Algebra I - Homework 3

Pablo Sánchez Ocal
September 23th, 2016

Exercise 1

Consider a group G and $n \in \mathbb{Z}$, we want to prove that $\left\langle\left\{g^{n}: g \in G\right\}\right\rangle$ is a normal subgroup of G.

Take any $h \in G$, we note that $h^{-1} g^{n} h=\left(h^{-1} g h\right)^{n} \in\left\langle\left\{g^{n}: g \in G\right\}\right\rangle$ since we have multiple cancellations $h^{-1} h=e$. This means that for a general $g_{1}^{ \pm n} \cdots g_{k}^{ \pm n}$ with $g_{i} \in G$ (not necessarily different) for $i \in\{1, \ldots, k\}$:

$$
h^{-1}\left(g_{1}^{ \pm n} \cdots g_{k}^{ \pm n}\right) h=\left(h^{-1} g_{1}^{ \pm n} h\right)\left(h^{-1} \cdots h\right)\left(h^{-1} g_{k}^{ \pm n} h\right)=\left(h^{-1} g_{1}^{ \pm 1} h\right)^{n} \cdots\left(h^{-1} g_{k}^{ \pm 1} h\right)^{n},
$$

which is a multiplication of elements in $\left\langle\left\{g^{n}: g \in G\right\}\right\rangle$ and thus $h^{-1} g_{1}^{ \pm n} \cdots g_{k}^{ \pm n} h \in\left\langle\left\{g^{n}\right.\right.$: $g \in G\}\rangle$ and this is a normal subgroup.

Exercise 2

Given a group G, let $G^{\prime}=\left\langle\left\{g^{-1} h^{-1} g h: g, h \in G\right\}\right\rangle$ the commutator subgroup of G.

1. G^{\prime} is a normal subgroup: for any $f \in G$ and $h \in G^{\prime}$, we note that $f^{-1} h f=$ $h\left(h^{-1} f^{-1} h f\right) \in G^{\prime}$ since $h \in G^{\prime} \leq G$ and $h^{-1} f^{-1} h f \in G^{\prime}$ by definition.
2. G / G^{\prime} is abelian: take $g G^{\prime}, h G^{\prime} \in G / G^{\prime}$ for $g, h \in G$, we want to prove that $g h G^{\prime}=h g G^{\prime}$. For this, it is necessary and sufficient that $g^{-1} h^{-1} g h \in G^{\prime}$, which is true by definition of G^{\prime}.
3. Let $N \triangleleft G$, then G / N is abelian if and only if $N \supset G^{\prime}$.
$\Longleftarrow)$ Let $N \supset G^{\prime}$, then $G / N \leq G / G^{\prime}$ meaning that G / N must be abelian since and any subgroup of an abelian group is abelian.
$\Longrightarrow)$ For G / N to be abelian means that $g h N=h g N$ for every $g, h \in G$, thus by construction of the cosets $(h g)^{-1} g h=g^{-1} h^{-1} g h \in N$, meaning that $G^{\prime} \subset N$.

Exercise 3

We know that cycles of length three generate A_{n}. Prove that $S_{n}^{\prime}=A_{n}$. We recall that $S_{n}^{\prime}=\left\langle\left\{\sigma^{-1} \tau^{-1} \sigma \tau: \sigma, \tau \in S_{n}\right\}\right\rangle$.
$\subseteq)$ Note that for every $\sigma, \tau \in S_{n}$:

$$
\operatorname{sig}\left(\sigma^{-1} \tau^{-1} \sigma \tau\right)=\operatorname{sig}\left(\sigma^{-1}\right) \operatorname{sig}\left(\tau^{-1}\right) \operatorname{sig}(\sigma) \operatorname{sig}(\tau)=\operatorname{sig}(\sigma) \operatorname{sig}(\tau) \operatorname{sig}(\sigma) \operatorname{sig}(\tau)=1
$$

thus since A_{n} is the group of even permutations, $\sigma^{-1} \tau^{-1} \sigma \tau \in A_{n}$ and $S_{n}^{\prime} \subset A_{n}$.
$\supseteq)$ Consider $(i j k)$ a cycle of length three $(i, j, k \in\{1, \ldots, n\})$, consider $\sigma=(k j)$, $\tau=(j i)$, then:

$$
\sigma^{-1} \tau^{-1} \sigma \tau=(j k)(i j)(k j)(j i)=(i j k)
$$

thus every generator of A_{n} belongs to S_{n}, in particular $A_{n} \subset S_{n}^{\prime}$.

