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Exercise 1

Let C be a category and f : A — B an isomorphism with inverse g : B — A. To prove
that ¢ is unique, let A : B — A be another inverse of f, that is, a morphism with the
same properties as g. Now:

g=go(foh)=(gof)oh=h,

as desired.



Exercise 2

1. In the category of sets, prove that a morphism f: A — B is a monomorphism if
and only if it is injective.

=) Let f be a monomorphism. Suppose z,y € A with f(x) = f(y), let Z = {0}
and define the functions g, : 7 — A as g,(0) =z and g, : Z — A as g,(0) = y.
Since f o0 ¢,(0) = f(z) = f(y) = f o gy4(0) this means f o g, = f o gy, hence since
f is a monomorphism we get that g, = g,, thus = ¢,(0) = ¢,(0) = y and f is
injective.

<) Let f be injective. Suppose we have gi,g2 : Z — A with fog; = foge. If
there is € A with g1 (z) # g2(x), by the injectivity of f we have that f o g1 (z) #
foga(z). However, this is a contradiction. Hence, there is no such x € A, that is,
g1(z) = ga2(x) for every x € A, that is, g1 = g2 and f is a monomorphism.

2. In the category of sets, prove that a morphism f: A — B is an epimorphism if
and only if it is surjective.

=) Let f be an epimorphism. Let y € B and suppose there is no z € A with
f(z) = y. Let Z = {0,1} and define the functions ¢ : B — Z as gi(y) = 1,
91(b) =0 when y #b € B and g2 : B — Z as ga2(b) = 0 for every b € B. Now we
have that f(A) C B\ {y} hence g o f = go 0 f, meaning that g; = go since f is an
epimorphism. However, this is a contradiction since ¢1(y) # g2(y). Thus there is
no such y € B, that is, for every y € B there is an x € A with f(z) = y, that is, f
is surjective.

<) Let f be surjective. Suppose we have g1,g92: B — Z with g1o f = gao f. Let
y € B, then by surjectivity of f there is an z € A with f(z) = y. Now:

91(y) = g1 0 f(z) = gao f(x) = g2(y),
hence g1 = ¢go and f is an epimorphism.

3. We show that in the category of rings with unity, the inclusion ¢ : Z — Q is both
a monomorphism and an epimorphism.

Suppose we have g1, go : A — Z morphisms with ¢og; = ¢pogs. For every xz € A,
the function ¢ let us look gi(x) and ga(z) as elements in Q. We have: g;(x) =
pogi(z) = ¢pogax) = go(x) in Q. However, since we know that g1(z), g2(x) € Z
and that ¢ is injective, we have that gi(x) = g2(x) hence g = g2 and ¢ is a
monomorphism.

Suppose we have ¢g1,g92 : Q@ — A morphisms with g1 0 ¢ = g9 0 ¢. For every
p/q € Q we have:

an(p/e) = g1(Pg(a™") = (g106(P))(g10¢(q) "
= (9200(p) (920 ¢(q)) " = g2(p)g2(a™") = 92(p/ ),



where we have used that g; and g2 are morphisms in the first, second, fourth and
fifth equalities, the condition in the third and the fact that since p, ¢ € Z, we have
that by the injectivity of ¢ we can think of them as p = ¢(p) and ¢ = ¢(q). Hence
g1 = g2 and ¢ is an epimorphism.



Exercise 3

Consider R a commutative ring and X = Spec(R) his spectrum. We define Z(E) =
{P € X :FEC P} for any E C R. We prove:

1. Let A be the ideal generated by E. Then Z(FE) = Z(A):
D) Let P € Z(A), that is, P € X with A C P. Then E C A C P thus P € Z(E).
C) Let P € Z(E), that is, P € X with E C P. Since P is an ideal containing

E and A is the smallest ideal containing F, we must have that A C P, hence
Pe Z(A).

2. Prove Z(0) = X and Z(1) = (. Notice that a every ideal contains the element 0
and that prime ideals are proper, that is, they are not the whole ring R thus they
do not contain the element 1. Thus:

Z0)={PeX:{0}cP}={PeX}=X, Z(1)={PeX{1}cP}={}=0.

3. Let {E;}icr be a family of subsets of R, then:

Z(UE) = {PGX:UEiCP}:{PeX:EiCP,WeI}

el i€l
= {PeX:PcZE)Viel}=)Z(E).
i€l
4. Let A, B,C be ideals, prove that Z(AN B) = Z(AB) = Z(A) U Z(B). First, we
note that in virtue of the first point above, we can consider AB just as a set. Now:
Z(ANB) C Z(AB) : Let P € Z(AN B), that is, P € X with AN B C P. Let

ab € AB, that is, a € A, b € B. Since A and B are ideals, we have that ab € A
and ab € B, hence abe ANB and ABC ANB C P, thus P € Z(AB).

