Algebra II - Homework 2

Pablo Sánchez Ocal

February 6th, 2017

Let R a ring, consider the category of left R-modules.

1. Prove that a morphism $f: A \longrightarrow B$ is a monomorphism if and only if the underlying function f is injective. For this, notice that the same argument as used with sets works, since all the functions are in fact morphisms of modules.

 \Rightarrow) Let f be a monomorphism. Suppose $x, y \in A$ with f(x) = f(y), let $Z = \{0\}$ be the zero module and define the functions $g_x : Z \longrightarrow A$ as $g_x(0) = x$ and $g_y : Z \longrightarrow A$ as $g_x(0) = y$. Clearly both g_x and g_y are morphisms of modules. Since $f \circ g_x(0) = f(x) = f(y) = f \circ g_y(0)$ this means $f \circ g_x = f \circ g_y$, hence since f is a monomorphism we get that $g_x = g_y$, thus $x = g_x(0) = g_y(0) = y$ and f is injective.

 \Leftarrow) Let f be injective. Suppose we have $g_1, g_2 : Z \longrightarrow A$ morphisms of modules with $f \circ g_1 = f \circ g_2$. If there is $x \in A$ with $g_1(x) \neq g_2(x)$, by the injectivity of fwe have that $f \circ g_1(x) \neq f \circ g_2(x)$. However, this is a contradiction. Hence, there is no such $x \in A$, that is, $g_1(x) = g_2(x)$ for every $x \in A$, that is, $g_1 = g_2$ and f is a monomorphism.

2. Prove that a morphism $f : A \longrightarrow B$ is an epimorphism if and only if the underlying function f is surjective. One of the directions is the same as in sets, since all the functions are in fact morphisms of modules. For the other, we need a bit of finesse.

 \Leftarrow) Let f be surjective. Suppose we have $g_1, g_2 : B \longrightarrow Z$ morphisms of modules with $g_1 \circ f = g_2 \circ f$. Let $y \in B$, then by surjectivity of f there is an $x \in A$ with f(x) = y. Now:

$$g_1(y) = g_1 \circ f(x) = g_2 \circ f(x) = g_2(y),$$

hence $g_1 = g_2$ and f is an epimorphism.

⇒) Let f be an epimorphism. Let $y \in B$ and suppose there is no $x \in A$ with f(x) = y. Let $Z = \langle y \rangle_R$ and define the functions $g_1 : B \longrightarrow Z$ as $g_1(b) = b$ when $b \in \langle y \rangle_R$, $g_1(b) = 0$ when $b \notin \langle y \rangle_R$ and $g_2 : B \longrightarrow Z$ as $g_2(b) = 0$ for every $b \in B$. Since g_1 is the identyty on $\langle y \rangle_R$ and 0 everywhere else, its is a morphism of modules. Clearly g_2 is a morphism of modules too. Now we have that $f(A) \subset B \setminus \langle y \rangle_R$ hence $g_1 \circ f = g_2 \circ f$, meaning that $g_1 = g_2$ since f is an epimorphism. However, this is a contradiction since $g_1(y) \neq g_2(y)$. Thus there is no such $y \in B$, that is, for every $y \in B$ there is an $x \in A$ with f(x) = y, that is, f is surjective.

For a group G, consider $\mathbb{Z}[G]$ the group ring of G over \mathbb{Z} , we will call left G-modules to left $\mathbb{Z}[G]$ -modules.

1. Show that the induced function on M a G-module defines a left action of G on M. We want to see that:

is a left action. Notice that M being a G-module means that we have a multiplication (notice the sum is finite):

$$\phi : \mathbb{Z}[G] \times M \longrightarrow M$$
$$\left(\sum_{g \in G} a_g g, m\right) \longmapsto \left(\sum_{g \in G} a_g g\right) m$$

and using the properties of ϕ we will see that φ is a left action, since for $id, \sigma, \tau \in G$ and $m \in M$:

- (a) $\varphi(\operatorname{id} m) = \phi(\operatorname{id} m) = m$ because M is a G-module via ϕ ,
- (b) $\varphi(\sigma\tau,m) = \phi(\sigma\tau,m) = \phi(\sigma,\phi(\tau,m)) = \varphi(\sigma,\phi(\tau,m))$ because M is a G-module via ϕ .

