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Exercise 1

Let f : R −→ S be a homomorphism of commutative rings, P ⊂ S a prime ideal, M ⊂ S
a maximal ideal. First, we remark that for any ideal I ⊂ S we have that f−1(I) ⊂ R is
an ideal, since for all a, b ∈ f−1(I) and r ∈ R we have: f(a− b) = f(a)− f(b) ∈ I and
f(ra) = f(r)f(a) ∈ I (because I is an ideal). Now:

1. Prove that f−1(P ) ⊂ R is prime: let r1, r2 ∈ R with r1r2 ∈ f−1(P ), we have
f(r1)f(r2) = f(r1r2) ∈ P thus since P is prime we must have f(r1) ∈ P or
f(r2) ∈ P hence r1 ∈ f−1(P ) or r2 ∈ f−1(P ), meaning that f−1(P ) is prime.

2. Let f be surjective, prove that f−1(M) ⊂ R is maximal: consider the natural
surjective (because f is surjective) map:

f̃ : R −→ S/M
r 7−→ f(r)

we have that ker(f̃) = {r ∈ R : f(r) ∈ M} = f−1(M), hence by the First
Isomorphism Theorem R/f−1(M) ∼= S/M . Now M maximal and S commutative
implies that S/M is a field, thus R/f−1(M) is in particular a division ring hence
f−1(M) is maximal.
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Exercise 2

Let R be a commutative ring, S ⊂ R a multiplicative set not containing 0.

1. Prove using Zorn’s Lemma that there exists an ideal I ⊂ R maximal among the
ideals not intersecting S. Consider the set {J ⊂ R : J ideal, J ∩ S = ∅} (which
is non empty since it contains {0}) and a chain of elements belonging to such set:
J0 ⊃ · · · ⊃ Jn ⊃ · · · , we have that J = ∪∞i=0Ji is an ideal since for any a, b ∈ J
and r ∈ R we must have a, b ∈ Jn (for certain n ∈ N) an ideal, in particular
a − b ∈ Jn ⊂ J and ra ∈ Jn ⊂ J . Since none of the Ji for i ≥ 0 intersects S, we
have that J ∩ S = ∅ hence every chain has an upper bound. By Zorn’s Lemma,
there exists I a maximal element in the set {J ⊂ R : J ideal, J ∩ S = ∅}.

2. Prove that I as above is prime. Suppose there are ideals A,B ⊂ R with AB ⊂ I.
Note that since S is a multiplicative set, we must have A∩S = ∅ and B∩S = ∅: if
there is s ∈ A∩S then for every t ∈ I we have st ∈ I ∩S = ∅, a contradiction (and
similarly for s ∈ B∩S). Notice that I ⊂ I +A and I ⊂ I +B with (I +A)∩S = ∅
(I + B) ∩ S = ∅, both I + A and I + B being ideals since they are sum of ideals.
Since I is maximal in the set {J ⊂ R : J ideal, J ∩ S = ∅}, we must have that
either I +A = I or I +A = R in the first case and either I +B = I or I +B = R
in the second case. If we have I + A = I or I + B = I this means that A ⊂ I or
B ⊂ I, obtaining that I is prime.

We now prove that we cannot have I +A = R = I +B (and hence the case above
always happens, obtaining that I is indeed prime). Suppose we have I +A = R =
I+B, since 1 ∈ R there exist a ∈ A\P , b ∈ B\P , pa, pb ∈ I with p1+a = 1 = p2+b.
Thus:

1 = (p1 + a)(p2 + b) = p1p2 + p1b + p2a + ab ∈ I,

since I ideal means the first three terms belong to I and since AB ⊂ I we have
ab ∈ I. But now I is an ideal containing 1, thus r = r1 ∈ I for every r ∈ R
thus I = R, which is a contradiction because I ∩ S = ∅. Thus we cannot have
I + A = R = I + B.
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Exercise 3

Prove that the ring Z[i] = {a + bi : a, b ∈ Z} is an Euclidean domain. That is, we want
to see that it has no zero divisors and that there is a function ϕ : Z[i] \ {0} −→ N such
that for a, b ∈ Z[i], if ab 6= 0 we have ϕ(a) ≤ ϕ(ab) and if b 6= 0 there exist q, r ∈ Z[i]
with a = qb + r with r = 0 or r 6= 0 and ϕ(r) < ϕ(b).

