Algebra I - Homework 5

Pablo Sánchez Ocal
October 21st, 2016

Exercise 1

Consider the direct non empty product $\prod_{i \in I} R_{i}$ of rings. We want to see that it is a ring with coordinate wise addition and multiplication. We will use the notation $\left\{a_{i}\right\}_{i \in I}$ for an element in $\prod_{i \in I} R_{i}$. First, we clearly have that it is an abelian group:

1. Associativity: for $\left\{a_{i}\right\}_{i \in I},\left\{b_{i}\right\}_{i \in I},\left\{c_{i}\right\}_{i \in I} \in \prod_{i \in I} R_{i}$ we have:

$$
\begin{aligned}
& \left\{a_{i}\right\}_{i \in I}+\left(\left\{b_{i}\right\}_{i \in I}+\left\{c_{i}\right\}_{i \in I}\right)=\left\{a_{i}\right\}_{i \in I}+\left\{b_{i}+c_{i}\right\}_{i \in I}=\left\{a_{i}+b_{i}+c_{i}\right\}_{i \in I} \\
& \left(\left\{a_{i}\right\}_{i \in I}+\left\{b_{i}\right\}_{i \in I}\right)+\left\{c_{i}\right\}_{i \in I}=\left\{a_{i}+b_{i}\right\}_{i \in I}+\left\{c_{i}\right\}_{i \in I}=\left\{a_{i}+b_{i}+c_{i}\right\}_{i \in I}
\end{aligned}
$$

2. Identity element: consider $\left\{0_{i}\right\}_{i \in I} \in \prod_{i \in I} R_{i}$, for every $\left\{a_{i}\right\}_{i \in I} \in \prod_{i \in I} R_{i}$ we have:

$$
\begin{aligned}
\left\{a_{i}\right\}_{i \in I}+\left\{0_{i}\right\}_{i \in I} & =\left\{a_{i}+0_{i}\right\}_{i \in I}
\end{aligned}=\left\{a_{i}\right\}_{i \in I},
$$

3. Inverse: for every $\left\{a_{i}\right\}_{i \in I} \in \prod_{i \in I} R_{i}$ consider $\left\{-a_{i}\right\}_{i \in I}, \in \prod_{i \in I} R_{i}$, we have:

$$
\left\{a_{i}\right\}_{i \in I}+\left\{-a_{i}\right\}_{i \in I}=\left\{a_{i}-a_{i}\right\}_{i \in I}=\left\{0_{i}\right\}_{i \in I}=\left\{-a_{i}+a_{i}\right\}_{i \in I}=\left\{-a_{i}\right\}_{i \in I}+\left\{a_{i}\right\}_{i \in I}
$$

4. Commutativity: for $\left\{a_{i}\right\}_{i \in I},\left\{b_{i}\right\}_{i \in I} \in \prod_{i \in I} R_{i}$ we have:

$$
\left\{a_{i}\right\}_{i \in I}+\left\{b_{i}\right\}_{i \in I}=\left\{a_{i}+b_{i}\right\}_{i \in I}=\left\{b_{i}+a_{i}\right\}_{i \in I}=\left\{b_{i}\right\}_{i \in I}+\left\{a_{i}\right\}_{i \in I}
$$

where we have used that every R_{i} for $i \in I$ is an abelian group, hence satisfy the four properties above elementwise. Moreover, the multiplication is associative: for $\left\{a_{i}\right\}_{i \in I},\left\{b_{i}\right\}_{i \in I},\left\{c_{i}\right\}_{i \in I} \in \prod_{i \in I} R_{i}$ we have:

$$
\begin{aligned}
& \left\{a_{i}\right\}_{i \in I} \cdot\left(\left\{b_{i}\right\}_{i \in I} \cdot\left\{c_{i}\right\}_{i \in I}\right)=\left\{a_{i}\right\}_{i \in I} \cdot\left\{b_{i} \cdot c_{i}\right\}_{i \in I}=\left\{a_{i} \cdot b_{i} \cdot c_{i}\right\}_{i \in I} \\
& \left(\left\{a_{i}\right\}_{i \in I} \cdot\left\{b_{i}\right\}_{i \in I}\right) \cdot\left\{c_{i}\right\}_{i \in I}=\left\{a_{i} \cdot b_{i}\right\}_{i \in I} \cdot\left\{c_{i}\right\}_{i \in I}=\left\{a_{i} \cdot b_{i} \cdot c_{i}\right\}_{i \in I}
\end{aligned}
$$