Z(AB) C Z(A)U Z(B) : Let P € Z(AB), that is, P € X with AB C P. Since P
is a prime ideal, we automatically have that either A C P or B C P, hence either
P e Z(A) or P € Z(B) respectively, meaning that P € Z(A) U Z(B).
Z(A)UZ(B) C Z(ANB) : Let P € Z(A)U Z(B), that is, P € X with either
ACPorBCP. Using ANBCAC Por ANB C B C P respectively, we obtain
that P € Z(AN B).

5. For the set 7 = {Z(F) : E C R} to define the closed sets on X, that is, to be a
topology on X we need three properties that follow immediately applying what we
have proven above:

(a) 0=Z(1)er, X =2Z(0)er.
(b) Given A, B C R, we have Z(A)UZ(B)=Z(ANB) €.
(c) Given {E;}icr a family of subsets of R, we have Nje;Z(E;) = Z(UijerE;) € T.



Exercise 4
Consider the particular case of X = Spec(Z), let 7 ={Z(F): E C Z}.

1. Prove that X = {(p) : ppositive prime} U {(0)}

D) Clearly (0) is a prime ideal since Z is a domain. Moreover, if we have a,b € Z
with ab € (p), then p divides ab and since p is prime, p must divide a or b, that is,
a € (p) or b € (p) respectively, meaning that (p) is a prime ideal.

C) Let P C Z be a prime ideal, consider p € P the smallest number in P. For
any a € P, apply the division algorithm and obtain that a = pg + ¢ for certain
q,c € Z with ¢ < p. Now since ¢ = a — pq € P because P is an ideal and p is the
smallest, we must have ¢ = 0, hence P = (p). There are two possibilities, p = 0 or
p positive. Clearly (0) is prime. In the second case, since (p) must be prime, when
we have a,b € Z with ab € (p), that is, there exists ¢ € Z with ab = pe, we must
have that a € (p) or b € (p), that is there exist f € Z such that a = pf or g € Z
such that b = pg. Summing up, when p divides ab then p divides a or b, that is, p
is prime.

2. To prove that for a positive prime p we have {(p)} = {(p)} it is enough to prove
that {(p)} € 7. We claim that Z((p)) = {(p)}.

D) We know that (p) € X and (p) C (p), hence (p) € Z((p)).

C) Let P € X, by the above, we know that P = (q) for certain prime g € Z, with
(p) C P. Thus (p) C (q), meaning that ¢ divides p. However, p is prime, thus ¢ is
either 1 or p. Since prime ideals are proper, we must have 1 ¢ (¢) hence ¢ = p.

3. To find {(0)}, we note that for every E C R the ideal generated by E has (0) as a
subset, hence (0) € Z(E). Since {(0)} is the intersection of all the closed sets that

contain (0), we have {(0)} = NgcrZ(E) = Z(UgcrE) = Z(R) = Z(1) = X.




Exercise 5

Let R the category of commutative rings with unity and 7 the category of topological
spaces. Define the functor:
F : R — T
R +—— Spec(R)

such that given f: R — S it assigns the map:

F(f) : Spec(S) — Spec(R)
P — fU(P)

We note that F(f) is well defined, that is, f~1(P) is a prime ideal of R:

1. Leta,b € f~1(P), r € R, then using that f is a homomorphism we obtain f(a—b) =
fla) — f(b) € P and f(ra) = f(r)f(a) € P since P is an ideal and it is prime.
This means that f~!(P) is an ideal.

2. Let a,b € R such that ab € f~1(P), then P > f(ab) = f(a)f(b) and since P
is prime, this means that either f(a) € P or f(b) € P, that is a € f~1(P) or
b € f~1(P), meaning that f~!(P) is prime.

We check that F'(f) is a morphism in 7, that is, F'(f) is continuous. For this, it is
enough to see that the preimage of closed sets is closed: let ¥ C R, we have that:

F(f)""(Z(E)) = {PeSpec(S): [T (P) € Z(E)} ={P € Spec(S) : E C f~(P)}
{P € Spec(S) : f(E) C P} = Z(f(E)),

which is closed in Spec(S), meaning that F'(f) is continuous as desired.
The only thing left to check is that F' satisfies the two required contravariant prop-
erties on the morphisms:

1. For every P € Spec(R) we have F(idg)(P) = id;'(P) = P = idgpec(r)(P), thus
F(idr) = idgpec(r) = 1dr(r)-
2. Let f: R— S and g : S — T homomorphisms of rings, then for every P €

Spec(T) we have F(go f)(P) = (go f)~'(P) = [t og '(P) = [~1(F(9)(P))
E(f) o F(g)(P), thus F(go f) = F(f) o F(g).