First, note that Z[i] ⊂ C, thus we will use for z = z1 + iz2 ∈ Z[i] the function
ϕ(z) = |z|2 = z21 + z22 (that is | · | being the usual norm of complex numbers) for z ∈ Z[i]
(since z1, z2 ∈ Z we have z21 + z22 ∈ N). In particular if we have z, w ∈ Z[i] with zw = 0,
this means |z|2|w|2 = |zw|2 = 0 hence |z|2 = 0 or |w|2 = 0 hence z = 0 or w = 0, so in
particular Z[i] is an integral domain (a consequence of being a subring of C).

Suppose we have a, b ∈ Z[i] with ab 6= 0. This means that a 6= 0 6= b and hence
|a|2 ≥ 1 and |b|2 ≥ 1. Thus ϕ(ab) = |ab|2 = |a|2|b|2 ≥ |a|2 = ϕ(a) and ϕ satisfies the
first property.

Suppose we have a, b ∈ Z[i] with b 6= 0. Consider the multiples of b in Z[i], that is:
{kb : k ∈ Z[i]}. They form a grid in the complex plane C centered at 0, the squares of
such grid having vertexes kb, (k + 1)b, (k + 1 + i)b, (k + i)b in counterclockwise order
for certain k ∈ Z[i], having sides of length ϕ(b). Since a ∈ C, it belongs to one of such
squares, say the one delimited by the vertexes q̃b, (q̃ + 1)b, (q̃ + 1 + i)b, (q̃ + i)b for some
q̃ ∈ Z[i]. Now, a must be closer to at least one of the vertexes (if it is to more than one,
just choose one of them) than to the rest, say that such vertex is qb for some q ∈ Z[i].
Notice that the maximum distance that a can be to those vertexes is when it is just in
the center of the square, and in such case said distance is no more than ϕ(b)/

√
2 < ϕ(b).

Hence ϕ(a − qb) < ϕ(b). Thus defining r = a − qb ∈ Z[i] because a, q, b ∈ Z[i] (notice
that we can have r = 0), we obtain that ϕ satisfies the second property.

Hence Z[i] satisfies all the required properties and thus it is an Euclidean domain.
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Exercise 4

Let R be an integral domain, S a multiplicative subset not containing 0. Prove that
S−1R is isomorphic to a subring of the field of fractions of R. We denote such field
Q(R) = (R \ {0})−1R. Consider the natural function:

f : S−1R −→ Q(R)
r/s 7−→ r/s

we will see that it is a well defined injective morphism, thus by the First Isomorphism
Theorem we will obtain that S−1R ∼= im(f) which is a subring of Q(R).

1. It is well defined: if we have r1/s1 ∼ r2/s2 in S−1R this means that there is s ∈ S
with s(r1s2 − r2s1) = 0, and since S does not contain 0, we have s ∈ R \ {0} thus
we have r1/s1 ∼ r2/s2 in Q(R) and f is well defined (notice that this function is
well defined in every localization: we have not used that R is an integral domain).

2. It is injective: if we have r1/s1, r2/s2 ∈ S−1(R) with f(r1/s1) = f(r2/s2) this
means that we have r1/s1 ∼ r2/s2 in Q(R), that is there exists r ∈ R \ {0} with
r(r1s2−r2s1) = 0, and since R is an integral domain we must have r1s2−r2s1 = 0,
in particular for every s ∈ S we have s(r1s2 − r2s1) = 0 thus r1/s1 ∼ r2/s2 in
S−1R and f is injective.

3. It is a morphism (we use indistinctively the multiplication and addition defined
in both localizations without explicit distinction, the context indicates if we are
in S−1(R) or Q(R), and when these operations can be done in S−1R then they
also hold in Q(R) because, as noticed when proven that f is well defined, s ∈ S ⊂
R \ {0}) since for every r1/s1, r2/s2 ∈ S−1(R) we have:

f

(
r1
s1

r2
s2

)
= f

(
r1r2
s1s2

)
=

r1r2
s1s2

=
r1
s1

r2
s2

= f

(
r1
s1

)
f

(
r2
s2

)
f

(
r1
s1

+
r2
s2

)
= f

(
r1s2 + r2s1

s1s2

)
=

r1s2 + r2s1
s1s2

=
r1
s1

+
r2
s2

= f

(
r1
s1

)
+ f

(
r2
s2

)
as desired.

