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Exercise 1
Let R a ring, consider the category of left R-modules.

1. Prove that a morphism f: A — B is a monomorphism if and only if the under-
lying function f is injective. For this, notice that the same argument as used with
sets works, since all the functions are in fact morphisms of modules.

=) Let f be a monomorphism. Suppose z,y € A with f(z) = f(y), let Z = {0}
be the zero module and define the functions ¢, : Z — A as gz(0) = = and
gy : Z — A as g,(0) = y. Clearly both g, and g, are morphisms of modules.
Since f 0 g,(0) = f(z) = f(y) = f o gy(0) this means f o g, = f o gy, hence since
f is a monomorphism we get that g, = g,, thus = ¢,(0) = ¢4(0) = y and f is
injective.

<) Let f be injective. Suppose we have gq,g2 : Z — A morphisms of modules
with fo g = foge. If there is x € A with ¢g1(z) # g2(z), by the injectivity of f
we have that f o g1(z) # f o ga(z). However, this is a contradiction. Hence, there
is no such = € A, that is, g1(z) = g2(x) for every x € A, that is, g1 = g2 and f is
a monomorphism.

2. Prove that a morphism f : A — B is an epimorphism if and only if the underlying
function f is surjective. One of the directions is the same as in sets, since all the
functions are in fact morphisms of modules. For the other, we need a bit of finesse.

<) Let f be surjective. Suppose we have g1, g2 : B — Z morphisms of modules
with g1 o f = go o f. Let y € B, then by surjectivity of f there is an x € A with
f(z) =y. Now:

91(y) = g1 0 f(z) = gao f(x) = g2(y),
hence g1 = g2 and f is an epimorphism.

=) Let f be an epimorphism. Let y € B and suppose there is no x € A with
f(x) =y. Let Z = (y)r and define the functions g; : B — Z as ¢;(b) = b when
be (y)r, g1(b) =0 when b ¢ (y)r and g2 : B — Z as go(b) = 0 for every b € B.
Since g; is the identyty on (y) g and 0 everywhere else, its is a morphism of modules.
Clearly g is a morphism of modules too. Now we have that f(A) C B\ (y)g hence
g1 o f = go o f, meaning that g; = go since f is an epimorphism. However, this is
a contradiction since g1 (y) # g2(y). Thus there is no such y € B, that is, for every
y € B there is an z € A with f(x) = y, that is, f is surjective.



Exercise 4

For a group G, consider Z[G] the group ring of G over Z, we will call left G-modules to
left Z[G]-modules.

1. Show that the induced function on M a G-module defines a left action of G on M.

We want to see that:
p : GxM — M

(o,m) +—— om
is a left action. Notice that M being a G-module means that we have a multipli-
cation (notice the sum is finite):
o Z|G] x M — M
(deG ag9g, m) — (deG agg> m

and using the properties of ¢ we will see that ¢ is a left action, since for id, o, 7 € G
and m € M:

(a) ¢(idm) = ¢(id,m) = m because M is a G-module via ¢,

(b) @lom,m) = dlor,m) = d(0,6(r,m)) = (0, 9(r,m)) because M is a G-

module via ¢.

This proves that ¢ is a left action.

2. Let M, N be G-modules, we want to see that f : N — M is a G-module
homomorphism if and only if f is a homomorphism of abelian groups and f(on) =
of(n) for every 0 € G, n € N.

=) Let f be a module homomorphism. This means that:
(a) f(ni14+mn1) = f(n1)+ f(ne2) for every ni,na € N, that is, f is a homomorphism
of abelian groups,
(b) f(rn) =rf(n) for every r € Z[G] (in particular when r = o € G), n € N.

<) The fact that f is a homomorphism of abelian groups implies that f(n;+n;) =
f(n1)+ f(ne) for every ny,ny € N. For the Z|G]-linearity, we notice that for every



ag € Z for g € G and n € N we have (notice the sum is finite):

f Z agg | n = f(lagg1+ - +aggr)n) = flaggin+ -+ ag,gkn)
geG

(lgl agk

e N e N ——
= flon+-+gn+---+gn+---+gn)

= flgin) +--+ f(gin) +---+ f(gen) + - + f(grn))

= gf()+-+afr)+- g f(n)+ -+ g f(n))

= agg1f(n)+-- +aggrf(n) = Z agg | f(n)

geG

proving Z[G]-linearity. Notice how we had to develop until we could use that f
was a homomorphism of abelian groups and then again more until we could use
G-linearity.