where again we use that multiplication in every R_{i} for $i \in I$ is associative. Finally, we have the distributive law: for $\left\{a_{i}\right\}_{i \in I},\left\{b_{i}\right\}_{i \in I},\left\{c_{i}\right\}_{i \in I} \in \prod_{i \in I} R_{i}$ we have:

$$
\begin{aligned}
\left\{a_{i}\right\}_{i \in I} \cdot\left(\left\{b_{i}\right\}_{i \in I}+\left\{c_{i}\right\}_{i \in I}\right)=\left\{a_{i}\right\}_{i \in I} \cdot\left\{b_{i}+c_{i}\right\}_{i \in I} & =\left\{a_{i} \cdot b_{i}+a_{i} \cdot c_{i}\right\}_{i \in I} \\
\left\{a_{i}\right\}_{i \in I} \cdot\left\{b_{i}\right\}_{i \in I}+\left\{a_{i}\right\}_{i \in I} \cdot\left\{c_{i}\right\}_{i \in I}=\left\{a_{i} \cdot b_{i}\right\}_{i \in I}+\left\{a_{i} \cdot c_{i}\right\}_{i \in I} & =\left\{a_{i} \cdot b_{i}+a_{i} \cdot c_{i}\right\}_{i \in I} \\
\left(\left\{a_{i}\right\}_{i \in I}+\left\{b_{i}\right\}_{i \in I}\right) \cdot\left\{c_{i}\right\}_{i \in I}=\left\{a_{i}+b_{i}\right\}_{i \in I} \cdot\left\{c_{i}\right\}_{i \in I} & =\left\{a_{i} \cdot c_{i}+b_{i} \cdot c_{i}\right\}_{i \in I} \\
\left\{a_{i}\right\}_{i \in I} \cdot\left\{c_{i}\right\}_{i \in I}+\left\{b_{i}\right\}_{i \in I} \cdot\left\{c_{i}\right\}_{i \in I}=\left\{a_{i} \cdot c_{i}\right\}_{i \in I}+\left\{b_{i} \cdot c_{i}\right\}_{i \in I} & =\left\{a_{i} \cdot c_{i}+b_{i} \cdot c_{i}\right\}_{i \in I}
\end{aligned}
$$

since we have the distributive law in every R_{i} for $i \in I$. Hence, $\prod_{i \in I} R_{i}$ is a ring.
Letting $\sum_{i \in I} R_{i} \subset \prod_{i \in I} R_{i}$ be with only finitely many components non zero, note that the reasoning above still holds, and we just have to check that the operations are closed. This is clear since when $\left(a_{i_{1}}, \ldots, a_{i_{n}}\right),\left(b_{j_{1}}, \ldots, a_{j_{m}}\right) \in \sum_{i \in I} R_{i}$ with $n, m \in \mathbb{N}$ then both $\left(a_{i_{1}}, \ldots, a_{i_{n}}\right)+\left(b_{j_{1}}, \ldots, a_{j_{m}}\right)$ and $\left(a_{i_{1}}, \ldots, a_{i_{n}}\right) \cdot\left(b_{j_{1}}, \ldots, a_{j_{m}}\right)$ have at most $i_{1}, \ldots, i_{n}, j_{1}, \ldots, j_{m}$ components non zero, $n+m \in \mathbb{N}$. Hence, $\sum_{i \in I} R_{i}$ is a ring.

Let all R_{i} for $i \in I$ have identities. Clearly $\left\{1_{R_{i}}\right\}_{i \in I}$ is the identity element in $\prod_{i \in I} R_{i}$ since for every $\left\{a_{i}\right\}_{i \in I}, \in \prod_{i \in I} R_{i}$ we have:

$$
\left\{a_{i}\right\}_{i \in I} \cdot\left\{1_{R_{i}}\right\}_{i \in I}=\left\{a_{i} \cdot 1_{R_{i}}\right\}_{i \in I}=\left\{a_{i}\right\}_{i \in I}=\left\{1_{R_{i}} \cdot a_{i}\right\}_{i \in I}=\left\{1_{R_{i}}\right\}_{i \in I} \cdot\left\{a_{i}\right\}_{i \in I}
$$

