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Exercise 1

Let I be an ideal of a commutative ring R. Show that J = {r ∈ R : rN ∈ I for some n ∈
N} is an ideal. We notice that given any r ∈ R, for every a ∈ J (say an ∈ I for some
n ∈ N) we have that (since R is commutative):

(ra)n = rnan ∈ I

since rn ∈ R and an ∈ I an ideal. Thus ra ∈ J and J is an ideal (because R is
commutative).
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Exercise 2

Let R be a commutative ring, I, J ideals with I + J = R. We prove that IJ = I ∩ J :
⊆) Let ab ∈ IJ (that is a ∈ I, b ∈ J). Then clearly ab ∈ I since a ∈ I, b ∈ R and

ab ∈ J since a ∈ R, b ∈ J , thus ab ∈ I ∩ J . Hence, any finite sum of elements of this
form also belongs in I ∩ J , obtaining IJ ⊂ I ∩ J .
⊇) Let r ∈ I∩J , that is, r ∈ I, r ∈ J . Since I+J = R with unity, there are elements

a ∈ I, b ∈ J with a + b = 1. Multiplying by r, we obtain ar + rb = r with br, rb ∈ IJ
(we used that R is commutative) and thus r ∈ IJ as desired.

We now provide an example where this does not hold. Let R = Z commutative,
consider I = 2Z = J , we have that IJ = 4Z 6= 2Z = I ∩ J .

3



Exercise 3

Let e ∈ R be an idempotent and central element. We prove that Re and R(1 − e) are
ideals of R:

1. For Re, let s, r ∈ R, we have that:

(se)r = ser = sre = (sr)e ∈ Re

r(se) = rse = (rs)e ∈ Re

because e belongs to the center.

2. For R(1 − e), note that 1 − e belongs to the center since both 1 and e belong to
the center. Let s, r ∈ R, we have that:

(s(1− e))r = s(1− e)r = sr(1− e) = (sr)(1− e) ∈ R(1− e)

r(s(1− e)) = rs(1− e) = (rs)(1− e) ∈ R(1− e)

because 1− e belongs to the center.

We now prove that R ∼= Re×R(1− e). For this, notice that:

(1− e)e = e(1− e) = e− e2 = 0 and (1− e)(1− e) = 1− e− e− e2 = 1− e.

Now define the natural map:

ϕ : R −→ Re×R(1− e)
r 7−→ (re, r(1− e))

which is a ring homomorphism since for r, s ∈ R:

ϕ(rs) = (rse, rs(1− e))

ϕ(r)ϕ(s) = (rese, r(1− e)s(1− e)) = (rse, rs(1− e))

where we have used the remarks above, and:

ϕ(r + s) = ((r + s)e, (r + s)(1− e))

ϕ(r) + ϕ(s) = (re, r(1− e)) + (se, s(1− e)) = ((r + s)e, (r + s)(1− e)).

Moreover, ϕ is injective since if r, s ∈ R with ϕ(r) = ϕ(s) then:

(re, r(1−e)) = (se, s(1−e)) ⇐⇒ re = se, r−re = r(1−e) = s(1−e) = s−se ⇐⇒ r = s

and is surjective because given (re, s(1− e)) ∈ R×R(1− e) we have re + s(1− e) ∈ R:

ϕ(re + s(1− e)) = (ree + s(1− e)e, re(1− e) + s(1− e)(1− e)) = (re, s(1− e)).

This means that ϕ defines an isomorphism R ∼= Re×R(1− e), as desired.
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Exercise 4

Consider U the ring of real 2× 2 upper triangular matrices. Let:

I =

{(
0 a
0 0

)
: a ∈ R

}
.

We have that I is an ideal of U , since for any a, r, s, t ∈ R we have:(
r s
0 t

)(
0 a
0 0

)
=

(
0 ra
0 0

)
∈ I(

0 a
0 0

)(
r s
0 t

)
=

(
0 at
0 0

)
∈ I.

To see that U/I ∼= R× R, define the natural map:

ϕ : U −→ R× R(
r s
0 t

)
7−→ (r, t)

we have that ϕ is a ring homomorphism since for every r1, r2, s1, s2, t1, t2 we have:

ϕ

((
r1 s1
0 t1

)(
r2 s2
0 t2

))
= ϕ

((
r1r2 r1s2 + s1t2

0 t1t2

))
= (r1r2, t1t2)

ϕ

((
r1 s1
0 t1

))
ϕ

((
r2 s2
0 t2

))
= (r1, t1)(r2, t2) = (r1r2, t1t2)

and:

ϕ

((
r1 s1
0 t1

)
+

(
r2 s2
0 t2

))
= ϕ

((
r1 + r2 s1 + s2

0 t1 + t2

))
= (r1 + r2, t1 + t2)

ϕ

((
r1 s1
0 t1

))
+ ϕ

((
r2 s2
0 t2

))
= (r1, t1) + (r2, t2) = (r1 + r2, t1 + t2)

thus ϕ is a ring homomorphism, and it is surjective since for any r, t ∈ R× R we have:

ϕ

((
r 0
0 t

))
= (r, t)

and:

ker(ϕ) =

{(
r s
0 t

)
: ϕ

((
r s
0 t

))
= (0, 0)

}
=

{(
r s
0 t

)
: r = 0 = t, s ∈ R

}
= I,

thus by the First Isomorphism Theorem, we have that:

U/I = U/ ker(ϕ) ∼= img(ϕ) = R× R.
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Exercise 5

Let R be a ring, consider Mn(R). We want to prove that for any ideal J ⊂Mn(R) there
exists an ideal I ⊂ R such that J = Mn(I).