. Let M be a G-module and set MC the set of G-invariants of M. We show that
(M@, 4) is an abelian subgroup of (M, +).

We clearly have MY C M as sets. Moreover, for every m,n € M, every o € G,
we have that o(m —n) = om —on = m —n, hence m —n € M% and M is closed
under addition. Moreover, since M is a module we have that (M, +) is abelian,
thus (M©, +) is also abelian. As desired, M“ < M.



Exercise 5

With the notation as above, we will work with G-modules and abelian groups.

1. Let Z be a G-module with trivial action (we will use this fact multiple times without

explicit mention to it). Now, for any G-module M, we have an isomorphism of
abelian groups M¢ = Homy;g)(Z, M). For this, we define:

¢+ MY —  Homgg(Z, M).
fm: Z — M

m
1 — m

Notice how as a module homomorphism, it is enough to define f,,(1) so that the
whole function f,, is defined. We now proceed to see that 1 is in fact a group
isomorphism.

(a) ¢ is well defined; that is, fp, is a module homomorphism for every m € M,
since for every ki, ko € Z we have f,,(k1+ko) = kym~+kom = fp,(k1)+ fin(k2),
and for every o € G, k € Z we have f,,(ck) = f(k) =km=m+---+m =
om+---+om=oc(m+---+m) = o(km) = ofn(k). Hence in virtue of
Exercise 4b above, f is a G-module homomorphism.

(b) % is injective; let f,, = f,, for certain m,n € M, this means that m = f,,(1) =
fn(1) =n.

(c) v is surjective; let f € Homyg(Z, M), set m = f(1). We just have to check
that m € M%, which is clear since om = o f(1) = f(ol) = f(1) = m. Now
Y(m) = f.

(d) % is a group morphism; let m,n € M, we have that ¢»(m +n)(1) =m+n =
P(m)(1) +(n)(1) = (¥(m) + ¢ (n))(1), hence (m +n) = ¢(m) + ¢ (n), as

desired.

By the above, we clearly have that setting the functor F(-) = Homgg(Z, ), the
assignments M — F(M) and M — M€ it coincide. In virtue of Exercise 3, F
is left exact.

2. With the following example we will show that F' is not right exact. Let G = {t" :

n € Z}.

(a) Show that Z[G] = Z[t,t71].
C) An element of Z[G] is a finite sum of the form >°1"  a;t' with n,m € N
and a; € Z (since t' € G) for i = —n,...,m. This can clearly be seen as a
polynomial with integer coefficients in the variables t, t~1.
D) A polynomial with integer coefficients in the variables ¢, t ! is a finite sum
of the form ) " a;t* with n,m € N and a; € Z for i = —n,...,m. This
can clearly be seen as an element of Z[G].



(b)

Let M = Z[G] a G-module under left multiplication, N = {n € M : n =
m(t — 1) for some m € M} = Z[t,t7'](t —1). We want to see that N is
a G-submodule of M. For this, clearly N C M, for ni,ny € N we have
ny—ng =mi(t—1) —ma(t—1) = (m1 —ma)(t—1) € N since my —mg € M
(this means N is closed under addition) and thus (N, +) is abelian because
(M,+) is abelian. Moreover, let r € Z[G], then for every n € N we have
rn =rm(t—1) € N since rm € M, hence N is closed under left multiplication.
This means that N is a G-submodule of M.

Show that M/N = 7 as abelian groups and the action of G on Z induced by
this isomorphism is trivial. For this, we define:

(TR M — A
p(t,t71) — p(1,1)

notice that since ¥ is an evaluation morphism and we are evaluating in an
invertible element, it is well defined and indeed a morphism. Now notice that
ker(¢) = N:

D) Let n € N, then ¢(n) = ¢ (m)(1 —1) =0 and n € ker(v)).

C) Let n € ker(¢), that is, ¢»(n) = 0. For k € N large enough, we can write
n= Zf:_k a;t' for a; € Z for i = —k,... k. Hence thn = Z?ﬁo a;_yt' € Z[t],
and we have ¥(tkn) = (t*)y(n) = 0, hence we can divide by (¢t — 1) and
obtain that t*n = ¢(t— 1) for ¢ € Z[t]. This means that n = (¢/t*)(t—1) € N
since q/tk € M.