Exercise 4

For G a group, denote $Z(G)=\{g \in G: g h=h g \forall h \in G\}$.

1. $Z(G)$ is normal: for every $h \in G$ and every $g \in Z(G)$ we have $h^{-1} g h=h^{-1} h g=$ $g \in Z(G)$, thus $Z(G)$ is normal.
2. Suppose $G / Z(G)$ is cyclic, prove G is abelian: suppose $G / Z(G)=\langle g Z(G)\rangle$ for certain $g \in G$. Now for every $h, f \in G$ we have $h Z(G)=g^{n} Z(G), f Z(G)=$ $g^{m} Z(G)$ for certain $n, m \in \mathbb{Z}$. This implies that $h^{-1} g^{n}, f^{-1} g^{m} \in Z(G)$. Applying this to g, we obtain that $\left(h^{-1} g^{n}\right) g=g\left(h^{-1} g^{n}\right),\left(f^{-1} g^{m}\right) g=g\left(f^{-1} g^{m}\right)$ and then $h^{-1} g=g h^{-1}, f^{-1} g=g f^{-1}$ thus $h g=g h, f g=g f$. Applying $h^{-1} g^{n} \in Z(G)$ to $f^{-1} g^{m}$, we obtain that $\left(h^{-1} g^{n}\right)\left(f^{-1} g^{m}\right)=\left(f^{-1} g^{m}\right)\left(h^{-1} g^{n}\right)$ and by the above, this means $g^{n+m} h^{-1} f^{-1}=g^{n+m} f^{-1} h^{-1}$ thus $h f=f h$ and G is abelian.

Exercise 5

We consider the Heisenberg group H (with respect to multiplication) of all upper triangular matrices with integer coefficients.

We first note that if we take $A, B \in H$, then:

$$
A B=\left(\begin{array}{ccc}
1 & x_{1} & y_{1} \\
0 & 1 & z_{1} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & x_{2} & y_{2} \\
0 & 1 & z_{2} \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & x_{2}+x_{1} & y_{2}+x_{1} z_{2}+y_{1} \\
0 & 1 & z_{2}+z_{1} \\
0 & 0 & 1
\end{array}\right)
$$

and:

$$
B A=\left(\begin{array}{ccc}
1 & x_{2} & y_{2} \\
0 & 1 & z_{2} \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & x_{1} & y_{1} \\
0 & 1 & z_{1} \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & x_{1}+x_{2} & y_{1}+x_{2} z_{1}+y_{2} \\
0 & 1 & z_{1}+z_{2} \\
0 & 0 & 1
\end{array}\right)
$$

1. Describe $Z(H)$: By the above, when we multiply $B \in H$ and $A \in Z(H)$, the condition $A B=B A$ is true if and only if $x_{1} z_{2}=x_{2} z_{1}$. This imposes that $x_{1}=0$, $z_{1}=0$ (in A), since if any of them is not zero, then we can easily find B with $A B \neq B A$ (just take $x_{2} \neq x_{1}, z_{2} \neq z_{1}, x_{2} \neq z_{2}$). Thus:

$$
A=\left(\begin{array}{lll}
1 & 0 & a \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

but since:

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)^{a}=\left(\begin{array}{lll}
1 & 0 & a \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \text { we have } Z(H)=\left\langle\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\right\rangle
$$

2. Show that $H / Z(G)$ is abelian: take $A, B \in H$, we just want to prove that $A B Z(H)=$ $B A Z(H)$, or equivalently $(B A)^{-1} A B \in Z(H)$. For this, note that:

$$
A B\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)^{x_{2} z_{1}}=\left(\begin{array}{ccc}
1 & x_{2}+x_{1} & y_{2}+x_{1} z_{2}+y_{1}+x_{2} z_{1} \\
0 & 1 & z_{2}+z_{1} \\
0 & 0 & 1
\end{array}\right)
$$

and:

$$
B A\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)^{x_{1} z_{2}}=\left(\begin{array}{ccc}
1 & x_{1}+x_{2} & y_{1}+x_{2} z_{1}+y_{2}+x_{1} z_{2} \\
0 & 1 & z_{1}+z_{2} \\
0 & 0 & 1
\end{array}\right)
$$

thus:

$$
(B A)^{-1} A B=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)^{x_{1} z_{2}}\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)^{-x_{2} z_{1}} \in Z(H)
$$

3. To describe the commutator $H^{\prime}=\left\langle\left\{A^{-1} B^{-1} A B: A, B \in H\right\}\right\rangle$, note that by the point above for any $A, B \in H$ we have $A^{-1} B^{-1} A B \in Z(H)$, thus $H^{\prime} \subset Z(H)$. Moreover:

$$
(B A)^{-1} A B=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)^{1 \cdot 1}\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)^{-0 \cdot 1}=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

by just taking $x_{1}=1, z_{2}=1$ and $x_{2}=0$ in the point above. Thus $Z(H) \subset H^{\prime}$ and we have the equality $H^{\prime}=Z(H)$.

