Algebra I - Homework 6

Pablo Sánchez Ocal
October 28st, 2016

Exercise 1

Let I be an ideal of a commutative ring R. Show that $J=\left\{r \in R: r^{N} \in I\right.$ for some $n \in$ $\mathbb{N}\}$ is an ideal. We notice that given any $r \in R$, for every $a \in J$ (say $a^{n} \in I$ for some $n \in \mathbb{N}$) we have that (since R is commutative):

$$
(r a)^{n}=r^{n} a^{n} \in I
$$

since $r^{n} \in R$ and $a^{n} \in I$ an ideal. Thus $r a \in J$ and J is an ideal (because R is commutative).

Exercise 2

Let R be a commutative ring, I, J ideals with $I+J=R$. We prove that $I J=I \cap J$:
\subseteq) Let $a b \in I J$ (that is $a \in I, b \in J$). Then clearly $a b \in I$ since $a \in I, b \in R$ and $a b \in J$ since $a \in R, b \in J$, thus $a b \in I \cap J$. Hence, any finite sum of elements of this form also belongs in $I \cap J$, obtaining $I J \subset I \cap J$.
?) Let $r \in I \cap J$, that is, $r \in I, r \in J$. Since $I+J=R$ with unity, there are elements $a \in I, b \in J$ with $a+b=1$. Multiplying by r, we obtain $a r+r b=r$ with $b r, r b \in I J$ (we used that R is commutative) and thus $r \in I J$ as desired.

We now provide an example where this does not hold. Let $R=\mathbb{Z}$ commutative, consider $I=2 \mathbb{Z}=J$, we have that $I J=4 \mathbb{Z} \neq 2 \mathbb{Z}=I \cap J$.

Exercise 3

Let $e \in R$ be an idempotent and central element. We prove that $R e$ and $R(1-e)$ are ideals of R :

1. For $R e$, let $s, r \in R$, we have that:

$$
\begin{aligned}
(s e) r=s e r & =s r e=(s r) e \in R e \\
r(s e) & =r s e=(r s) e \in R e
\end{aligned}
$$

because e belongs to the center.
2. For $R(1-e)$, note that $1-e$ belongs to the center since both 1 and e belong to the center. Let $s, r \in R$, we have that:

$$
\begin{aligned}
& (s(1-e)) r=s(1-e) r=s r(1-e)=(s r)(1-e) \in R(1-e) \\
& r(s(1-e))=r s(1-e)=(r s)(1-e) \in R(1-e)
\end{aligned}
$$

because $1-e$ belongs to the center.
We now prove that $R \cong R e \times R(1-e)$. For this, notice that:

$$
(1-e) e=e(1-e)=e-e^{2}=0 \text { and }(1-e)(1-e)=1-e-e-e^{2}=1-e
$$

Now define the natural map:

$$
\begin{aligned}
\varphi: R & \longrightarrow \\
r & \longmapsto e \times R(1-e) \\
& \longmapsto(r e, r(1-e))
\end{aligned}
$$

which is a ring homomorphism since for $r, s \in R$:

$$
\begin{aligned}
\varphi(r s) & =(r s e, r s(1-e)) \\
\varphi(r) \varphi(s)=(r e s e, r(1-e) s(1-e)) & =(r s e, r s(1-e))
\end{aligned}
$$

where we have used the remarks above, and:

$$
\begin{array}{r}
\varphi(r+s)=((r+s) e,(r+s)(1-e)) \\
\varphi(r)+\varphi(s)=(r e, r(1-e))+(s e, s(1-e))=((r+s) e,(r+s)(1-e))
\end{array}
$$

Moreover, φ is injective since if $r, s \in R$ with $\varphi(r)=\varphi(s)$ then:

$$
(r e, r(1-e))=(s e, s(1-e)) \Longleftrightarrow r e=s e, r-r e=r(1-e)=s(1-e)=s-s e \Longleftrightarrow r=s
$$

and is surjective because given $(r e, s(1-e)) \in R \times R(1-e)$ we have $r e+s(1-e) \in R$:

$$
\varphi(r e+s(1-e))=(r e e+s(1-e) e, r e(1-e)+s(1-e)(1-e))=(r e, s(1-e))
$$

This means that φ defines an isomorphism $R \cong R e \times R(1-e)$, as desired.

Exercise 4

Consider U the ring of real 2×2 upper triangular matrices. Let:

$$
I=\left\{\left(\begin{array}{ll}
0 & a \\
0 & 0
\end{array}\right): a \in \mathbb{R}\right\}
$$

We have that I is an ideal of U, since for any $a, r, s, t \in \mathbb{R}$ we have:

$$
\begin{aligned}
& \left(\begin{array}{ll}
r & s \\
0 & t
\end{array}\right)\left(\begin{array}{ll}
0 & a \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & r a \\
0 & 0
\end{array}\right) \in I \\
& \left(\begin{array}{ll}
0 & a \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
r & s \\
0 & t
\end{array}\right)=\left(\begin{array}{cc}
0 & a t \\
0 & 0
\end{array}\right) \in I .
\end{aligned}
$$

