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Exercise 1

Let G be a group with H ≤ G a subgroup with [G : H] = n finite. We want to find a
subgroup N ≤ H with N C G with [G : N ] finite.

Since [G : H] is finite, consider G/H the set of cosets, of cardinal n. The action by
translation:

t : G×G/H −→ G/H
(g, fH) 7−→ (gf)H

induces a homomorphism towards the group of permutations SG/H ∼= Sn, say T : G −→
Sn, since we can label the n different elements in G/H = {f1H, . . . , fnH}, and then
the element g ∈ G can be identified with σg the permutation σg(fH) = (gf)H (this
identification yields indeed a permutation since it has σg−1 inverse σg−1(fH) = (g−1fH)
with g−1 ∈ G). Moreover for any g1, g2, f ∈ G:

T (g1g2)(fH) = σg1g2(fH) = (g1g2f)H = (g1f)H(g2f)H = σg1(fH)σg2(fH) =

= T (g1)(fH)T (g2)(fH) =⇒ T (g1g2) = T (g2)T (g2).

hence T is indeed a homomorphism. Say N = ker(T ) ≤ G, by the First Isomorphism
Theorem, we have that G/N ∼= S for certain S ≤ Sn. We claim that this N is what we
need to solve the problem.

First, let n ∈ N , we have T (n) = idG/H hence:

H = T (n)(H) = nH =⇒ n ∈ H =⇒ N ≤ H.

We also know that N is normal, N C G, since it is the kernel of a homomorphism.
Finally:

[G : N ] = |G/N | = |S| ≤ |Sn| = n!

which is finite, as desired.
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Exercise 2

Show that every finite group G is isomorphic to a subgroup of Ak for some k ∈ N.
For this, we will use Cayley’s Theorem, which in particular states that every finite

subgroup G is isomorphic to a subgroup of Sn with |G| = n. We call the monomorphism
that induces such isomorphism ι : G −→ Sn. Moreover, we have that Sn ⊂ Sn+2 in a
natural way. We will define an monomorphism ϕ : Sn −→ An+2, and thus we will have
a monomorphism ϕ ◦ ι : G −→ An+2, meaning that G is isomorphic to a subgroup of
An+2, as desired (by the First Isomorphism Theorem if we are to precise everything).

The monomorphism ϕ is defined as:

ϕ : Sn −→ An+2

σ 7−→

{
σ if σ even

σ(n+ 1, n+ 2) if σ odd

where the injectivity is clear for even permutations and given by multiplication by (n+
1, n+ 2) for odd permutations (since (n+ 1, n+ 2) commutes with every element of Sn
and (n+ 1, n+ 2)2 = idSn+2). To check that this is indeed a homomorphism, notice that
for σ, τ ∈ Sn they either have the same parity or different parity:{

ϕ(σ)ϕ(τ) = στ = ϕ(στ) if they have the same parity

ϕ(σ)ϕ(τ) = στ(n+ 1, n+ 2) = ϕ(στ) if they have different parity

thus ϕ(στ) = ϕ(σ)ϕ(τ) in every case.
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Exercise 3

To prove Burnside’s Lemma, let G be a finite group acting on a finite set X. For
notation, let Xg = {x ∈ X : gx = x} for every g ∈ G with |Xg| = mg by definition, let
Gx = {g ∈ G : gx = x} for every x ∈ X, let Ox = {y ∈ X : ∃g ∈ G, y = gx} for every
x ∈ X.

Notice that:
x ∈ Xg ⇐⇒ gx = x ⇐⇒ g ∈ Gx

hence when we sum
∑

g∈Gmg, a point x ∈ X is counted as many times as there are
elements g ∈ G that fix it, which is exactly |Gx|. Thus

∑
g∈Gmg =

∑
x∈X |Gx|. Using

an alternative mathematical notation, we have proven that:∑
g∈G

mg =
∑
g∈G
|Xg| = |{(g, x) ∈ G×X : gx = x}| =

∑
x∈X
|Gx|.

Once we have this, we can compute (since |Ox| = [G : Gx] = |G|/|Gx| by G finite):∑
g∈G

mg =
∑
x∈X
|Gx| =

∑
x∈X

|G|
|Ox|

=⇒ 1

|G|
∑
g∈G

mg =
∑
x∈X

1

|Ox|
.