However, we have that $\left\{1_{R_{i}}\right\}_{i \in I} \in \sum_{i \in I} R_{i}$ if and only if I is finite. In this case, $\sum_{i \in I} R_{i}$ has an identity. However, if I is not finite, then no element of $\sum_{i \in I} R_{i}$ can behave like an identity: suppose $\left(a_{i_{1}}, \ldots, a_{i_{n}}\right)$ is the identity, since I is not finite, there exists $j \in I$ with $j \neq i_{k}$ for $k \in\{1, \ldots, n\}$, thus considering the element $\left(1_{R_{j}}\right)$ we have that $\left(1_{R_{j}}\right) \cdot\left(a_{i_{1}}, \ldots, a_{i_{n}}\right)=\left\{0_{i}\right\}_{R_{i}} \neq\left(1_{R_{j}}\right)$, a contradiction. Hence, $\sum_{i \in I} R_{i}$ has an identity if and only if I is finite, and in such case it coincides with the one in $\prod_{i \in I} R_{i}$ (note that this must true because $\prod_{i \in I} R_{i}$ already had an identity and when I finite we have $\left.\prod_{i \in I} R_{i}=\sum_{i \in I} R_{i}\right)$.

Exercise 2

Let G be an abelian group, $\operatorname{End}(G)=\{f: G \longrightarrow G: f$ homomorphism $\}$ with pointwise addition and composition as operations. We prove that this is a ring. First, we clearly have that it is an abelian group:

1. Associativity: for $f, g, h \in \operatorname{End}(G)$ and $a \in G$ we have:

$$
\begin{aligned}
& (f+(g+h))(a)=f(a)+(g+h)(a)=f(a)+g(a)+h(a) \\
& ((f+g)+h)(a)=(f+g)(a)+h(a)=f(a)+g(a)+h(a)
\end{aligned}
$$

2. Identity element: consider $0 \in \operatorname{End}(G)$ as the homomorphism constant to $0 \in G$, for every $f \in \operatorname{End}(G)$ and $a \in G$ we have:

$$
(f+0)(a)=f(a)+0(a)=f(a)=0(a)+f(a)=(0+f)(a)
$$

3. Inverse: for every $f \in \operatorname{End}(G)$ consider $\tilde{f} \in \operatorname{End}(G)$ defined as $\tilde{f}(b)=-f(b)$ for every $b \in G$. Now for every $a \in G$ we have:

$$
\begin{aligned}
(f+\tilde{f})(a)=f(a)+\tilde{f}(a)=f(a)-f(a) & =0
\end{aligned}=0(a), ~=\tilde{f}(a)+f(a)=-f(a)+f(a)=0=0(a)
$$

thus $-f=\tilde{f} \in \operatorname{End}(G)$.
4. Commutativity: for $f, g \in \operatorname{End}(G)$ and every $a \in G$ we have:

$$
(f+g)(a)=f(a)+g(a)=g(a)+f(a)=(g+f)(a)
$$

where for manipulating the images of the homomorphisms we have used that G is an abelian group. Moreover, composition is associative: for $f, g, h \in \operatorname{End}(G)$ we have:

$$
\begin{aligned}
& (f \circ(g \circ h))(a)=f((g \circ h)(a))=f(g(h(a))) \\
& ((f \circ g) \circ h)(a)=(f \circ g)(h(a))=f(g(h(a)))
\end{aligned}
$$

Finally, we have the distributive law: for $f, g, h \in \operatorname{End}(G)$ we have:

$$
\begin{aligned}
(f \circ(g+h))(a)=f((g+h)(a))=f(g(a)+h(a)) & =f(g(a))+f(h(a)) \\
((f \circ g)+(f \circ h))(a)=(f \circ g)(a)+(f \circ h)(a) & =f(g(a))+f(h(a)) \\
((f+g) \circ h))(a)=(f+g)(h(a)) & =f(h(a))+g(h(a)) \\
((f \circ h)+(g \circ h))(a)=(f \circ h)(a)+(g \circ h)(a) & =f(h(a))+g(h(a))
\end{aligned}
$$

where we used the fact that f is a homomorphism in the first equality. Hence, $\operatorname{End}(G)$ is a ring.

