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Exercise 1

Let C be a category and f : A −→ B an isomorphism with inverse g : B −→ A. To prove
that g is unique, let h : B −→ A be another inverse of f , that is, a morphism with the
same properties as g. Now:

g = g ◦ (f ◦ h) = (g ◦ f) ◦ h = h,

as desired.
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Exercise 2

1. In the category of sets, prove that a morphism f : A −→ B is a monomorphism if
and only if it is injective.

⇒) Let f be a monomorphism. Suppose x, y ∈ A with f(x) = f(y), let Z = {0}
and define the functions gx : Z −→ A as gx(0) = x and gy : Z −→ A as gx(0) = y.
Since f ◦ gx(0) = f(x) = f(y) = f ◦ gy(0) this means f ◦ gx = f ◦ gy, hence since
f is a monomorphism we get that gx = gy, thus x = gx(0) = gy(0) = y and f is
injective.

⇐) Let f be injective. Suppose we have g1, g2 : Z −→ A with f ◦ g1 = f ◦ g2. If
there is x ∈ A with g1(x) 6= g2(x), by the injectivity of f we have that f ◦ g1(x) 6=
f ◦ g2(x). However, this is a contradiction. Hence, there is no such x ∈ A, that is,
g1(x) = g2(x) for every x ∈ A, that is, g1 = g2 and f is a monomorphism.

2. In the category of sets, prove that a morphism f : A −→ B is an epimorphism if
and only if it is surjective.

⇒) Let f be an epimorphism. Let y ∈ B and suppose there is no x ∈ A with
f(x) = y. Let Z = {0, 1} and define the functions g1 : B −→ Z as g1(y) = 1,
g1(b) = 0 when y 6= b ∈ B and g2 : B −→ Z as g2(b) = 0 for every b ∈ B. Now we
have that f(A) ⊂ B \ {y} hence g1 ◦ f = g2 ◦ f , meaning that g1 = g2 since f is an
epimorphism. However, this is a contradiction since g1(y) 6= g2(y). Thus there is
no such y ∈ B, that is, for every y ∈ B there is an x ∈ A with f(x) = y, that is, f
is surjective.

⇐) Let f be surjective. Suppose we have g1, g2 : B −→ Z with g1 ◦ f = g2 ◦ f . Let
y ∈ B, then by surjectivity of f there is an x ∈ A with f(x) = y. Now:

g1(y) = g1 ◦ f(x) = g2 ◦ f(x) = g2(y),

hence g1 = g2 and f is an epimorphism.

3. We show that in the category of rings with unity, the inclusion φ : Z −→ Q is both
a monomorphism and an epimorphism.

Suppose we have g1, g2 : A −→ Z morphisms with φ ◦ g1 = φ ◦ g2. For every x ∈ A,
the function φ let us look g1(x) and g2(x) as elements in Q. We have: g1(x) =
φ ◦ g1(x) = φ ◦ g2(x) = g2(x) in Q. However, since we know that g1(x), g2(x) ∈ Z
and that φ is injective, we have that g1(x) = g2(x) hence g1 = g2 and φ is a
monomorphism.

Suppose we have g1, g2 : Q −→ A morphisms with g1 ◦ φ = g2 ◦ φ. For every
p/q ∈ Q we have:

g1(p/q) = g1(p)g1(q
−1) = (g1 ◦ φ(p))(g1 ◦ φ(q))−1

= (g2 ◦ φ(p))(g2 ◦ φ(q))−1 = g2(p)g2(q
−1) = g2(p/q),
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where we have used that g1 and g2 are morphisms in the first, second, fourth and
fifth equalities, the condition in the third and the fact that since p, q ∈ Z, we have
that by the injectivity of φ we can think of them as p = φ(p) and q = φ(q). Hence
g1 = g2 and φ is an epimorphism.
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Exercise 3

Consider R a commutative ring and X = Spec(R) his spectrum. We define Z(E) =
{P ∈ X : E ⊂ P} for any E ⊂ R. We prove:

1. Let A be the ideal generated by E. Then Z(E) = Z(A):

⊇) Let P ∈ Z(A), that is, P ∈ X with A ⊂ P . Then E ⊂ A ⊂ P thus P ∈ Z(E).

⊆) Let P ∈ Z(E), that is, P ∈ X with E ⊂ P . Since P is an ideal containing
E and A is the smallest ideal containing E, we must have that A ⊂ P , hence
P ∈ Z(A).

2. Prove Z(0) = X and Z(1) = ∅. Notice that a every ideal contains the element 0
and that prime ideals are proper, that is, they are not the whole ring R thus they
do not contain the element 1. Thus:

Z(0) = {P ∈ X : {0} ⊂ P} = {P ∈ X} = X, Z(1) = {P ∈ X{1} ⊂ P} = {} = ∅.

3. Let {Ei}i∈I be a family of subsets of R, then:

Z

(⋃
i∈I

Ei

)
=

{
P ∈ X :

⋃
i∈I

Ei ⊂ P

}
= {P ∈ X : Ei ⊂ P,∀i ∈ I}

= {P ∈ X : P ∈ Z(Ei),∀i ∈ I} =
⋂
i∈I

Z(Ei).

4. Let A,B,C be ideals, prove that Z(A ∩ B) = Z(AB) = Z(A) ∪ Z(B). First, we
note that in virtue of the first point above, we can consider AB just as a set. Now:

Z(A ∩ B) ⊆ Z(AB) : Let P ∈ Z(A ∩ B), that is, P ∈ X with A ∩ B ⊂ P . Let
ab ∈ AB, that is, a ∈ A, b ∈ B. Since A and B are ideals, we have that ab ∈ A
and ab ∈ B, hence ab ∈ A ∩B and AB ⊂ A ∩B ⊂ P , thus P ∈ Z(AB).