Now, suppose the action of G on X divides the latter into k disjoint orbits (an
assumption we can do since both are finite), say |Ox1 |, . . . , |Oxk | for x1, . . . , xk ∈ X. We
have |X| = |Ox1 |+ · · ·+ |Oxk |, notice that since an element x ∈ X can only belong to one
orbit, that is x ∈ |Oxi | = |Ox| for some 1 ≤ i ≤ k, and in particular

∑
x∈Oxi

1 = |Oxi |.
Now: ∑

x∈X

1

|Ox|
=

∑
x∈Ox1∪···∪Oxk

1

|Ox|
=

k∑
i=1

∑
x∈Oxi

1

|Oxi |
=

k∑
i=1

1 = k

which is precisely the number of orbits.
Thus:

1

|G|
∑
g∈G

mg =
∑
x∈X

1

|Ox|
= k, the number of orbits.
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Exercise 4

We want to find the number of possible different ways to paint the sides of a regular
hexagon in three colors, saying that two coloring are the same if one can be obtained
from the other by application of an element of D6.

To use Burnside’s Lemma, we first notice that without any restrictions, we have 6
sides in the hexagon and 3 colours, hence 36 possible coloring. Let X have as points
all these different coloring, in particular |X| = 36. Second, notice that we identify two
coloring as the same when they belong to the same orbit by the action of G = D6 on
X, where this action is the natural induced by D6 onto the hexagon that determines an
action on the sides of the hexagon, which are colored, meaning indeed an action on X.
Suppose we have k such orbits, that is the number we want to find.

Thus for each of the 12 elements of D6, we have to compute the number of points
that it fixes. If we consider an hexagon flat on the base, starting on the right ver-
tex, we can name the sides of the hexagon from 1 to 6 counterclockwise. Now, us-
ing the notation from Exercise 1.4 and Exercise 4.3, we have six rotations rα with
α ∈ {0, π/3, 2π/3, π, 4π/3, 5π/3}, three mirror symmetries along the edges eβ with
β ∈ {π/6, π/2, 5π/6} and three mirror symmetries along the diagonals dγ with γ ∈
{0, π/3, 2π/3}. In Table 1 we present the number of points fixed, where the computa-
tion of mg for g ∈ D6 is justified since for each set of related sides we have three choices
for a color.

Element g ∈ D6 Related sides mg

r0 All independent 36

rπ/3 All related 3

r2π/3 1− 3− 5, 2− 4− 6 32

rπ 1− 4, 2− 5, 3− 6 33

r4π/3 1− 3− 5, 2− 4− 6 32

r5π/3 All related 3

eπ/6 1, 2− 6, 3− 5, 4 34

eπ/3 1− 3, 2, 4− 6, 5 34

e5π/6 1− 5, 2− 4, 3, 6 34

d0 1− 6, 2− 5, 3− 4 33

dπ/3 1− 2, 3− 6, 4− 5 33

d2π/3 1− 4, 2− 3, 5− 6 33

Table 1: Points fixed by the elements in D6.

Thus applying:

k =
1

|G|
∑
g∈G

mg =
1

24
(36 + 2 · 3 + 2 · 32 + 33 + 3 · 34 + 3 · 33) = 92,

the number of different coloring that we have.

5



Exercise 5

We want to find a Sylow subgroup of S2p with p prime, p > 2.
We first notice that:

|S2p| = (2p)! = (2p)(2p− 1) · · · (2p− (p− 1))︸ ︷︷ ︸
p+1

(2p− p)︸ ︷︷ ︸
p

· · · (2p− (2p− 2))︸ ︷︷ ︸
2

(2p− (2p− 1))︸ ︷︷ ︸
1

and hence highest prime squared that divides (2p)! is p2 (because p > 2), in particular
p2|(2p)! but p3 - (2p)!. Consider now a = (2p, . . . , p), b = (p, . . . , 1) elements of S2p.
They are disjoint and have order p, thus ab = ba and:

