
Algebra I - Homework 5

Pablo Sánchez Ocal

October 21st, 2016



Exercise 1

Consider the direct non empty product
∏

i∈I Ri of rings. We want to see that it is a ring
with coordinate wise addition and multiplication. We will use the notation {ai}i∈I for
an element in

∏
i∈I Ri. First, we clearly have that it is an abelian group:

1. Associativity: for {ai}i∈I , {bi}i∈I , {ci}i∈I ∈
∏

i∈I Ri we have:

{ai}i∈I + ({bi}i∈I + {ci}i∈I) = {ai}i∈I + {bi + ci}i∈I = {ai + bi + ci}i∈I
({ai}i∈I + {bi}i∈I) + {ci}i∈I = {ai + bi}i∈I + {ci}i∈I = {ai + bi + ci}i∈I

2. Identity element: consider {0i}i∈I ∈
∏

i∈I Ri, for every {ai}i∈I ∈
∏

i∈I Ri we have:

{ai}i∈I + {0i}i∈I = {ai + 0i}i∈I = {ai}i∈I
{0i}i∈I + {ai}i∈I = {0i + ai}i∈I = {ai}i∈I

3. Inverse: for every {ai}i∈I ∈
∏

i∈I Ri consider {−ai}i∈I ,∈
∏

i∈I Ri, we have:

{ai}i∈I + {−ai}i∈I = {ai − ai}i∈I = {0i}i∈I = {−ai + ai}i∈I = {−ai}i∈I + {ai}i∈I

4. Commutativity: for {ai}i∈I , {bi}i∈I ∈
∏

i∈I Ri we have:

{ai}i∈I + {bi}i∈I = {ai + bi}i∈I = {bi + ai}i∈I = {bi}i∈I + {ai}i∈I

where we have used that every Ri for i ∈ I is an abelian group, hence satisfy the
four properties above elementwise. Moreover, the multiplication is associative: for
{ai}i∈I , {bi}i∈I , {ci}i∈I ∈

∏
i∈I Ri we have:

{ai}i∈I · ({bi}i∈I · {ci}i∈I) = {ai}i∈I · {bi · ci}i∈I = {ai · bi · ci}i∈I
({ai}i∈I · {bi}i∈I) · {ci}i∈I = {ai · bi}i∈I · {ci}i∈I = {ai · bi · ci}i∈I

where again we use that multiplication in every Ri for i ∈ I is associative. Finally, we
have the distributive law: for {ai}i∈I , {bi}i∈I , {ci}i∈I ∈

∏
i∈I Ri we have:

{ai}i∈I · ({bi}i∈I + {ci}i∈I) = {ai}i∈I · {bi + ci}i∈I = {ai · bi + ai · ci}i∈I
{ai}i∈I · {bi}i∈I + {ai}i∈I · {ci}i∈I = {ai · bi}i∈I + {ai · ci}i∈I = {ai · bi + ai · ci}i∈I

({ai}i∈I + {bi}i∈I) · {ci}i∈I = {ai + bi}i∈I · {ci}i∈I = {ai · ci + bi · ci}i∈I
{ai}i∈I · {ci}i∈I + {bi}i∈I · {ci}i∈I = {ai · ci}i∈I + {bi · ci}i∈I = {ai · ci + bi · ci}i∈I

since we have the distributive law in every Ri for i ∈ I. Hence,
∏

i∈I Ri is a ring.
Letting

∑
i∈I Ri ⊂

∏
i∈I Ri be with only finitely many components non zero, note

that the reasoning above still holds, and we just have to check that the operations are
closed. This is clear since when (ai1 , . . . , ain), (bj1 , . . . , ajm) ∈

∑
i∈I Ri with n,m ∈ N

then both (ai1 , . . . , ain) + (bj1 , . . . , ajm) and (ai1 , . . . , ain) · (bj1 , . . . , ajm) have at most
i1, . . . , in, j1, . . . , jm components non zero, n + m ∈ N. Hence,

∑
i∈I Ri is a ring.
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Let all Ri for i ∈ I have identities. Clearly {1Ri}i∈I is the identity element in
∏

i∈I Ri

since for every {ai}i∈I ,∈
∏

i∈I Ri we have:

{ai}i∈I · {1Ri}i∈I = {ai · 1Ri}i∈I = {ai}i∈I = {1Ri · ai}i∈I = {1Ri}i∈I · {ai}i∈I

However, we have that {1Ri}i∈I ∈
∑

i∈I Ri if and only if I is finite. In this case,
∑

i∈I Ri

has an identity. However, if I is not finite, then no element of
∑

i∈I Ri can behave
like an identity: suppose (ai1 , . . . , ain) is the identity, since I is not finite, there exists
j ∈ I with j 6= ik for k ∈ {1, . . . , n}, thus considering the element (1Rj ) we have that
(1Rj ) · (ai1 , . . . , ain) = {0i}Ri 6= (1Rj ), a contradiction. Hence,