This proves that φ is a left action.

- 2. Let M, N be G-modules, we want to see that $f : N \longrightarrow M$ is a G-module homomorphism if and only if f is a homomorphism of abelian groups and $f(\sigma n) = \sigma f(n)$ for every $\sigma \in G$, $n \in N$.
 - \Rightarrow) Let f be a module homomorphism. This means that:
 - (a) $f(n_1+n_1) = f(n_1)+f(n_2)$ for every $n_1, n_2 \in N$, that is, f is a homomorphism of abelian groups,
 - (b) f(rn) = rf(n) for every $r \in \mathbb{Z}[G]$ (in particular when $r = \sigma \in G$), $n \in N$.

 \Leftarrow) The fact that f is a homomorphism of abelian groups implies that $f(n_1+n_1) = f(n_1) + f(n_2)$ for every $n_1, n_2 \in N$. For the $\mathbb{Z}[G]$ -linearity, we notice that for every

 $a_g \in \mathbb{Z}$ for $g \in G$ and $n \in N$ we have (notice the sum is finite):

$$\begin{split} f\left(\left(\sum_{g\in G} a_{g}g\right)n\right) &= f((a_{g_{1}}g_{1} + \dots + a_{g_{k}}g_{k})n) = f(a_{g_{1}}g_{1}n + \dots + a_{g_{k}}g_{k}n) \\ &= f(\overbrace{g_{1}n + \dots + g_{1}n}^{a_{g_{1}}} + \dots + \overbrace{g_{k}n + \dots + g_{k}n}^{a_{g_{k}}}) \\ &= \overbrace{f(g_{1}n) + \dots + f(g_{1}n)}^{a_{g_{1}}} + \dots + \overbrace{f(g_{k}n) + \dots + f(g_{k}n)}^{a_{g_{k}}}) \\ &= \overbrace{g_{1}f(n) + \dots + g_{1}f(n)}^{a_{g_{1}}} + \dots + \overbrace{g_{k}f(n) + \dots + g_{k}f(n)}^{a_{g_{k}}}) \\ &= a_{g_{1}}g_{1}f(n) + \dots + a_{g_{k}}g_{k}f(n) = \left(\sum_{g\in G} a_{g}g\right)f(n) \end{split}$$

proving $\mathbb{Z}[G]$ -linearity. Notice how we had to develop until we could use that f was a homomorphism of abelian groups and then again more until we could use G-linearity.

3. Let M be a G-module and set M^G the set of G-invariants of M. We show that $(M^G, +)$ is an abelian subgroup of (M, +).

We clearly have $M^G \subset M$ as sets. Moreover, for every $m, n \in M^G$, every $\sigma \in G$, we have that $\sigma(m-n) = \sigma m - \sigma n = m - n$, hence $m - n \in M^G$ and M^G is closed under addition. Moreover, since M is a module we have that (M, +) is abelian, thus $(M^G, +)$ is also abelian. As desired, $M^G \leq M$.

With the notation as above, we will work with G-modules and abelian groups.

1. Let \mathbb{Z} be a *G*-module with trivial action (we will use this fact multiple times without explicit mention to it). Now, for any *G*-module *M*, we have an isomorphism of abelian groups $M^G \cong \operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}, M)$. For this, we define:

ψ	:	M^G	\longrightarrow	$\operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}, M).$			
		m	\mapsto	f_m :	\mathbb{Z}^{r}	\rightarrow	M
					1	\mapsto	m

Notice how as a module homomorphism, it is enough to define $f_m(1)$ so that the whole function f_m is defined. We now proceed to see that ψ is in fact a group isomorphism.

