Algebra II - Homework 1

Pablo Sánchez Ocal
January 27th, 2017

Exercise 1

Let \mathcal{C} be a category and $f: A \longrightarrow B$ an isomorphism with inverse $g: B \longrightarrow A$. To prove that g is unique, let $h: B \longrightarrow A$ be another inverse of f, that is, a morphism with the same properties as g. Now:

$$
g=g \circ(f \circ h)=(g \circ f) \circ h=h,
$$

as desired.

Exercise 2

1. In the category of sets, prove that a morphism $f: A \longrightarrow B$ is a monomorphism if and only if it is injective.
$\Rightarrow)$ Let f be a monomorphism. Suppose $x, y \in A$ with $f(x)=f(y)$, let $Z=\{0\}$ and define the functions $g_{x}: Z \longrightarrow A$ as $g_{x}(0)=x$ and $g_{y}: Z \longrightarrow A$ as $g_{x}(0)=y$. Since $f \circ g_{x}(0)=f(x)=f(y)=f \circ g_{y}(0)$ this means $f \circ g_{x}=f \circ g_{y}$, hence since f is a monomorphism we get that $g_{x}=g_{y}$, thus $x=g_{x}(0)=g_{y}(0)=y$ and f is injective.
$\Leftarrow)$ Let f be injective. Suppose we have $g_{1}, g_{2}: Z \longrightarrow A$ with $f \circ g_{1}=f \circ g_{2}$. If there is $x \in A$ with $g_{1}(x) \neq g_{2}(x)$, by the injectivity of f we have that $f \circ g_{1}(x) \neq$ $f \circ g_{2}(x)$. However, this is a contradiction. Hence, there is no such $x \in A$, that is, $g_{1}(x)=g_{2}(x)$ for every $x \in A$, that is, $g_{1}=g_{2}$ and f is a monomorphism.
2. In the category of sets, prove that a morphism $f: A \longrightarrow B$ is an epimorphism if and only if it is surjective.
$\Rightarrow)$ Let f be an epimorphism. Let $y \in B$ and suppose there is no $x \in A$ with $f(x)=y$. Let $Z=\{0,1\}$ and define the functions $g_{1}: B \longrightarrow Z$ as $g_{1}(y)=1$, $g_{1}(b)=0$ when $y \neq b \in B$ and $g_{2}: B \longrightarrow Z$ as $g_{2}(b)=0$ for every $b \in B$. Now we have that $f(A) \subset B \backslash\{y\}$ hence $g_{1} \circ f=g_{2} \circ f$, meaning that $g_{1}=g_{2}$ since f is an epimorphism. However, this is a contradiction since $g_{1}(y) \neq g_{2}(y)$. Thus there is no such $y \in B$, that is, for every $y \in B$ there is an $x \in A$ with $f(x)=y$, that is, f is surjective.
$\Leftarrow)$ Let f be surjective. Suppose we have $g_{1}, g_{2}: B \longrightarrow Z$ with $g_{1} \circ f=g_{2} \circ f$. Let $y \in B$, then by surjectivity of f there is an $x \in A$ with $f(x)=y$. Now:

$$
g_{1}(y)=g_{1} \circ f(x)=g_{2} \circ f(x)=g_{2}(y)
$$

hence $g_{1}=g_{2}$ and f is an epimorphism.
3. We show that in the category of rings with unity, the inclusion $\phi: \mathbb{Z} \longrightarrow \mathbb{Q}$ is both a monomorphism and an epimorphism.
Suppose we have $g_{1}, g_{2}: A \longrightarrow \mathbb{Z}$ morphisms with $\phi \circ g_{1}=\phi \circ g_{2}$. For every $x \in A$, the function ϕ let us look $g_{1}(x)$ and $g_{2}(x)$ as elements in \mathbb{Q}. We have: $g_{1}(x)=$ $\phi \circ g_{1}(x)=\phi \circ g_{2}(x)=g_{2}(x)$ in \mathbb{Q}. However, since we know that $g_{1}(x), g_{2}(x) \in \mathbb{Z}$ and that ϕ is injective, we have that $g_{1}(x)=g_{2}(x)$ hence $g_{1}=g_{2}$ and ϕ is a monomorphism.
Suppose we have $g_{1}, g_{2}: \mathbb{Q} \longrightarrow A$ morphisms with $g_{1} \circ \phi=g_{2} \circ \phi$. For every $p / q \in \mathbb{Q}$ we have:

$$
\begin{aligned}
g_{1}(p / q) & =g_{1}(p) g_{1}\left(q^{-1}\right)=\left(g_{1} \circ \phi(p)\right)\left(g_{1} \circ \phi(q)\right)^{-1} \\
& =\left(g_{2} \circ \phi(p)\right)\left(g_{2} \circ \phi(q)\right)^{-1}=g_{2}(p) g_{2}\left(q^{-1}\right)=g_{2}(p / q)
\end{aligned}
$$

where we have used that g_{1} and g_{2} are morphisms in the first, second, fourth and fifth equalities, the condition in the third and the fact that since $p, q \in \mathbb{Z}$, we have that by the injectivity of ϕ we can think of them as $p=\phi(p)$ and $q=\phi(q)$. Hence $g_{1}=g_{2}$ and ϕ is an epimorphism.