∑
i∈I Ri has an identity

if and only if I is finite, and in such case it coincides with the one in
∏

i∈I Ri (note
that this must true because

∏
i∈I Ri already had an identity and when I finite we have∏

i∈I Ri =
∑

i∈I Ri).
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Exercise 2

Let G be an abelian group, End(G) = {f : G −→ G : f homomorphism} with pointwise
addition and composition as operations. We prove that this is a ring. First, we clearly
have that it is an abelian group:

1. Associativity: for f, g, h ∈ End(G) and a ∈ G we have:

(f + (g + h))(a) = f(a) + (g + h)(a) = f(a) + g(a) + h(a)

((f + g) + h)(a) = (f + g)(a) + h(a) = f(a) + g(a) + h(a)

2. Identity element: consider 0 ∈ End(G) as the homomorphism constant to 0 ∈ G,
for every f ∈ End(G) and a ∈ G we have:

(f + 0)(a) = f(a) + 0(a) = f(a) = 0(a) + f(a) = (0 + f)(a)

3. Inverse: for every f ∈ End(G) consider f̃ ∈ End(G) defined as f̃(b) = −f(b) for
every b ∈ G. Now for every a ∈ G we have:

(f + f̃)(a) = f(a) + f̃(a) = f(a)− f(a) = 0 = 0(a)

(f̃ + f)(a) = f̃(a) + f(a) = −f(a) + f(a) = 0 = 0(a)

thus −f = f̃ ∈ End(G).

4. Commutativity: for f, g ∈ End(G) and every a ∈ G we have:

(f + g)(a) = f(a) + g(a) = g(a) + f(a) = (g + f)(a)

where for manipulating the images of the homomorphisms we have used that G is an
abelian group. Moreover, composition is associative: for f, g, h ∈ End(G) we have:

(f ◦ (g ◦ h))(a) = f((g ◦ h)(a)) = f(g(h(a)))

((f ◦ g) ◦ h)(a) = (f ◦ g)(h(a)) = f(g(h(a)))

Finally, we have the distributive law: for f, g, h ∈ End(G) we have:

(f ◦ (g + h))(a) = f((g + h)(a)) = f(g(a) + h(a)) = f(g(a)) + f(h(a))

((f ◦ g) + (f ◦ h))(a) = (f ◦ g)(a) + (f ◦ h)(a) = f(g(a)) + f(h(a))

((f + g) ◦ h))(a) = (f + g)(h(a)) = f(h(a)) + g(h(a))

((f ◦ h) + (g ◦ h))(a) = (f ◦ h)(a) + (g ◦ h)(a) = f(h(a)) + g(h(a))

where we used the fact that f is a homomorphism in the first equality. Hence, End(G)
is a ring.

However, End(Z⊕ Z) is not commutative. Consider the homomorphisms given by:

f : Z⊕ Z −→ Z⊕ Z
(n,m) 7−→ (n + m, 0)

,
g : Z⊕ Z −→ Z⊕ Z

(n,m) 7−→ (n, 2m)
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we clearly have that f, g ∈ End(Z⊕ Z) since for any (n,m), (a, b) ∈ Z⊕ Z we have:

f((n,m) + (a, b)) = f(n + a,m + b) = (n + a + m + b, 0) = (n + m + a + b, 0)

f(n,m) + f(a, b) = (n + m, 0) + (a + b, 0) = (n + m + a + b, 0)

g((n,m) + (a, b)) = g(n + a,m + b) = (n + a, 2(m + b)) = (n + a, 2m + 2b)

g(n,m) + g(a, b) = (n, 2m) + (a, 2b) = (n + a, 2m + 2b)

but now we have that:

(f ◦ g)(n,m) = f(g(n,m)) = f(n, 2m) = (n + 2m, 0)

(g ◦ f)(n,m) = g(f(n,m)) = g(n + m, 0) = (n + m, 0)

and since 2m 6= m in general (except when m = 0), we have f ◦ g 6= g ◦ f , as desired.
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Exercise 3

1. Let R be a commutative ring, a, b ∈ R nilpotent elements, say an = 0 and bm = 0
with n,m ∈ N, suppose 1 < n ≤ m. Prove that a + b is nilpotent. Consider:

(a + b)nm =

nm∑
k=0

(
nm

k

)
anm−kbk

by [1, Theorem 1.6 (p. 118)] (remark that although this result requires R to have
an identity element to say that r0 = 1 for r ∈ R, the formal statement by getting
anm and bnm out of the sum thus avoiding the cases a0 and b0 is still true. That
is what we are really using). We have two options:

(a) 0 ≤ k ≤ m: then k = m − j for 0 ≤ j ≤ m, thus anm−k = a(n−1)m+j =
(am)n−1aj , but am = 0 and n− 1 > 0, j ≥ 0 meaning that anm−k = 0.