- (a) ψ is well defined; that is, f_m is a module homomorphism for every $m \in M$, since for every $k_1, k_2 \in \mathbb{Z}$ we have $f_m(k_1+k_2) = k_1m+k_2m = f_m(k_1)+f_m(k_2)$, and for every $\sigma \in G$, $k \in \mathbb{Z}$ we have $f_m(\sigma k) = f_m(k) = km = m + \cdots + m = \sigma m + \cdots + \sigma m = \sigma(m + \cdots + m) = \sigma(km) = \sigma f_m(k)$. Hence in virtue of Exercise 4b above, f is a G-module homomorphism.
- (b) ψ is injective; let $f_m = f_n$ for certain $m, n \in M$, this means that $m = f_m(1) = f_n(1) = n$.
- (c) ψ is surjective; let $f \in \text{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}, M)$, set m = f(1). We just have to check that $m \in M^G$, which is clear since $\sigma m = \sigma f(1) = f(\sigma 1) = f(1) = m$. Now $\psi(m) = f$.
- (d) ψ is a group morphism; let $m, n \in M$, we have that $\psi(m+n)(1) = m+n = \psi(m)(1) + \psi(n)(1) = (\psi(m) + \psi(n))(1)$, hence $\psi(m+n) = \psi(m) + \psi(n)$, as desired.

By the above, we clearly have that setting the functor $F(\cdot) = \operatorname{Hom}_{\mathbb{Z}[G]}(\mathbb{Z}, \cdot)$, the assignments $M \longmapsto F(M)$ and $M \longmapsto M^G$ it coincide. In virtue of Exercise 3, F is left exact.

- 2. With the following example we will show that F is not right exact. Let $G = \{t^n : n \in \mathbb{Z}\}.$
 - (a) Show that $\mathbb{Z}[G] = \mathbb{Z}[t, t^{-1}].$

 \subseteq) An element of $\mathbb{Z}[G]$ is a finite sum of the form $\sum_{i=-n}^{m} a_i t^i$ with $n, m \in \mathbb{N}$ and $a_i \in \mathbb{Z}$ (since $t^i \in G$) for $i = -n, \ldots, m$. This can clearly be seen as a polynomial with integer coefficients in the variables t, t^{-1} .

 \supseteq) A polynomial with integer coefficients in the variables t, t^{-1} is a finite sum of the form $\sum_{i=-n}^{m} a_i t^i$ with $n, m \in \mathbb{N}$ and $a_i \in \mathbb{Z}$ for $i = -n, \ldots, m$. This can clearly be seen as an element of $\mathbb{Z}[G]$.

- (b) Let $M = \mathbb{Z}[G]$ a *G*-module under left multiplication, $N = \{n \in M : n = m(t-1) \text{ for some } m \in M\} = \mathbb{Z}[t,t^{-1}](t-1)$. We want to see that *N* is a *G*-submodule of *M*. For this, clearly $N \subset M$, for $n_1, n_2 \in N$ we have $n_1 n_2 = m_1(t-1) m_2(t-1) = (m_1 m_2)(t-1) \in N$ since $m_1 m_2 \in M$ (this means *N* is closed under addition) and thus (N, +) is abelian because (M, +) is abelian. Moreover, let $r \in \mathbb{Z}[G]$, then for every $n \in N$ we have $rn = rm(t-1) \in N$ since $rm \in M$, hence *N* is closed under left multiplication. This means that *N* is a *G*-submodule of *M*.
- (c) Show that $M/N \cong \mathbb{Z}$ as abelian groups and the action of G on Z induced by this isomorphism is trivial. For this, we define:

$$\psi : \begin{array}{ccc} M & \longrightarrow & \mathbb{Z} \\ & p(t,t^{-1}) & \longmapsto & p(1,1) \end{array}$$

notice that since ψ is an evaluation morphism and we are evaluating in an invertible element, it is well defined and indeed a morphism. Now notice that $\ker(\psi) = N$:

 \supseteq) Let $n \in N$, then $\psi(n) = \psi(m)(1-1) = 0$ and $n \in \ker(\psi)$.

 \subseteq) Let $n \in \ker(\psi)$, that is, $\psi(n) = 0$. For $k \in \mathbb{N}$ large enough, we can write $n = \sum_{i=-k}^{k} a_i t^i$ for $a_i \in \mathbb{Z}$ for $i = -k, \ldots, k$. Hence $t^k n = \sum_{i=0}^{2k} a_{i-k} t^i \in \mathbb{Z}[t]$, and we have $\psi(t^k n) = \psi(t^k)\psi(n) = 0$, hence we can divide by (t-1) and obtain that $t^k n = q(t-1)$ for $q \in \mathbb{Z}[t]$. This means that $n = (q/t^k)(t-1) \in N$ since $q/t^k \in M$.

