ∈ N
then gng−1 ∈ N for every g ∈ G, which happens if and only if [n] ⊂ N . Thus N normal
implies N =

⋃
n∈N [n], and obviously if N =

⋃
n∈N [n] is a group then N is normal by

definition of [n]. What we will now do is enumerate the conjugacy classes of Dn and use
them to build all the possible normal subgroups.

1. n = 2k + 1, k ∈ N: The conjugacy classes are:

{id}, {R,Rn−1}, . . . , {Rk, Rk+1}, {RmS|0 ≤ m < n}.

All but the last are clear, since we are taking Rm and R−m = Rn−m for 0 ≤ m < n.
The last one is built from the single symmetry S by conjugation: RmSR−m =
R2mS with 0 ≤ m < n, thus when 0 ≤ m ≤ k we obtain {S,R2S, . . . , R2k} and
when k + 1 ≤ m ≤ 2k we obtain {RS,R3S, . . . , R2k−1} in virtue of (RS)2 = 1 (or
RS = R−1S) and R2k+1 = 1.

However, [S] is not a subgroup since RS, S ∈ [S] with RSS = R /∈ [S]. Thus if a
normal subgroup N contains [S] (or a single symmetry), it must be the whole Dn.

Since 〈R〉 has index 2, it is automatically normal. Thus the remaining normal
subgroups must be subgroups of 〈R〉. We note that 〈R〉 ∼= Sn, and thus the
subgroups are 〈Rd〉 with d dividing n. In virtue of RS = R−1S, we have that all
those subgroups are normal: (RmS)Rdq(RmS)−1 = RmSSR−dqR−m = R−dq ∈ 〈R〉
for d dividing n and q ∈ Z (in particular for rotations it also works).

We can then conclude that the normal subgroups are: {id}, 〈Rd〉 with d dividing
n and Dn.

2. n = 2k, k ∈ N: The conjugacy classes are:

{id}, {R,Rn−1}, . . . , {Rk, Rk+1}, {Rk}, {R2mS|0 ≤ m < k}, {R2m+1S|0 ≤ m < k}.

Where by the same argument as before we obtain all but the last two. Those are
[S] (the even reflections) and [RS] (the odd reflections) respectively, where now
they are in disjoint classes because of the parity.
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By the same argument as before, we still have as normal subgroups 〈Rd〉 with d
dividing n.

Now say we want to include the even reflections in a subgroup N . Since S,R2S ∈
[S], we would need to have R2SS = R and thus include [R2], which in particular
means including 〈R2〉 for N to be a group. Thus it must be 〈R2, S〉.
Now say we want to include the odd reflections in a subgroup N . Since RS,R3S ∈
[RS], we would need to have R3SRS = R2 and thus include [R2], which in partic-
ular means including 〈R2〉 for N to be a group. Thus it must be 〈R2, RS〉.
We can then conclude that the normal subgroups are: {id}, 〈Rd〉 with d dividing
n, 〈R2, S〉, 〈R2, RS〉 and Dn.
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Exercise 7

Let S be the subgroup of Sn of permutations for which 1 is invariant. By [2, p. 39] we
have that |Sn| = [Sn : S]|S| and since S ∼= Sn−1 (this follows immediately from the fact
that since σ ∈ S must have σ(1) = 1, then σ can only be permutations of {2, . . . , n}),
we must have that [Sn : S] = n. We have S 6 Sn since taking (12) ∈ Sn and (23) ∈ S
we have that (12)(23)(12)−1 = (12)(23)(12) = (13) /∈ S.
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