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Exercise 1

Let R a ring, consider the category of left R-modules.

1. Prove that a morphism f : A −→ B is a monomorphism if and only if the under-
lying function f is injective. For this, notice that the same argument as used with
sets works, since all the functions are in fact morphisms of modules.

⇒) Let f be a monomorphism. Suppose x, y ∈ A with f(x) = f(y), let Z = {0}
be the zero module and define the functions gx : Z −→ A as gx(0) = x and
gy : Z −→ A as gx(0) = y. Clearly both gx and gy are morphisms of modules.
Since f ◦ gx(0) = f(x) = f(y) = f ◦ gy(0) this means f ◦ gx = f ◦ gy, hence since
f is a monomorphism we get that gx = gy, thus x = gx(0) = gy(0) = y and f is
injective.

⇐) Let f be injective. Suppose we have g1, g2 : Z −→ A morphisms of modules
with f ◦ g1 = f ◦ g2. If there is x ∈ A with g1(x) 6= g2(x), by the injectivity of f
we have that f ◦ g1(x) 6= f ◦ g2(x). However, this is a contradiction. Hence, there
is no such x ∈ A, that is, g1(x) = g2(x) for every x ∈ A, that is, g1 = g2 and f is
a monomorphism.

2. Prove that a morphism f : A −→ B is an epimorphism if and only if the underlying
function f is surjective. One of the directions is the same as in sets, since all the
functions are in fact morphisms of modules. For the other, we need a bit of finesse.

⇐) Let f be surjective. Suppose we have g1, g2 : B −→ Z morphisms of modules
with g1 ◦ f = g2 ◦ f . Let y ∈ B, then by surjectivity of f there is an x ∈ A with
f(x) = y. Now:

g1(y) = g1 ◦ f(x) = g2 ◦ f(x) = g2(y),

hence g1 = g2 and f is an epimorphism.

⇒) Let f be an epimorphism. Let y ∈ B and suppose there is no x ∈ A with
f(x) = y. Let Z = 〈y〉R and define the functions g1 : B −→ Z as g1(b) = b when
b ∈ 〈y〉R, g1(b) = 0 when b /∈ 〈y〉R and g2 : B −→ Z as g2(b) = 0 for every b ∈ B.
Since g1 is the identyty on 〈y〉R and 0 everywhere else, its is a morphism of modules.
Clearly g2 is a morphism of modules too. Now we have that f(A) ⊂ B \〈y〉R hence
g1 ◦ f = g2 ◦ f , meaning that g1 = g2 since f is an epimorphism. However, this is
a contradiction since g1(y) 6= g2(y). Thus there is no such y ∈ B, that is, for every
y ∈ B there is an x ∈ A with f(x) = y, that is, f is surjective.
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Exercise 4

For a group G, consider Z[G] the group ring of G over Z, we will call left G-modules to
left Z[G]-modules.

1. Show that the induced function on M a G-module defines a left action of G on M .
We want to see that:

ϕ : G×M −→ M
(σ,m) 7−→ σm

is a left action. Notice that M being a G-module means that we have a multipli-
cation (notice the sum is finite):

φ : Z[G]×M −→ M(∑
g∈G agg,m

)
7−→

(∑
g∈G agg

)
m

and using the properties of φ we will see that ϕ is a left action, since for id, σ, τ ∈ G
and m ∈M :

(a) ϕ(id,m) = φ(id,m) = m because M is a G-module via φ,

(b) ϕ(στ,m) = φ(στ,m) = φ(σ, φ(τ,m)) = ϕ(σ, φ(τ,m)) because M is a G-
module via φ.

This proves that ϕ is a left action.

2. Let M , N be G-modules, we want to see that f : N −→ M is a G-module
homomorphism if and only if f is a homomorphism of abelian groups and f(σn) =
σf(n) for every σ ∈ G, n ∈ N .

⇒) Let f be a module homomorphism. This means that:

(a) f(n1+n1) = f(n1)+f(n2) for every n1, n2 ∈ N , that is, f is a homomorphism
of abelian groups,

(b) f(rn) = rf(n) for every r ∈ Z[G] (in particular when r = σ ∈ G), n ∈ N .

⇐) The fact that f is a homomorphism of abelian groups implies that f(n1+n1) =
f(n1)+f(n2) for every n1, n2 ∈ N . For the Z[G]-linearity, we notice that for every
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ag ∈ Z for g ∈ G and n ∈ N we have (notice the sum is finite):

f

∑
g∈G

agg

n

 = f((ag1g1 + · · ·+ agkgk)n) = f(ag1g1n+ · · ·+ agkgkn)

= f(

ag1︷ ︸︸ ︷
g1n+ · · ·+ g1n+ · · ·+

agk︷ ︸︸ ︷
gkn+ · · ·+ gkn)

=

ag1︷ ︸︸ ︷
f(g1n) + · · ·+ f(g1n) + · · ·+

agk︷ ︸︸ ︷
f(gkn) + · · ·+ f(gkn))

=

ag1︷ ︸︸ ︷
g1f(n) + · · ·+ g1f(n) + · · ·+

agk︷ ︸︸ ︷
gkf(n) + · · ·+ gkf(n))

= ag1g1f(n) + · · ·+ agkgkf(n) =

∑
g∈G

agg

 f(n)

proving Z[G]-linearity. Notice how we had to develop until we could use that f
was a homomorphism of abelian groups and then again more until we could use
G-linearity.