However, $\operatorname{End}(\mathbb{Z} \oplus \mathbb{Z})$ is not commutative. Consider the homomorphisms given by:

$$
\begin{aligned}
& f: \mathbb{Z} \oplus \mathbb{Z} \longrightarrow \mathbb{Z} \oplus \mathbb{Z}, \quad g: \mathbb{Z} \oplus \mathbb{Z} \longrightarrow \mathbb{Z} \oplus \mathbb{Z} \\
& (n, m) \longmapsto(n+m, 0), \quad(n, m) \longmapsto(n, 2 m)
\end{aligned}
$$

we clearly have that $f, g \in \operatorname{End}(\mathbb{Z} \oplus \mathbb{Z})$ since for any $(n, m),(a, b) \in \mathbb{Z} \oplus \mathbb{Z}$ we have:

$$
\begin{array}{r}
f((n, m)+(a, b))=f(n+a, m+b)=(n+a+m+b, 0)=(n+m+a+b, 0) \\
f(n, m)+f(a, b)=(n+m, 0)+(a+b, 0)=(n+m+a+b, 0) \\
g((n, m)+(a, b))=g(n+a, m+b)=(n+a, 2(m+b))=(n+a, 2 m+2 b) \\
g(n, m)+g(a, b)=(n, 2 m)+(a, 2 b)=(n+a, 2 m+2 b)
\end{array}
$$

but now we have that:

$$
\begin{array}{r}
(f \circ g)(n, m)=f(g(n, m))=f(n, 2 m)=(n+2 m, 0) \\
(g \circ f)(n, m)=g(f(n, m))=g(n+m, 0)=(n+m, 0)
\end{array}
$$

and since $2 m \neq m$ in general (except when $m=0$), we have $f \circ g \neq g \circ f$, as desired.

Exercise 3

1. Let R be a commutative ring, $a, b \in R$ nilpotent elements, say $a^{n}=0$ and $b^{m}=0$ with $n, m \in \mathbb{N}$, suppose $1<n \leq m$. Prove that $a+b$ is nilpotent. Consider:

$$
(a+b)^{n m}=\sum_{k=0}^{n m}\binom{n m}{k} a^{n m-k} b^{k}
$$

by [1, Theorem 1.6 (p. 118)] (remark that although this result requires R to have an identity element to say that $r^{0}=1$ for $r \in R$, the formal statement by getting $a^{n m}$ and $b^{n m}$ out of the sum thus avoiding the cases a^{0} and b^{0} is still true. That is what we are really using). We have two options:
(a) $0 \leq k \leq m$: then $k=m-j$ for $0 \leq j \leq m$, thus $a^{n m-k}=a^{(n-1) m+j}=$ $\left(a^{m}\right)^{n-1} a^{j}$, but $a^{m}=0$ and $n-1>0, j \geq 0$ meaning that $a^{n m-k}=0$.
(b) $m \leq k \leq n m$: then $k=m+j$ for $0 \leq j \leq(n-1) m$, thus $b^{k}=b^{m+j}=b^{m} b^{j}$, but $b^{m}=0$ and $j \geq 0$ meaning that $a^{k}=0$.
2. If R is not commutative, the above is not true in general, that is, the sum of nilpotent elements may not be nilpotent. Consider $M_{2}(\mathbb{R})$ the ring of 2×2 matrices with real entries. Now:

$$
A=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad B=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

are both nilpotent since $A^{2}=0, B^{2}=0$. However:

$$
A+B=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad(A+B)^{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

so that $(A+B)^{n}$ for $n \in \mathbb{N}$ is two periodic, alternating between $A+B$ when n is odd and the identity matrix when n is even. Since none of those is the matrix with all zero entries, $A+B$ is not nilpotent, as desired.

Exercise 4

We consider R the ring of linear maps $L: \mathbb{R}[x] \longrightarrow \mathbb{R}[x]$ with addition and composition as the operations. Obviously the identity element is $\operatorname{id}_{\mathbb{R}[x]}(f)=f$ for every $f \in \mathbb{R}[x]$.