S = 〈a, b〉 = {anbm : n,m ∈ Z} = 〈a〉 × 〈b〉

is S ≤ S2p with |S| = |a||b| = p2. By the above, S is a Sylow p-subgroup.
Notice that it is important that p > 2: we have 4! = 4 · 3 · 2 and thus it has

8 = 23 > 4 = 22 as a divisor. Explicitly, in S4 we have:

〈(4, 3), (2, 1)〉 � D4 � S4

with |〈(4, 3), (2, 1)〉| = 4 and |D4| = 8, in particular 〈(4, 3), (2, 1)〉 is not maximal, hence
not a Sylow 2-subgroup.
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Exercise 6

We want to show that groups G of order 28, 56 and 200 cannot be simple. The strategy
that we will use is all three cases is the following: we will find a prime factor p dividing
|G| such that the Sylow p-subgroup, that exists by the First Sylow Theorem, is unique.
To show uniqueness, we will use the Third Sylow Theorem, that gives us the possible
numbers of such Sylow p-subgroups. Now by [1, Corollary 5.8 (iii), p. 95], if P is the
only Sylow p-subgroup, then P is normal in G (because P ∼= gPg−1 for every g ∈ G,
hence since |gPg−1| = |P | we have that gPg−1 is a Sylow p-subgroup, thus by uniqueness
P = gPg−1). Hence, G cannot be simple.

1. |G| = 28: we have 28 = 2 · 2 · 7, in particular by the First Sylow Theorem we know
that there exists a Sylow 7-subgroup of G and by the Third Sylow Theorem we
know that the number of Sylow 7-subgroups of G divides 28 and is of the form
7 · k + 1 for k ∈ N. Now:

1|28, 8 - 28, 15 - 28, 22 - 28,

and obviously for k > 3 we have (7 · k + 1) - 28. Thus we have a unique Sylow
7-subgroup, which must be normal.

2. |G| = 56: we have 56 = 2 · 2 · 2 · 7. By the First Sylow Theorem we know that
there exists a Sylow 7-subgroup of G and by the Third Sylow Theorem we know
that the number of Sylow 7-subgroups of G divides 56 and is of the form 7 · k + 1
for k ∈ N. Now:

1|56, 8|56, 15 - 56, 22 - 56, 29 - 56

and obviously for k > 4 we have (7 · k + 1) - 56. Thus we either have 1 or 8 Sylow
7-subgroups.

Analogously, by the First Sylow Theorem we know that there exists a Sylow 2-
subgroup of G and by the Third Sylow Theorem we know that the number of
Sylow 2-subgroups of G divides 56 and is of the form 2 · k + 1 for k ∈ N. Now:

1|56, 3 - 56, 5 - 56, 7 - 56, 9|56, 11 - 56, 13 - 56, 15 - 56,

17 - 56, 19 - 56, 21 - 56, 23 - 56, 25 - 56, 27 - 56, 29 - 56

and obviously for k > 14 we have (2 · k+ 1) - 56. Thus we either have 1 or 9 Sylow
2-subgroups.

If we have more than 1 Sylow p-subgroup for both p = 2, 7, since the size of the
Sylow 2-subgroups is 8 and the size of the Sylow 7-subgroups is 7, we must have
at least

8 · (7− 1) + 9 · (8− 1) = 111 different elements in G.

This is a contradiction with |G| = 56. We hence have 1 Sylow p-subgroup for
either p = 2 or p = 7 (maybe both), which must be normal.
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3. |G| = 200: we have 200 = 2 ·2 ·2 ·5 ·5, in particular by the First Sylow Theorem we
know that there exists a Sylow 5-subgroup of G and by the Third Sylow Theorem
we know that the number of Sylow 5-subgroups of G divides 200 and is of the form
5 · k + 1 for k ∈ N. Now:

1|200, 6 - 200, 11 - 200, 16 - 200, 21 - 200, 26 - 200,

31 - 200, 36 - 200, 41 - 200, 46 - 200, 51 - 200,

56 - 200, 61 - 200, 66 - 200, 71 - 200, 76 - 200,

81 - 200, 86 - 200, 91 - 200, 96 - 200, 101 - 200,

and obviously for k > 20 we have (5 · k + 1) - 200. Thus we have a unique Sylow
5-subgroup, which must be normal.
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