To see that $U / I \cong \mathbb{R} \times \mathbb{R}$, define the natural map:

$$
\begin{aligned}
\varphi: \begin{array}{cc}
U & \longrightarrow \\
\left(\begin{array}{ll}
r & s \\
0 & t
\end{array}\right) & \longmapsto \mathbb{R} \\
& \longmapsto
\end{array}(r, t)
\end{aligned}
$$

we have that φ is a ring homomorphism since for every $r_{1}, r_{2}, s_{1}, s_{2}, t_{1}, t_{2}$ we have:

$$
\begin{gathered}
\varphi\left(\left(\begin{array}{cc}
r_{1} & s_{1} \\
0 & t_{1}
\end{array}\right)\left(\begin{array}{cc}
r_{2} & s_{2} \\
0 & t_{2}
\end{array}\right)\right)=\varphi\left(\left(\begin{array}{cc}
r_{1} r_{2} & r_{1} s_{2}+s_{1} t_{2} \\
0 & t_{1} t_{2}
\end{array}\right)\right)=\left(r_{1} r_{2}, t_{1} t_{2}\right) \\
\varphi\left(\left(\begin{array}{cc}
r_{1} & s_{1} \\
0 & t_{1}
\end{array}\right)\right) \varphi\left(\left(\begin{array}{cc}
r_{2} & s_{2} \\
0 & t_{2}
\end{array}\right)\right)=\left(r_{1}, t_{1}\right)\left(r_{2}, t_{2}\right)=\left(r_{1} r_{2}, t_{1} t_{2}\right)
\end{gathered}
$$

and:

$$
\begin{gathered}
\varphi\left(\left(\begin{array}{cc}
r_{1} & s_{1} \\
0 & t_{1}
\end{array}\right)+\left(\begin{array}{cc}
r_{2} & s_{2} \\
0 & t_{2}
\end{array}\right)\right)=\varphi\left(\left(\begin{array}{cc}
r_{1}+r_{2} & s_{1}+s_{2} \\
0 & t_{1}+t_{2}
\end{array}\right)\right)=\left(r_{1}+r_{2}, t_{1}+t_{2}\right) \\
\varphi\left(\left(\begin{array}{cc}
r_{1} & s_{1} \\
0 & t_{1}
\end{array}\right)\right)+\varphi\left(\left(\begin{array}{cc}
r_{2} & s_{2} \\
0 & t_{2}
\end{array}\right)\right)=\left(r_{1}, t_{1}\right)+\left(r_{2}, t_{2}\right)=\left(r_{1}+r_{2}, t_{1}+t_{2}\right)
\end{gathered}
$$

thus φ is a ring homomorphism, and it is surjective since for any $r, t \in \mathbb{R} \times \mathbb{R}$ we have:

$$
\varphi\left(\left(\begin{array}{ll}
r & 0 \\
0 & t
\end{array}\right)\right)=(r, t)
$$

and:

$$
\operatorname{ker}(\varphi)=\left\{\left(\begin{array}{ll}
r & s \\
0 & t
\end{array}\right): \varphi\left(\left(\begin{array}{ll}
r & s \\
0 & t
\end{array}\right)\right)=(0,0)\right\}=\left\{\left(\begin{array}{ll}
r & s \\
0 & t
\end{array}\right): r=0=t, s \in \mathbb{R}\right\}=I
$$

thus by the First Isomorphism Theorem, we have that:

$$
U / I=U / \operatorname{ker}(\varphi) \cong \operatorname{img}(\varphi)=\mathbb{R} \times \mathbb{R}
$$

Exercise 5

Let R be a ring, consider $M_{n}(R)$. We want to prove that for any ideal $J \subset M_{n}(R)$ there exists an ideal $I \subset R$ such that $J=M_{n}(I)$.

To prove this, given $J \subset M_{n}(R)$ an ideal, define:

$$
I=\{a \in R: a \text { is an entry of some matrix } A \in J\}
$$

We will now prove that if $A \in J$, then for every entry a of A the matrix that has a in the position (i, j) and the rest zeroes also belongs to J. For this, note that if $A_{s, t}$ is the matrix with 1 in the position (s, t) and the rest zeroes, then for any matrix $M \in M_{n}(R)$ we have that $A_{s, t} M$ is the matrix that has in the s-th row the t-th row of M, and the rest zeroes. Moreover, $M A_{i, j}$ is the matrix that has in the j-th row the i-th row of M, and the rest zeroes. That is, the matrix $A_{s, t} M A_{i, j}$ chooses the entry (t, i) of M and puts it as the entry (s, j), leaving the rest as zeroes. Since $A_{i, j} \in M_{n}(R)$ for every $i, j \in\{1, \ldots, n\}$ and J is an ideal, we have that $A_{s, t} A A_{i, j} \in J$ for every $A \in J$ (in particular $A_{i, i} A A_{j, j} \in J$ has $a_{i, j}$ in the position (i, j) and zeroes elsewhere).