1. We want to see that the linear transformation $D(f)=f^{\prime}$ is right invertible in R, but not invertible. Consider the linear operator G that acts on the basis $\left\{1, x, \ldots, x^{n}, \ldots\right\}$ of $\mathbb{R}[x]$ as $G\left(x^{m}\right)=x^{m+1} / m+1$ for $m \in \mathbb{N}$ (in particular, $G(1)=x)$. If we let $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ be a generic element of $\mathbb{R}[x]$, we have:

$$
(D \circ G)(f)=D\left(a_{0} x+a_{1} x^{2} / 2+\cdots+a_{n} x^{n+1} / n+1\right)=a_{0}+a_{1} z+a_{n} x^{n}=f=\operatorname{id}_{\mathbb{R}[x]}(f)
$$

Hence, D is right invertible, having G as a right inverse. Moreover, notice that it cannot be left invertible, since for f as above we have $D(f)=a_{1}+2 a_{2} x+\cdots+$ $n a_{n} x^{n-1}$ and there is no way of recovering the constant a_{0} : fix f, suppose there exists $H \in R$ with $H \circ D=\operatorname{id}_{\mathbb{R}[x]}$, then:

$$
f=(H \circ D)(f)=H\left(a_{1}+2 a_{2} x+\cdots+n a_{n} x^{n-1}\right)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}
$$

this means that for $g(x)=b_{0}+a_{1} x+\cdots+a_{n} x^{n}$ with $b_{0} \neq a_{0}$ (which exists, we have the coefficients in \mathbb{R}) we have:

$$
(H \circ D)(g)=H\left(a_{1}+2 a_{2} x+\cdots+n a_{n} x^{n-1}\right)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \neq g
$$

a contradiction with $H \circ D=\mathrm{id}_{\mathbb{R}[x]}$. Hence, D is not invertible.
2. We will now see that D cannot be a (two sided) zero divisor. Remark first that it cannot be a right zero divisor: suppose H is such that $H \circ D=0$, applying D to the basis $\left\{1, x, \ldots, x^{n} / n, \ldots\right\}$ we must have for every $m \in \mathbb{N}$ that:

$$
H\left(x^{m}\right)=H\left(D\left(x^{m+1} / m+1\right)\right)=(H \circ D)\left(x^{m+1} / m+1\right)=0
$$

hence $H=0$ since it is zero in every element of the basis. However, D is a left zero divisor: define H with $H(a)=a$ when $a \in \mathbb{R}$ and $H\left(x^{n}\right)=0$ for every $n>0$ and extend by linearity (in particular, we have by definition that H is linear), now:

$$
(D \circ H)(f)=D(H(f))=D\left(a_{0}\right)=0
$$

for a generic polynomial $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$, as desired.

Exercise 5

Let R be a commutative ring with identity of prime characteristic $p \in \mathbb{N}$.

1. We show that for any $a, b \in R$ we have $(a+b)^{p}=a^{p}+b^{p}$. Again by [1, Theorem 1.6 (p. 118)] we have that:

$$
(a+b)^{p}=\sum_{k=0}^{p}\binom{p}{k} a^{p-k} b^{k}
$$

notice that for $k=0$ we obtain the term a^{p}, for $k=p$ we obtain the term b^{p}, and for $0<k<p$ we have that:

$$
\binom{p}{k}=\frac{p!}{k!(p-k)!}=\frac{p(p-1) \cdots(p-k+1)}{k(k-1) \cdots 2}=p \frac{(p-1) \cdots(p-k+1)}{k(k-1) \cdots 2}
$$

and since $k<p$, we have that p cannot divide $k(k-1) \cdots 2$, that is, $\binom{p}{k}$ is always divisible by p in those cases. Since R has characteristic p, this means that $\binom{p}{k}=0$ when $0<k<p$. Thus $(a+b)^{p}=a^{p}+b^{p}$ as desired.
2. We show that the map $\varphi: R \longrightarrow R$ defined by $\varphi(a)=a^{p}$ for $a \in R$ is an endomorphism of rings. Let $a, b \in R$, we have:

$$
\begin{array}{r}
\varphi(a b)=(a b)^{p}=a^{p} b^{p}=\varphi(a) \varphi(b) \\
\varphi(a+b)=(a+b)^{p}=a^{p}+b^{p}=\varphi(a)+\varphi(b),
\end{array}
$$

where we have used the commutativity of R as well as the equality proven above. This yields the desired result.

References

[1] T. W. Hungerford, Algebra.