By the First Isomorphism Theorem, we have that M/N = Z. Moreover,
consider the induced action:

Gx7Z — Z
(" k) — Pk

where n € Z. Obviously ¢(t") = 1, and thus this is the trivial action.

Consider now the exact sequence of G-modules:
0O— N-—M-—M/N—0

since we saw above that G acts on Z trivially, we are in the case discussed
where applying the functor F' and looking at the G-invariants are the same
thing. Thus applying F' (or rather considering the G-invariants), we obtain a
sequence:

0— N9 — MY — (M/N)¢ =725 =7 —0.

We are interested in looking at the surjectivity of M¢ — Z. For this, we
compute ME. Since M is considered as a G-module by left multiplication,
we have that for a finite sum »_;" a;t" with n € N large enough and a; € Z
for i = —n,...,n, multiplication by an element t* € G with k € Z yields



S aitt*. This is a translation of all the coefficients different than 0,
meaning that for having such a sum invariant it can only be the sum 0. That
is, M“ = {0}. However, a morphism {0} — Z can never be surjective, hence

F' is not right exact, as desired.



Exercise 6
Let R be an integral domain.

1. Let I,J be nonzero ideals of R, show that I N.J # (0). Suppose that I NJ = (0),
1, J being nonzero means that for any 0 £ ¢ € I and 0 # j € J we have ij € I,
ij € J, hence ij € I N J thus ij = 0. This is a contradiction with the fact that R
is an integral domain. Hence I N J # (0).

2. Let I be an ideal of R that is free as an R-module. Show that [ is principal.
We will use the Lemma proven in class saying that for A, B submodules of M an
R-module, then A® B = A+ B if and only if AN B = (0). Now, I being free
means that there is a basis {z;} e of elements of R such that I = @;c;Rx;. Now
since I C R because it is an ideal, we must have that I is an internal direct sum
by the natural inclusion. However, since Rx; © Rx; = Rx; + Rx; if and only if
Rx; N Rx; = (0), but by the section above this never happens, we have that I with
|J| > 1 cannot be an internal direct sum. Hence we can only have |J| = 0 (that
is, J = 0) and thus I = (0), which is clearly principal, or |J| =1 (that is J = {z})
and thus I = Rz = (x), which is clearly principal.



Exercise 7
Let R be a ring, F' an R-module generated by S = {x1,...,2,} C F.

1. Suppose that F' is free and S is an R-basis. For any module M and elements
mi,...,my € M, prove that there exists an unique R-module homomorphism
f:F — M with f(x;) =m; for i =1,...,n. We define:

f F — M
Mmool rim;

where r; € R for i =1,...,n. Now:

(a) f is well defined; the sum )" | r;m; is indeed an element of M because this
is a module.

(b) f is a morphism of groups:

f <Z TiTi + Z«Sz%) = f (Z (i + Sz)ﬂﬂz) = Z (7 + si)mi
i=1

i=1 i=1 i=1
n n n n

= Z""imi + Z sim; = f (Z WU@') +f (Z Sil'z')
i=1 i=1 i=1 i=1

(c) fis R-linear, for r € R we have:
f (erxZ) =f (Z rn—mi> = Zrmmi = rZTimi =rf (Z rixi>
=1 i=1 i=1 i=1 i=1

(d) f is unique: if g a morphism of modules such that g(z;) =m; fori=1,...,n
we obtain that:

f (Z Tia?i) =Y rimi =Y riglzi) =Y glriw) =g <Z T’mu)
=1 =1 =1 =1 =1

thus f = g.

2. We want to construct a Z-module homomorphism fZ @& 7Z — Z such that f(x1) =
1. First, notice that letting y = x2/2, {x1,y} form a basis of Z ® Z as a free
module. By the definition of z1, z2 and x3 we have that x3 = x1 + x2/2, thus
applying f we obtain that f(z3) = f(z1) + f(z2)/2. It is easy to check that if we

set:
{f($2):2f($3)=2 :>{f(x1):1
f(x2) =4 f(z3) =3 fly) =1

thus in virtue of the above, f is uniquely determined (since we have determined
its value on a basis) but we have multiple choices for the values of z2 and z3.



3. Show that there exists no Z-module homomorphism fZ & Z — 7 such that
f(x1) =1 and f(x2) = 1, regardless of what we try to pick for f(x3). Notice that
y = x2/2, hence f(y) = f(x2)/2 =1/2, but 1/2 ¢ Z. This implies that there is no
value to be assigned to y, that is, no such homomorphism f exists.
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