Thus, consider $a \in I$. This means that there is a matrix $A \in J$ with a in some entry, say (t, i). By the above, we have that $A_{1, t} A A_{i, 1} \in J$ is the matrix that has a in the position $(1,1)$ and zeroes elsewhere. Now, for any $r \in R$, consider $M(r)$ the matrix having a in the position $(1,1)$ and zeroes elsewhere. Now $A_{1, t} A A_{i, 1} M(r) \in J$ and $M(r) A_{1, t} A A_{i, 1} \in J$ because J is an ideal, and these matrices are $M(a r)$ and $M(r a)$ respectively, that is, it they have $a r$ and $r a$ (respectively) in the position $(1,1)$ and zeroes elsewhere. In particular, $a r, r a \in I$ and I is an ideal in R.

Moreover, we have $J=M_{n}(I)$ as follows. If $A \in J$, then the entries of A belong to I by definition and thus $A \in M_{n}(I)$. If $A \in M_{n}(I)$ this means that the entries of A belong to I thus for each $a_{i, j}$ with $i, j \in\{1, \ldots, n\}$ there is at least a matrix in J having $a_{i, j}$ as an entry. Now A can be written as the sum of the matrices having $a_{i, j}$ in the position (i, j) and zeroes elsewhere, and since we proved that these matrices belong to J above, and J is an ideal, this sum belongs to J hence $A \in J$.

Exercise 6

We show that $M_{n}(\mathbb{R})$ is simple. For this, suppose $J \subset M_{n}(\mathbb{R})$ is a two sided ideal, then by the Exercise 5 above we have that there exists $I \subset \mathbb{R}$ an associated ideal such that $J=M_{n}(I)$. However, since \mathbb{R} is a field, we have that $I=\{0\}, \mathbb{R}$. In the first case, $J=\left\{(0)_{i, j}\right\}$ and in the second $J=M_{n}(\mathbb{R})$, hence J is never a proper ideal.

Consider now the one sided ideal I formed by the matrices that are all zeroes except the last column. We clearly have that for $a_{i, j}, r_{i}, s_{j} \in \mathbb{R}$ for $i, j \in\{1, \ldots, n\}$:

$$
\begin{aligned}
&\left(\begin{array}{cccc}
0 & \cdots & 0 & r_{1} \\
\vdots & & \vdots & \vdots \\
0 & \cdots & 0 & r_{n}
\end{array}\right)\left(\begin{array}{cccc}
0 & \cdots & 0 & s_{1} \\
\vdots & & \vdots & \vdots \\
0 & \cdots & 0 & s_{n}
\end{array}\right)=\left(\begin{array}{cccc}
0 & \cdots & 0 & r_{1} s_{n} \\
\vdots & & \vdots & \vdots \\
0 & \cdots & 0 & r_{n} s_{n}
\end{array}\right) \in I \\
&\left(\begin{array}{cccc}
0 & \cdots & 0 & r_{1} \\
\vdots & & \vdots & \vdots \\
0 & \cdots & 0 & r_{n}
\end{array}\right)+\left(\begin{array}{cccc}
0 & \cdots & 0 & s_{1} \\
\vdots & & \vdots & \vdots \\
0 & \cdots & 0 & s_{n}
\end{array}\right)=\left(\begin{array}{ccc}
0 & \cdots & 0 \\
r_{1}+s_{n} \\
\vdots & & \vdots \\
\vdots \\
0 & \cdots & 0 \\
r_{n}+s_{n}
\end{array}\right) \in I \\
&\left(\begin{array}{ccc}
a_{1,1} & \cdots & a_{1, n} \\
\vdots & & \vdots \\
a_{n, 1} & \cdots & a_{n, n}
\end{array}\right)\left(\begin{array}{cccc}
0 & \cdots & 0 & r_{1} \\
\vdots & & \vdots & \vdots \\
0 & \cdots & 0 & r_{n}
\end{array}\right)=\left(\begin{array}{cccc}
0 & \cdots & 0 & t_{1} \\
\vdots & & \vdots & \vdots \\
0 & \cdots & 0 & t_{n}
\end{array}\right) \in I \\
&\left(\begin{array}{cccc}
0 & \cdots & 0 & r_{1} \\
\vdots & & \vdots & \vdots \\
0 & \cdots & 0 & r_{n}
\end{array}\right)\left(\begin{array}{ccc}
a_{1,1} & \cdots & a_{1, n} \\
\vdots & & \vdots \\
a_{n, 1} & \cdots & a_{n, n}
\end{array}\right)=\left(\begin{array}{cccc}
*_{1,1} & \cdots & *_{1, n} \\
\vdots & & \vdots \\
*_{n, 1} & \cdots & *_{n, n}
\end{array}\right) \notin I
\end{aligned}
$$

where $t_{i} \in \mathbb{R}$ is the corresponding multiplication of elements $a_{u, v}$ and r_{k} for every $u, v, i \in\{1, \ldots, n\}$, and $*_{i, j}$ for $i, j \in\{1, \ldots, n\}$ denotes an entry that may not always be zero. Thus I is only a one sided ideal. Moreover, notice that it is non empty since taking $r_{j}=1$ for $j \in\{1, \ldots, n\}$ we obtain a non zero element belonging to I. This I is as desired.