Hence by the First Isomorphism Theorem S−1R ∼= im(f) a subring of Q(R).
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Exercise 5

Let R be a commutative ring, I ⊂ R an ideal, (I) ⊂ R[x] generated by I. Prove that
R[x]/(I) ∼= (R/I)[x]. Consider the natural function:

ϕ : R[x] −→ (R/I)[x]

f(x) 7−→ f(x)

where given f(x) = a0 + · · · + anx
n with ai ∈ R for 0 ≤ i ≤ n we obtain f(x) =

a0 + · · · + anx
n with ai ∈ R/I for 0 ≤ i ≤ n. Recall the basic operations that make

R/I a ring, namely in this notation for r1, r2 ∈ R we have r1 + r2 = r1 + r2 and
r2 r2 = r1r2. Clearly ϕ is well defined since we can always consider the projection of the
coefficients from R onto R/I and this is a polynomial. Moreover, given any polynomial
f(x) ∈ (R/I)[x], say f(x) = a0 + · · · + anx

n with ai ∈ R/I for 0 ≤ i ≤ n, we have
that ϕ(f(x)) = f(x) for f(x) = a0 + · · · + anx

n with ai ∈ R for 0 ≤ i ≤ n, hence ϕ is
surjective.

We have that ϕ is a morphism since for f(x) = a0 + · · · + anx
n and g(x) = b0 +

· · ·+ bnx
n with aibi ∈ R for 0 ≤ i ≤ n (adding zero coefficients to equalize the degree if

necessary), we have:

ϕ(f(x) + g(x)) = a0 + b0 + · · ·+ anx
n + bnx

n = ϕ(f(x)) + ϕ(g(x))

ϕ(f(x)g(x)) =
n∑

k=0

xk
∑

i+j=k

aibj =
n∑

k=0

xk
∑

i+j=k

ai bj = ϕ(f(x))ϕ(g(x)).

We now compute the kernel of ϕ, we claim that ker(ϕ) = (I) (recall R commutative,
thus the elements of (I) have a nice expression as finite sums):
⊆) Suppose we have f(x) = a0 + · · · + anx

n with ai ∈ R for 0 ≤ i ≤ n (that is
f(x) ∈ R[x]) with ϕ(f(x)) = 0, that is f(x) = a0 + · · · + anx

n = 0 hence ai = 0 for
0 ≤ i ≤ n. This means that ai ∈ I for 0 ≤ i ≤ n, thus f(x) ∈ (I).
⊇) Let f(x) ∈ (I), that is f(x) = a0 + · · · + anx

n with ai ∈ I for 0 ≤ i ≤ n. This
means that ϕ(f(x)) = a0 + · · · + anx

n = 0 since ai = 0 in R/I for 0 ≤ i ≤ n. Thus
f(x) ∈ ker(ϕ).

Hence by the First Isomorphism Theorem: (R/I)[x] ∼= R[x]/ ker(ϕ) ∼= R[x]/(I).
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Exercise 6

Let R be an integral domain, prove that R[x, y] is not a principal ideal domain. For this,
consider the ideal (x, y), we will assume that it is principal and obtain a contradiction.
Suppose (x, y) = (f(x, y)) for f(x, y) = a0 + a10x + a01y + a11xy + · · ·+ annx

nyn.

1. We must have that x = f(x, y)qx(x, y) for some qx(x, y) ∈ R[x, y]. Since R is an
integral domain, we have 1 = deg(x) = deg(fqx) = deg(f)+deg(qx). If deg(f) = 0,
we directly obtain a contradiction since (x, y) has no constant polynomials. If
deg(f) = 1, this means that f(x, y) = f(x) = ax for some a ∈ R non zero.

2. Analogously we must have that y = f(x, y)qy(x, y) for some qy(x, y) ∈ R[x, y], and
the same reasoning means that f(x, y) = f(y) = by for some b ∈ R non zero.

But yb 6= ax when a 6= 0 6= b, a contradiction. This means that such f(x, y) cannot
exist, hence (x, y) is not principal and thus R[x, y] is not a principal ideal domain.
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