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Exercise 1

Consider a group G and n ∈ Z, we want to prove that 〈{gn : g ∈ G}〉 is a normal
subgroup of G.

Take any h ∈ G, we note that h−1gnh = (h−1gh)n ∈ 〈{gn : g ∈ G}〉 since we have
multiple cancellations h−1h = e. This means that for a general g±n1 · · · g

±n
k with gi ∈ G

(not necessarily different) for i ∈ {1, . . . , k}:

h−1(g±n1 · · · g
±n
k )h = (h−1g±n1 h)(h−1 · · ·h)(h−1g±nk h) = (h−1g±11 h)n · · · (h−1g±1k h)n,

which is a multiplication of elements in 〈{gn : g ∈ G}〉 and thus h−1g±n1 · · · g
±n
k h ∈ 〈{gn :

g ∈ G}〉 and this is a normal subgroup.
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Exercise 2

Given a group G, let G′ = 〈{g−1h−1gh : g, h ∈ G}〉 the commutator subgroup of G.

1. G′ is a normal subgroup: for any f ∈ G and h ∈ G′, we note that f−1hf =
h(h−1f−1hf) ∈ G′ since h ∈ G′ ≤ G and h−1f−1hf ∈ G′ by definition.

2. G/G′ is abelian: take gG′, hG′ ∈ G/G′ for g, h ∈ G, we want to prove that
ghG′ = hgG′. For this, it is necessary and sufficient that g−1h−1gh ∈ G′, which is
true by definition of G′.

3. Let N / G, then G/N is abelian if and only if N ⊃ G′.
⇐=) Let N ⊃ G′, then G/N ≤ G/G′ meaning that G/N must be abelian since
and any subgroup of an abelian group is abelian.

=⇒) For G/N to be abelian means that ghN = hgN for every g, h ∈ G, thus by
construction of the cosets (hg)−1gh = g−1h−1gh ∈ N , meaning that G′ ⊂ N .
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Exercise 3

We know that cycles of length three generate An. Prove that S′n = An. We recall that
S′n = 〈{σ−1τ−1στ : σ, τ ∈ Sn}〉.
⊆) Note that for every σ, τ ∈ Sn:

sig(σ−1τ−1στ) = sig(σ−1)sig(τ−1)sig(σ)sig(τ) = sig(σ)sig(τ)sig(σ)sig(τ) = 1

thus since An is the group of even permutations, σ−1τ−1στ ∈ An and S′n ⊂ An.
⊇) Consider (ijk) a cycle of length three (i, j, k ∈ {1, . . . , n}), consider σ = (kj),

τ = (ji), then:
σ−1τ−1στ = (jk)(ij)(kj)(ji) = (ijk)

thus every generator of An belongs to Sn, in particular An ⊂ S′n.
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Exercise 4

For G a group, denote Z(G) = {g ∈ G : gh = hg ∀h ∈ G}.

1. Z(G) is normal: for every h ∈ G and every g ∈ Z(G) we have h−1gh = h−1hg =
g ∈ Z(G), thus Z(G) is normal.

2. Suppose G/Z(G) is cyclic, prove G is abelian: suppose G/Z(G) = 〈gZ(G)〉 for
certain g ∈ G. Now for every h, f ∈ G we have hZ(G) = gnZ(G), fZ(G) =
gmZ(G) for certain n,m ∈ Z. This implies that h−1gn, f−1gm ∈ Z(G). Applying
this to g, we obtain that (h−1gn)g = g(h−1gn), (f−1gm)g = g(f−1gm) and then
h−1g = gh−1, f−1g = gf−1 thus hg = gh, fg = gf . Applying h−1gn ∈ Z(G) to
f−1gm, we obtain that (h−1gn)(f−1gm) = (f−1gm)(h−1gn) and by the above, this
means gn+mh−1f−1 = gn+mf−1h−1 thus hf = fh and G is abelian.
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Exercise 5

We consider the Heisenberg group H (with respect to multiplication) of all upper trian-
gular matrices with integer coefficients.

We first note that if we take A,B ∈ H, then:

AB =

1 x1 y1
0 1 z1
0 0 1

1 x2 y2
0 1 z2
0 0 1

 =

1 x2 + x1 y2 + x1z2 + y1
0 1 z2 + z1
0 0 1


and:

BA =

1 x2 y2
0 1 z2
0 0 1

1 x1 y1
0 1 z1
0 0 1

 =

1 x1 + x2 y1 + x2z1 + y2
0 1 z1 + z2
0 0 1

 .