Z(AB) ⊆ Z(A) ∪ Z(B) : Let P ∈ Z(AB), that is, P ∈ X with AB ⊂ P . Since P
is a prime ideal, we automatically have that either A ⊂ P or B ⊂ P , hence either
P ∈ Z(A) or P ∈ Z(B) respectively, meaning that P ∈ Z(A) ∪ Z(B).

Z(A) ∪ Z(B) ⊆ Z(A ∩ B) : Let P ∈ Z(A) ∪ Z(B), that is, P ∈ X with either
A ⊂ P or B ⊂ P . Using A∩B ⊂ A ⊂ P or A∩B ⊂ B ⊂ P respectively, we obtain
that P ∈ Z(A ∩B).

5. For the set τ = {Z(E) : E ⊂ R} to define the closed sets on X, that is, to be a
topology on X we need three properties that follow immediately applying what we
have proven above:

(a) ∅ = Z(1) ∈ τ , X = Z(0) ∈ τ .

(b) Given A,B ⊂ R, we have Z(A) ∪ Z(B) = Z(A ∩B) ∈ τ .

(c) Given {Ei}i∈I a family of subsets of R, we have ∩i∈IZ(Ei) = Z(∪i∈IEi) ∈ τ .
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Exercise 4

Consider the particular case of X = Spec(Z), let τ = {Z(E) : E ⊂ Z}.

1. Prove that X = {(p) : ppositive prime} ∪ {(0)}
⊇) Clearly (0) is a prime ideal since Z is a domain. Moreover, if we have a, b ∈ Z
with ab ∈ (p), then p divides ab and since p is prime, p must divide a or b, that is,
a ∈ (p) or b ∈ (p) respectively, meaning that (p) is a prime ideal.

⊆) Let P ⊂ Z be a prime ideal, consider p ∈ P the smallest number in P . For
any a ∈ P , apply the division algorithm and obtain that a = pq + c for certain
q, c ∈ Z with c < p. Now since c = a− pq ∈ P because P is an ideal and p is the
smallest, we must have c = 0, hence P = (p). There are two possibilities, p = 0 or
p positive. Clearly (0) is prime. In the second case, since (p) must be prime, when
we have a, b ∈ Z with ab ∈ (p), that is, there exists c ∈ Z with ab = pc, we must
have that a ∈ (p) or b ∈ (p), that is there exist f ∈ Z such that a = pf or g ∈ Z
such that b = pg. Summing up, when p divides ab then p divides a or b, that is, p
is prime.

2. To prove that for a positive prime p we have {(p)} = {(p)} it is enough to prove
that {(p)} ∈ τ . We claim that Z((p)) = {(p)}.
⊇) We know that (p) ∈ X and (p) ⊂ (p), hence (p) ∈ Z((p)).

⊆) Let P ∈ X, by the above, we know that P = (q) for certain prime q ∈ Z, with
(p) ⊂ P . Thus (p) ⊂ (q), meaning that q divides p. However, p is prime, thus q is
either 1 or p. Since prime ideals are proper, we must have 1 /∈ (q) hence q = p.

3. To find {(0)}, we note that for every E ⊂ R the ideal generated by E has (0) as a
subset, hence (0) ∈ Z(E). Since {(0)} is the intersection of all the closed sets that
contain (0), we have {(0)} = ∩E⊂RZ(E) = Z(∪E⊂RE) = Z(R) = Z(1) = X.
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Exercise 5

Let R the category of commutative rings with unity and T the category of topological
spaces. Define the functor:

F : R −→ T
R 7−→ Spec(R)

such that given f : R→ S it assigns the map:

F (f) : Spec(S) −→ Spec(R)
P 7−→ f−1(P )

We note that F (f) is well defined, that is, f−1(P ) is a prime ideal of R:

1. Let a, b ∈ f−1(P ), r ∈ R, then using that f is a homomorphism we obtain f(a−b) =
f(a) − f(b) ∈ P and f(ra) = f(r)f(a) ∈ P since P is an ideal and it is prime.
This means that f−1(P ) is an ideal.

2. Let a, b ∈ R such that ab ∈ f−1(P ), then P 3 f(ab) = f(a)f(b) and since P
is prime, this means that either f(a) ∈ P or f(b) ∈ P , that is a ∈ f−1(P ) or
b ∈ f−1(P ), meaning that f−1(P ) is prime.

We check that F (f) is a morphism in T , that is, F (f) is continuous. For this, it is
enough to see that the preimage of closed sets is closed: let E ⊂ R, we have that:

F (f)−1(Z(E)) = {P ∈ Spec(S) : f−1(P ) ∈ Z(E)} = {P ∈ Spec(S) : E ⊂ f−1(P )}
= {P ∈ Spec(S) : f(E) ⊂ P} = Z(f(E)),

which is closed in Spec(S), meaning that F (f) is continuous as desired.
The only thing left to check is that F satisfies the two required contravariant prop-

erties on the morphisms:

1. For every P ∈ Spec(R) we have F (idR)(P ) = id−1R (P ) = P = idSpec(R)(P ), thus
F (idR) = idSpec(R) = idF (R).

2. Let f : R −→ S and g : S −→ T homomorphisms of rings, then for every P ∈
Spec(T ) we have F (g ◦ f)(P ) = (g ◦ f)−1(P ) = f−1 ◦ g−1(P ) = f−1(F (g)(P )) =
F (f) ◦ F (g)(P ), thus F (g ◦ f) = F (f) ◦ F (g).
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