3. Let M be a G-module and set MG the set of G-invariants of M . We show that
(MG,+) is an abelian subgroup of (M,+).

We clearly have MG ⊂ M as sets. Moreover, for every m,n ∈ MG, every σ ∈ G,
we have that σ(m−n) = σm− σn = m−n, hence m−n ∈MG and MG is closed
under addition. Moreover, since M is a module we have that (M,+) is abelian,
thus (MG,+) is also abelian. As desired, MG ≤M .
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Exercise 5

With the notation as above, we will work with G-modules and abelian groups.

1. Let Z be aG-module with trivial action (we will use this fact multiple times without
explicit mention to it). Now, for any G-module M , we have an isomorphism of
abelian groups MG ∼= HomZ[G](Z,M). For this, we define:

ψ : MG −→ HomZ[G](Z,M).

m 7−→ fm : Z −→ M
1 7−→ m

Notice how as a module homomorphism, it is enough to define fm(1) so that the
whole function fm is defined. We now proceed to see that ψ is in fact a group
isomorphism.

(a) ψ is well defined; that is, fm is a module homomorphism for every m ∈ M ,
since for every k1, k2 ∈ Z we have fm(k1+k2) = k1m+k2m = fm(k1)+fm(k2),
and for every σ ∈ G, k ∈ Z we have fm(σk) = fm(k) = km = m+ · · ·+m =
σm + · · · + σm = σ(m + · · · + m) = σ(km) = σfm(k). Hence in virtue of
Exercise 4b above, f is a G-module homomorphism.

(b) ψ is injective; let fm = fn for certain m,n ∈M , this means that m = fm(1) =
fn(1) = n.

(c) ψ is surjective; let f ∈ HomZ[G](Z,M), set m = f(1). We just have to check

that m ∈ MG, which is clear since σm = σf(1) = f(σ1) = f(1) = m. Now
ψ(m) = f .

(d) ψ is a group morphism; let m,n ∈M , we have that ψ(m+ n)(1) = m+ n =
ψ(m)(1) + ψ(n)(1) = (ψ(m) + ψ(n))(1), hence ψ(m + n) = ψ(m) + ψ(n), as
desired.

By the above, we clearly have that setting the functor F (·) = HomZ[G](Z, ·), the

assignments M 7−→ F (M) and M 7−→ MG it coincide. In virtue of Exercise 3, F
is left exact.

2. With the following example we will show that F is not right exact. Let G = {tn :
n ∈ Z}.

(a) Show that Z[G] = Z[t, t−1].

⊆) An element of Z[G] is a finite sum of the form
∑m

i=−n ait
i with n,m ∈ N

and ai ∈ Z (since ti ∈ G) for i = −n, . . . ,m. This can clearly be seen as a
polynomial with integer coefficients in the variables t, t−1.

⊇) A polynomial with integer coefficients in the variables t, t−1 is a finite sum
of the form

∑m
i=−n ait

i with n,m ∈ N and ai ∈ Z for i = −n, . . . ,m. This
can clearly be seen as an element of Z[G].
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(b) Let M = Z[G] a G-module under left multiplication, N = {n ∈ M : n =
m(t − 1) for some m ∈ M} = Z[t, t−1](t − 1). We want to see that N is
a G-submodule of M . For this, clearly N ⊂ M , for n1, n2 ∈ N we have
n1− n2 = m1(t− 1)−m2(t− 1) = (m1−m2)(t− 1) ∈ N since m1−m2 ∈M
(this means N is closed under addition) and thus (N,+) is abelian because
(M,+) is abelian. Moreover, let r ∈ Z[G], then for every n ∈ N we have
rn = rm(t−1) ∈ N since rm ∈M , hence N is closed under left multiplication.
This means that N is a G-submodule of M .

(c) Show that M/N ∼= Z as abelian groups and the action of G on Z induced by
this isomorphism is trivial. For this, we define:

ψ : M −→ Z
p(t, t−1) 7−→ p(1, 1)

notice that since ψ is an evaluation morphism and we are evaluating in an
invertible element, it is well defined and indeed a morphism. Now notice that
ker(ψ) = N :

⊇) Let n ∈ N , then ψ(n) = ψ(m)(1− 1) = 0 and n ∈ ker(ψ).

⊆) Let n ∈ ker(ψ), that is, ψ(n) = 0. For k ∈ N large enough, we can write
n =

∑k
i=−k ait

i for ai ∈ Z for i = −k, . . . , k. Hence tkn =
∑2k

i=0 ai−kt
i ∈ Z[t],

and we have ψ(tkn) = ψ(tk)ψ(n) = 0, hence we can divide by (t − 1) and
obtain that tkn = q(t−1) for q ∈ Z[t]. This means that n = (q/tk)(t−1) ∈ N
since q/tk ∈M .