To prove this, given J ⊂Mn(R) an ideal, define:

I = {a ∈ R : a is an entry of some matrix A ∈ J}.

We will now prove that if A ∈ J , then for every entry a of A the matrix that has a in
the position (i, j) and the rest zeroes also belongs to J . For this, note that if As,t is the
matrix with 1 in the position (s, t) and the rest zeroes, then for any matrix M ∈Mn(R)
we have that As,tM is the matrix that has in the s-th row the t-th row of M , and the
rest zeroes. Moreover, MAi,j is the matrix that has in the j-th row the i-th row of
M , and the rest zeroes. That is, the matrix As,tMAi,j chooses the entry (t, i) of M
and puts it as the entry (s, j), leaving the rest as zeroes. Since Ai,j ∈ Mn(R) for every
i, j ∈ {1, . . . , n} and J is an ideal, we have that As,tAAi,j ∈ J for every A ∈ J (in
particular Ai,iAAj,j ∈ J has ai,j in the position (i, j) and zeroes elsewhere).

Thus, consider a ∈ I. This means that there is a matrix A ∈ J with a in some
entry, say (t, i). By the above, we have that A1,tAAi,1 ∈ J is the matrix that has a
in the position (1, 1) and zeroes elsewhere. Now, for any r ∈ R, consider M(r) the
matrix having a in the position (1, 1) and zeroes elsewhere. Now A1,tAAi,1M(r) ∈ J
and M(r)A1,tAAi,1 ∈ J because J is an ideal, and these matrices are M(ar) and M(ra)
respectively, that is, it they have ar and ra (respectively) in the position (1, 1) and zeroes
elsewhere. In particular, ar, ra ∈ I and I is an ideal in R.

Moreover, we have J = Mn(I) as follows. If A ∈ J , then the entries of A belong to I
by definition and thus A ∈Mn(I). If A ∈Mn(I) this means that the entries of A belong
to I thus for each ai,j with i, j ∈ {1, . . . , n} there is at least a matrix in J having ai,j as
an entry. Now A can be written as the sum of the matrices having ai,j in the position
(i, j) and zeroes elsewhere, and since we proved that these matrices belong to J above,
and J is an ideal, this sum belongs to J hence A ∈ J .
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Exercise 6

We show that Mn(R) is simple. For this, suppose J ⊂Mn(R) is a two sided ideal, then
by the Exercise 5 above we have that there exists I ⊂ R an associated ideal such that
J = Mn(I). However, since R is a field, we have that I = {0},R. In the first case,
J = {(0)i,j} and in the second J = Mn(R), hence J is never a proper ideal.

Consider now the one sided ideal I formed by the matrices that are all zeroes except
the last column. We clearly have that for ai,j , ri, sj ∈ R for i, j ∈ {1, . . . , n}:0 · · · 0 r1

...
...

...
0 · · · 0 rn


0 · · · 0 s1

...
...

...
0 · · · 0 sn

 =

0 · · · 0 r1sn
...

...
...

0 · · · 0 rnsn

 ∈ I

0 · · · 0 r1
...

...
...

0 · · · 0 rn

+

0 · · · 0 s1
...

...
...

0 · · · 0 sn

 =

0 · · · 0 r1 + sn
...

...
...

0 · · · 0 rn + sn

 ∈ I

a1,1 · · · a1,n
...

...
an,1 · · · an,n


0 · · · 0 r1

...
...

...
0 · · · 0 rn

 =

0 · · · 0 t1
...

...
...

0 · · · 0 tn

 ∈ I

0 · · · 0 r1
...

...
...

0 · · · 0 rn


a1,1 · · · a1,n

...
...

an,1 · · · an,n

 =

∗1,1 · · · ∗1,n
...

...
∗n,1 · · · ∗n,n

 /∈ I

where ti ∈ R is the corresponding multiplication of elements au,v and rk for every
u, v, i ∈ {1, . . . , n}, and ∗i,j for i, j ∈ {1, . . . , n} denotes an entry that may not always
be zero. Thus I is only a one sided ideal. Moreover, notice that it is non empty since
taking rj = 1 for j ∈ {1, . . . , n} we obtain a non zero element belonging to I. This I is
as desired.
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