1. Describe Z(H): By the above, when we multiply B ∈ H and A ∈ Z(H), the
condition AB = BA is true if and only if x1z2 = x2z1. This imposes that x1 = 0,
z1 = 0 (in A), since if any of them is not zero, then we can easily find B with
AB 6= BA (just take x2 6= x1, z2 6= z1, x2 6= z2). Thus:

A =

1 0 a
0 1 0
0 0 1

 ,

but since:1 0 1
0 1 0
0 0 1

a

=

1 0 a
0 1 0
0 0 1

 , we have Z(H) =

〈1 0 1
0 1 0
0 0 1

〉
.

2. Show thatH/Z(G) is abelian: takeA,B ∈ H, we just want to prove thatABZ(H) =
BAZ(H), or equivalently (BA)−1AB ∈ Z(H). For this, note that:

AB

1 0 1
0 1 0
0 0 1

x2z1

=

1 x2 + x1 y2 + x1z2 + y1 + x2z1
0 1 z2 + z1
0 0 1


and:

BA

1 0 1
0 1 0
0 0 1

x1z2

=

1 x1 + x2 y1 + x2z1 + y2 + x1z2
0 1 z1 + z2
0 0 1

 ,

thus:

(BA)−1AB =

1 0 1
0 1 0
0 0 1

x1z2 1 0 1
0 1 0
0 0 1

−x2z1

∈ Z(H).
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3. To describe the commutator H ′ = 〈{A−1B−1AB : A,B ∈ H}〉, note that by the
point above for any A,B ∈ H we have A−1B−1AB ∈ Z(H), thus H ′ ⊂ Z(H).
Moreover:

(BA)−1AB =

1 0 1
0 1 0
0 0 1

1·11 0 1
0 1 0
0 0 1

−0·1 =

1 0 1
0 1 0
0 0 1


by just taking x1 = 1, z2 = 1 and x2 = 0 in the point above. Thus Z(H) ⊂ H ′

and we have the equality H ′ = Z(H).
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Exercise 6

Consider G a group of order p2 for p prime, we show that G is abelian. Note that since
Z(G) is a normal subgroup of G, we must have |Z(G)| ∈ {p2, p, 1}.

1. If |Z(G)| = p2 then Z(G) = G and obviously G is abelian.

2. If |Z(G)| = p, then |G/Z(G)| = 2, thus G/Z(G) must be cyclic and by Problem
3.4 we have that G is abelian.

3. We will prove that |Z(G)| 6= 1, that is, the center cannot be trivial. For this,
suppose it is and we have |Z(G)| = 1. Consider the action of G on itself:

ψ : G×G −→ G
(g, x) 7−→ g−1xg

for which the orbit of the identity element is Oe = {e} = Z(G) (since the identity
commutes with everybody and Z(G) is a subgroup of one element).

We now want to prove that |Ox| = [G : Gx] = |G|/|Gx| (where Gx = {g ∈ G :
g(x) = x} is the stabilizer of x ∈ G, and because |G| is finite and Gx ≤ G, then
|Gx| is finite too). For this, consider:

ϕ : G/Gx −→ Ox

gGx 7−→ g(x)

with g(x) = g−1xg the conjugation, and note that:

gGx = hGx ⇐⇒ h−1g ∈ Gx ⇐⇒ h−1g(x) = x

⇐⇒ g(x) = h(x) ⇐⇒ ϕ(gGx) = ϕ(hGx).

which proves that ϕ is well defined and it is injective. For the surjectivity, note
that any y ∈ Ox can by definition be written as g(x) = y for some g ∈ G, and thus
ϕ(gGx) = g(x) = y. This proves that |Ox| divides |G|, thus |Ox| ∈ {p2, p, 1}.
We know that the orbits Ox for x ∈ G partition G, that is, an element belongs
to one and only one orbit. Thus we have that |G| = |Ox1 | + · · · + |Oxn | for some
x1, . . . , xn ∈ G. Since Oe = {e}, we need one of the elements to be e, take x1 = e
without loss of generality. Then:

|G| = |Oe|+|Ox2 |+· · ·+|Oxn | = |Z(G)|+|Ox2 |+· · ·+|Oxn | = 1+|Ox2 |+· · ·+|Oxn |

but |G| = p2, on the right hand side we can only use elements in {p2, p, 1} and
p2−1 is not divisible by p2 or p. This means that there is at least another element
xk 6= e with |Oxk

| = 1, that is, g−1xkg = xk for every g ∈ G, that is, xk ∈ Z(G).
This is a contradiction with the hypothesis that |Z(G)| = 1, and thus |Z(G)| 6= 1,
as desired.
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