Exercise 3

Consider R a commutative ring and $X=\operatorname{Spec}(R)$ his spectrum. We define $Z(E)=$ $\{P \in X: E \subset P\}$ for any $E \subset R$. We prove:

1. Let A be the ideal generated by E. Then $Z(E)=Z(A)$:

〇) Let $P \in Z(A)$, that is, $P \in X$ with $A \subset P$. Then $E \subset A \subset P$ thus $P \in Z(E)$.
$\subseteq)$ Let $P \in Z(E)$, that is, $P \in X$ with $E \subset P$. Since P is an ideal containing E and A is the smallest ideal containing E, we must have that $A \subset P$, hence $P \in Z(A)$.
2. Prove $Z(0)=X$ and $Z(1)=\emptyset$. Notice that a every ideal contains the element 0 and that prime ideals are proper, that is, they are not the whole ring R thus they do not contain the element 1 . Thus:
$Z(0)=\{P \in X:\{0\} \subset P\}=\{P \in X\}=X, \quad Z(1)=\{P \in X\{1\} \subset P\}=\{ \}=\emptyset$.
3. Let $\left\{E_{i}\right\}_{i \in I}$ be a family of subsets of R, then:

$$
\begin{aligned}
Z\left(\bigcup_{i \in I} E_{i}\right) & =\left\{P \in X: \bigcup_{i \in I} E_{i} \subset P\right\}=\left\{P \in X: E_{i} \subset P, \forall i \in I\right\} \\
& =\left\{P \in X: P \in Z\left(E_{i}\right), \forall i \in I\right\}=\bigcap_{i \in I} Z\left(E_{i}\right)
\end{aligned}
$$

4. Let A, B, C be ideals, prove that $Z(A \cap B)=Z(A B)=Z(A) \cup Z(B)$. First, we note that in virtue of the first point above, we can consider $A B$ just as a set. Now: $Z(A \cap B) \subseteq Z(A B)$: Let $P \in Z(A \cap B)$, that is, $P \in X$ with $A \cap B \subset P$. Let $a b \in A B$, that is, $a \in A, b \in B$. Since A and B are ideals, we have that $a b \in A$ and $a b \in B$, hence $a b \in A \cap B$ and $A B \subset A \cap B \subset P$, thus $P \in Z(A B)$.
$Z(A B) \subseteq Z(A) \cup Z(B):$ Let $P \in Z(A B)$, that is, $P \in X$ with $A B \subset P$. Since P is a prime ideal, we automatically have that either $A \subset P$ or $B \subset P$, hence either $P \in Z(A)$ or $P \in Z(B)$ respectively, meaning that $P \in Z(A) \cup Z(B)$.
$Z(A) \cup Z(B) \subseteq Z(A \cap B):$ Let $P \in Z(A) \cup Z(B)$, that is, $P \in X$ with either $A \subset P$ or $B \subset P$. Using $A \cap B \subset A \subset P$ or $A \cap B \subset B \subset P$ respectively, we obtain that $P \in Z(A \cap B)$.
5. For the set $\tau=\{Z(E): E \subset R\}$ to define the closed sets on X, that is, to be a topology on X we need three properties that follow immediately applying what we have proven above:
(a) $\emptyset=Z(1) \in \tau, X=Z(0) \in \tau$.
(b) Given $A, B \subset R$, we have $Z(A) \cup Z(B)=Z(A \cap B) \in \tau$.
(c) Given $\left\{E_{i}\right\}_{i \in I}$ a family of subsets of R, we have $\cap_{i \in I} Z\left(E_{i}\right)=Z\left(\cup_{i \in I} E_{i}\right) \in \tau$.

Exercise 4

Consider the particular case of $X=\operatorname{Spec}(\mathbb{Z})$, let $\tau=\{Z(E): E \subset \mathbb{Z}\}$.