(b) m ≤ k ≤ nm: then k = m + j for 0 ≤ j ≤ (n− 1)m, thus bk = bm+j = bmbj ,
but bm = 0 and j ≥ 0 meaning that ak = 0.

2. If R is not commutative, the above is not true in general, that is, the sum of
nilpotent elements may not be nilpotent. Consider M2(R) the ring of 2×2 matrices
with real entries. Now:

A =

(
0 1
0 0

)
, B =

(
0 0
1 0

)
are both nilpotent since A2 = 0, B2 = 0. However:

A + B =

(
0 1
1 0

)
, (A + B)2 =

(
1 0
0 1

)
so that (A + B)n for n ∈ N is two periodic, alternating between A + B when n
is odd and the identity matrix when n is even. Since none of those is the matrix
with all zero entries, A + B is not nilpotent, as desired.
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Exercise 4

We consider R the ring of linear maps L : R[x] −→ R[x] with addition and composition
as the operations. Obviously the identity element is idR[x](f) = f for every f ∈ R[x].

1. We want to see that the linear transformation D(f) = f ′ is right invertible in
R, but not invertible. Consider the linear operator G that acts on the basis
{1, x, . . . , xn, . . . } of R[x] as G(xm) = xm+1/m + 1 for m ∈ N (in particular,
G(1) = x). If we let f(x) = a0 + a1x+ · · ·+ anx

n be a generic element of R[x], we
have:

(D◦G)(f) = D(a0x+a1x
2/2+· · ·+anx

n+1/n+1) = a0+a1z+anx
n = f = idR[x](f).

Hence, D is right invertible, having G as a right inverse. Moreover, notice that it
cannot be left invertible, since for f as above we have D(f) = a1 + 2a2x + · · · +
nanx

n−1 and there is no way of recovering the constant a0: fix f , suppose there
exists H ∈ R with H ◦D = idR[x], then:

f = (H ◦D)(f) = H(a1 + 2a2x + · · ·+ nanx
n−1) = a0 + a1x + · · ·+ anx

n

this means that for g(x) = b0 + a1x + · · · + anx
n with b0 6= a0 (which exists, we

have the coefficients in R) we have:

(H ◦D)(g) = H(a1 + 2a2x + · · ·+ nanx
n−1) = a0 + a1x + · · ·+ anx

n 6= g

a contradiction with H ◦D = idR[x]. Hence, D is not invertible.

2. We will now see that D cannot be a (two sided) zero divisor. Remark first that it
cannot be a right zero divisor: suppose H is such that H ◦D = 0, applying D to
the basis {1, x, . . . , xn/n, . . . } we must have for every m ∈ N that:

H(xm) = H(D(xm+1/m + 1)) = (H ◦D)(xm+1/m + 1) = 0

hence H = 0 since it is zero in every element of the basis. However, D is a left zero
divisor: define H with H(a) = a when a ∈ R and H(xn) = 0 for every n > 0 and
extend by linearity (in particular, we have by definition that H is linear), now:

(D ◦H)(f) = D(H(f)) = D(a0) = 0

for a generic polynomial f(x) = a0 + a1x + · · ·+ anx
n, as desired.
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Exercise 5

Let R be a commutative ring with identity of prime characteristic p ∈ N.

1. We show that for any a, b ∈ R we have (a + b)p = ap + bp. Again by [1, Theorem
1.6 (p. 118)] we have that:

(a + b)p =

p∑
k=0

(
p

k

)
ap−kbk,

notice that for k = 0 we obtain the term ap, for k = p we obtain the term bp, and
for 0 < k < p we have that:(

p

k

)
=

p!

k!(p− k)!
=

p(p− 1) · · · (p− k + 1)

k(k − 1) · · · 2
= p

(p− 1) · · · (p− k + 1)

k(k − 1) · · · 2

and since k < p, we have that p cannot divide k(k − 1) · · · 2, that is,
(
p
k

)
is always

divisible by p in those cases. Since R has characteristic p, this means that
(
p
k

)
= 0

when 0 < k < p. Thus (a + b)p = ap + bp as desired.

2. We show that the map ϕ : R −→ R defined by ϕ(a) = ap for a ∈ R is an
endomorphism of rings. Let a, b ∈ R, we have:

ϕ(ab) = (ab)p = apbp = ϕ(a)ϕ(b),

ϕ(a + b) = (a + b)p = ap + bp = ϕ(a) + ϕ(b),

where we have used the commutativity of R as well as the equality proven above.
This yields the desired result.
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