Exercise 6

Consider G a group of order p^{2} for p prime, we show that G is abelian. Note that since $Z(G)$ is a normal subgroup of G, we must have $|Z(G)| \in\left\{p^{2}, p, 1\right\}$.

1. If $|Z(G)|=p^{2}$ then $Z(G)=G$ and obviously G is abelian.
2. If $|Z(G)|=p$, then $|G / Z(G)|=2$, thus $G / Z(G)$ must be cyclic and by Problem 3.4 we have that G is abelian.
3. We will prove that $|Z(G)| \neq 1$, that is, the center cannot be trivial. For this, suppose it is and we have $|Z(G)|=1$. Consider the action of G on itself:

$$
\left.\left.\begin{array}{rl}
\psi: G \times G & \longrightarrow
\end{array}\right] \begin{array}{c}
G \\
(g, x)
\end{array}\right) \longmapsto g^{-1} x g
$$

for which the orbit of the identity element is $\mathcal{O}_{e}=\{e\}=Z(G)$ (since the identity commutes with everybody and $Z(G)$ is a subgroup of one element).
We now want to prove that $\left|\mathcal{O}_{x}\right|=\left[G: G_{x}\right]=|G| /\left|G_{x}\right|$ (where $G_{x}=\{g \in G$: $g(x)=x\}$ is the stabilizer of $x \in G$, and because $|G|$ is finite and $G_{x} \leq G$, then $\left|G_{x}\right|$ is finite too). For this, consider:

$$
\begin{aligned}
\varphi: G / G_{x} & \longrightarrow \mathcal{O}_{x} \\
g G_{x} & \longmapsto g(x)
\end{aligned}
$$

with $g(x)=g^{-1} x g$ the conjugation, and note that:

$$
\begin{aligned}
g G_{x}= & h G_{x} \Longleftrightarrow h^{-1} g \in G_{x} \Longleftrightarrow h^{-1} g(x)=x \\
& \Longleftrightarrow g(x)=h(x) \Longleftrightarrow \varphi\left(g G_{x}\right)=\varphi\left(h G_{x}\right) .
\end{aligned}
$$

which proves that φ is well defined and it is injective. For the surjectivity, note that any $y \in \mathcal{O}_{x}$ can by definition be written as $g(x)=y$ for some $g \in G$, and thus $\varphi\left(g G_{x}\right)=g(x)=y$. This proves that $\left|\mathcal{O}_{x}\right|$ divides $|G|$, thus $\left|\mathcal{O}_{x}\right| \in\left\{p^{2}, p, 1\right\}$.
We know that the orbits \mathcal{O}_{x} for $x \in G$ partition G, that is, an element belongs to one and only one orbit. Thus we have that $|G|=\left|\mathcal{O}_{x_{1}}\right|+\cdots+\left|\mathcal{O}_{x_{n}}\right|$ for some $x_{1}, \ldots, x_{n} \in G$. Since $\mathcal{O}_{e}=\{e\}$, we need one of the elements to be e, take $x_{1}=e$ without loss of generality. Then:
$|G|=\left|\mathcal{O}_{e}\right|+\left|\mathcal{O}_{x_{2}}\right|+\cdots+\left|\mathcal{O}_{x_{n}}\right|=|Z(G)|+\left|\mathcal{O}_{x_{2}}\right|+\cdots+\left|\mathcal{O}_{x_{n}}\right|=1+\left|\mathcal{O}_{x_{2}}\right|+\cdots+\left|\mathcal{O}_{x_{n}}\right|$
but $|G|=p^{2}$, on the right hand side we can only use elements in $\left\{p^{2}, p, 1\right\}$ and $p^{2}-1$ is not divisible by p^{2} or p. This means that there is at least another element $x_{k} \neq e$ with $\left|\mathcal{O}_{x_{k}}\right|=1$, that is, $g^{-1} x_{k} g=x_{k}$ for every $g \in G$, that is, $x_{k} \in Z(G)$. This is a contradiction with the hypothesis that $|Z(G)|=1$, and thus $|Z(G)| \neq 1$, as desired.