By the First Isomorphism Theorem, we have that M/N ∼= Z. Moreover,
consider the induced action:

G× Z −→ Z
(tn, k) 7−→ ψ(tn)k

where n ∈ Z. Obviously ψ(tn) = 1, and thus this is the trivial action.

(d) Consider now the exact sequence of G-modules:

0 −→ N −→M −→M/N −→ 0

since we saw above that G acts on Z trivially, we are in the case discussed
where applying the functor F and looking at the G-invariants are the same
thing. Thus applying F (or rather considering the G-invariants), we obtain a
sequence:

0 −→ NG −→MG −→ (M/N)G ∼= ZG ∼= Z −→ 0.

We are interested in looking at the surjectivity of MG −→ Z. For this, we
compute MG. Since M is considered as a G-module by left multiplication,
we have that for a finite sum

∑n
i=−n ait

i with n ∈ N large enough and ai ∈ Z
for i = −n, . . . , n, multiplication by an element tk ∈ G with k ∈ Z yields
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∑n
i=−n ait

i+k. This is a translation of all the coefficients different than 0,
meaning that for having such a sum invariant it can only be the sum 0. That
is, MG = {0}. However, a morphism {0} −→ Z can never be surjective, hence
F is not right exact, as desired.
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Exercise 6

Let R be an integral domain.

1. Let I, J be nonzero ideals of R, show that I ∩ J 6= (0). Suppose that I ∩ J = (0),
I, J being nonzero means that for any 0 6= i ∈ I and 0 6= j ∈ J we have ij ∈ I,
ij ∈ J , hence ij ∈ I ∩ J thus ij = 0. This is a contradiction with the fact that R
is an integral domain. Hence I ∩ J 6= (0).

2. Let I be an ideal of R that is free as an R-module. Show that I is principal.
We will use the Lemma proven in class saying that for A,B submodules of M an
R-module, then A ⊕ B ∼= A + B if and only if A ∩ B = (0). Now, I being free
means that there is a basis {xj}j∈J of elements of R such that I ∼= ⊕j∈JRxj . Now
since I ⊂ R because it is an ideal, we must have that I is an internal direct sum
by the natural inclusion. However, since Rxi ⊕ Rxj = Rxi + Rxj if and only if
Rxi∩Rxj = (0), but by the section above this never happens, we have that I with
|J | > 1 cannot be an internal direct sum. Hence we can only have |J | = 0 (that
is, J = ∅) and thus I = (0), which is clearly principal, or |J | = 1 (that is J = {x})
and thus I = Rx = (x), which is clearly principal.
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Exercise 7

Let R be a ring, F an R-module generated by S = {x1, . . . , xn} ⊂ F .

1. Suppose that F is free and S is an R-basis. For any module M and elements
m1, . . . ,mn ∈ M , prove that there exists an unique R-module homomorphism
f : F −→M with f(xi) = mi for i = 1, . . . , n. We define:

f : F −→ M∑n
i=1 rixi 7−→

∑n
i=1 rimi

where ri ∈ R for i = 1, . . . , n. Now:

(a) f is well defined; the sum
∑n

i=1 rimi is indeed an element of M because this
is a module.

(b) f is a morphism of groups:

f

(
n∑

i=1

rixi +

n∑
i=1

sixi

)
= f

(
n∑

i=1

(ri + si)xi

)
=

n∑
i=1

(ri + si)mi

=
n∑

i=1

rimi +
n∑

i=1

simi = f

(
n∑

i=1

rixi

)
+ f

(
n∑

i=1

sixi

)

(c) f is R-linear, for r ∈ R we have:

f

(
r

n∑
i=1

rixi

)
= f

(
n∑

i=1

rrimi

)
=

n∑
i=1

rrimi = r
n∑

i=1

rimi = rf

(
n∑

i=1

rixi

)

(d) f is unique: if g a morphism of modules such that g(xi) = mi for i = 1, . . . , n
we obtain that:

f

(
n∑

i=1

rixi

)
=

n∑
i=1

rimi =
n∑

i=1

rig(xi) =
n∑

i=1

g(rixi) = g

(
n∑

i=1

rimi

)

thus f = g.

2. We want to construct a Z-module homomorphism fZ⊕Z −→ Z such that f(x1) =
1. First, notice that letting y = x2/2, {x1, y} form a basis of Z ⊕ Z as a free
module. By the definition of x1, x2 and x3 we have that x3 = x1 + x2/2, thus
applying f we obtain that f(x3) = f(x1) + f(x2)/2. It is easy to check that if we
set: {

f(x2) = 2 f(x3) = 2

f(x2) = 4 f(x3) = 3
=⇒

{
f(x1) = 1

f(y) = 1

thus in virtue of the above, f is uniquely determined (since we have determined
its value on a basis) but we have multiple choices for the values of x2 and x3.
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3. Show that there exists no Z-module homomorphism fZ ⊕ Z −→ Z such that
f(x1) = 1 and f(x2) = 1, regardless of what we try to pick for f(x3). Notice that
y = x2/2, hence f(y) = f(x2)/2 = 1/2, but 1/2 /∈ Z. This implies that there is no
value to be assigned to y, that is, no such homomorphism f exists.
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