1. Prove that $X=\{(p): p$ positive prime $\} \cup\{(0)\}$
\supseteq) Clearly (0) is a prime ideal since \mathbb{Z} is a domain. Moreover, if we have $a, b \in \mathbb{Z}$ with $a b \in(p)$, then p divides $a b$ and since p is prime, p must divide a or b, that is, $a \in(p)$ or $b \in(p)$ respectively, meaning that (p) is a prime ideal.
$\subseteq)$ Let $P \subset \mathbb{Z}$ be a prime ideal, consider $p \in P$ the smallest number in P. For any $a \in P$, apply the division algorithm and obtain that $a=p q+c$ for certain $q, c \in \mathbb{Z}$ with $c<p$. Now since $c=a-p q \in P$ because P is an ideal and p is the smallest, we must have $c=0$, hence $P=(p)$. There are two possibilities, $p=0$ or p positive. Clearly (0) is prime. In the second case, since (p) must be prime, when we have $a, b \in \mathbb{Z}$ with $a b \in(p)$, that is, there exists $c \in \mathbb{Z}$ with $a b=p c$, we must have that $a \in(p)$ or $b \in(p)$, that is there exist $f \in \mathbb{Z}$ such that $a=p f$ or $g \in \mathbb{Z}$ such that $b=p g$. Summing up, when p divides $a b$ then p divides a or b, that is, p is prime.
2. To prove that for a positive prime p we have $\overline{\{(p)\}}=\{(p)\}$ it is enough to prove that $\{(p)\} \in \tau$. We claim that $Z((p))=\{(p)\}$.
$\supseteq)$ We know that $(p) \in X$ and $(p) \subset(p)$, hence $(p) \in Z((p))$.
$\subseteq)$ Let $P \in X$, by the above, we know that $P=(q)$ for certain prime $q \in \mathbb{Z}$, with $(p) \subset P$. Thus $(p) \subset(q)$, meaning that q divides p. However, p is prime, thus q is either 1 or p. Since prime ideals are proper, we must have $1 \notin(q)$ hence $q=p$.
3. To find $\overline{\{(0)\}}$, we note that for every $E \subset R$ the ideal generated by E has (0) as a subset, hence $(0) \in Z(E)$. Since $\{(0)\}$ is the intersection of all the closed sets that contain (0), we have $\{(0)\}=\cap_{E \subset R} Z(E)=Z\left(\cup_{E \subset R} E\right)=Z(R)=Z(1)=X$.

Exercise 5

Let \mathcal{R} the category of commutative rings with unity and \mathcal{T} the category of topological spaces. Define the functor:

$$
\begin{array}{c:clc}
F: \mathcal{R} & \longrightarrow & \mathcal{T} \\
& R & \longmapsto & \operatorname{Spec}(R)
\end{array}
$$

such that given $f: R \rightarrow S$ it assigns the map:

$$
\begin{aligned}
F(f): \operatorname{Spec}(S) & \longrightarrow \quad \operatorname{Spec}(R) \\
P & \longmapsto
\end{aligned} f^{-1}(P)
$$

We note that $F(f)$ is well defined, that is, $f^{-1}(P)$ is a prime ideal of R :

1. Let $a, b \in f^{-1}(P), r \in R$, then using that f is a homomorphism we obtain $f(a-b)=$ $f(a)-f(b) \in P$ and $f(r a)=f(r) f(a) \in P$ since P is an ideal and it is prime. This means that $f^{-1}(P)$ is an ideal.
2. Let $a, b \in R$ such that $a b \in f^{-1}(P)$, then $P \ni f(a b)=f(a) f(b)$ and since P is prime, this means that either $f(a) \in P$ or $f(b) \in P$, that is $a \in f^{-1}(P)$ or $b \in f^{-1}(P)$, meaning that $f^{-1}(P)$ is prime.

We check that $F(f)$ is a morphism in \mathcal{T}, that is, $F(f)$ is continuous. For this, it is enough to see that the preimage of closed sets is closed: let $E \subset R$, we have that:

$$
\begin{aligned}
F(f)^{-1}(Z(E)) & =\left\{P \in \operatorname{Spec}(S): f^{-1}(P) \in Z(E)\right\}=\left\{P \in \operatorname{Spec}(S): E \subset f^{-1}(P)\right\} \\
& =\{P \in \operatorname{Spec}(S): f(E) \subset P\}=Z(f(E)),
\end{aligned}
$$

which is closed in $\operatorname{Spec}(S)$, meaning that $F(f)$ is continuous as desired.
The only thing left to check is that F satisfies the two required contravariant properties on the morphisms:

1. For every $P \in \operatorname{Spec}(R)$ we have $F\left(\operatorname{id}_{R}\right)(P)=\operatorname{id}_{R}^{-1}(P)=P=\operatorname{id}_{\operatorname{Spec}(R)}(P)$, thus $F\left(\mathrm{id}_{R}\right)=\mathrm{id}_{\mathrm{Spec}(R)}=\mathrm{id}_{F(R)}$.
2. Let $f: R \longrightarrow S$ and $g: S \longrightarrow T$ homomorphisms of rings, then for every $P \in$ $\operatorname{Spec}(T)$ we have $F(g \circ f)(P)=(g \circ f)^{-1}(P)=f^{-1} \circ g^{-1}(P)=f^{-1}(F(g)(P))=$ $F(f) \circ F(g)(P)$, thus $F(g \circ f)=F(f) \circ F(g)$.