By the First Isomorphism Theorem, we have that $M/N \cong \mathbb{Z}$. Moreover, consider the induced action:

$$\begin{array}{cccc} G \times \mathbb{Z} & \longrightarrow & \mathbb{Z} \\ (t^n, k) & \longmapsto & \psi(t^n)k \end{array}$$

where $n \in \mathbb{Z}$. Obviously $\psi(t^n) = 1$, and thus this is the trivial action.

(d) Consider now the exact sequence of G-modules:

$$0 \longrightarrow N \longrightarrow M \longrightarrow M/N \longrightarrow 0$$

since we saw above that G acts on \mathbb{Z} trivially, we are in the case discussed where applying the functor F and looking at the G-invariants are the same thing. Thus applying F (or rather considering the G-invariants), we obtain a sequence:

$$0 \longrightarrow N^G \longrightarrow M^G \longrightarrow (M/N)^G \cong \mathbb{Z}^G \cong \mathbb{Z} \longrightarrow 0.$$

We are interested in looking at the surjectivity of $M^G \longrightarrow \mathbb{Z}$. For this, we compute M^G . Since M is considered as a G-module by left multiplication, we have that for a finite sum $\sum_{i=-n}^{n} a_i t^i$ with $n \in \mathbb{N}$ large enough and $a_i \in \mathbb{Z}$ for $i = -n, \ldots, n$, multiplication by an element $t^k \in G$ with $k \in \mathbb{Z}$ yields

 $\sum_{i=-n}^{n} a_i t^{i+k}$. This is a translation of all the coefficients different than 0, meaning that for having such a sum invariant it can only be the sum 0. That is, $M^G = \{0\}$. However, a morphism $\{0\} \longrightarrow \mathbb{Z}$ can never be surjective, hence F is not right exact, as desired.

Let R be an integral domain.

- 1. Let I, J be nonzero ideals of R, show that $I \cap J \neq (0)$. Suppose that $I \cap J = (0)$, I, J being nonzero means that for any $0 \neq i \in I$ and $0 \neq j \in J$ we have $ij \in I$, $ij \in J$, hence $ij \in I \cap J$ thus ij = 0. This is a contradiction with the fact that Ris an integral domain. Hence $I \cap J \neq (0)$.
- 2. Let I be an ideal of R that is free as an R-module. Show that I is principal. We will use the Lemma proven in class saying that for A, B submodules of M an R-module, then $A \oplus B \cong A + B$ if and only if $A \cap B = (0)$. Now, I being free means that there is a basis $\{x_j\}_{j \in J}$ of elements of R such that $I \cong \bigoplus_{j \in J} Rx_j$. Now since $I \subset R$ because it is an ideal, we must have that I is an internal direct sum by the natural inclusion. However, since $Rx_i \oplus Rx_j = Rx_i + Rx_j$ if and only if $Rx_i \cap Rx_j = (0)$, but by the section above this never happens, we have that I with |J| > 1 cannot be an internal direct sum. Hence we can only have |J| = 0 (that is, $J = \emptyset$) and thus I = (0), which is clearly principal, or |J| = 1 (that is $J = \{x\}$) and thus I = Rx = (x), which is clearly principal.

Let R be a ring, F an R-module generated by $S = \{x_1, \ldots, x_n\} \subset F$.

1. Suppose that F is free and S is an R-basis. For any module M and elements $m_1, \ldots, m_n \in M$, prove that there exists an unique R-module homomorphism $f: F \longrightarrow M$ with $f(x_i) = m_i$ for $i = 1, \ldots, n$. We define:

$$f : F \longrightarrow M$$
$$\sum_{i=1}^{n} r_i x_i \longmapsto \sum_{i=1}^{n} r_i m_i$$

where $r_i \in R$ for $i = 1, \ldots, n$. Now:

- (a) f is well defined; the sum $\sum_{i=1}^{n} r_i m_i$ is indeed an element of M because this is a module.
- (b) f is a morphism of groups:

$$f\left(\sum_{i=1}^{n} r_{i}x_{i} + \sum_{i=1}^{n} s_{i}x_{i}\right) = f\left(\sum_{i=1}^{n} (r_{i} + s_{i})x_{i}\right) = \sum_{i=1}^{n} (r_{i} + s_{i})m_{i}$$
$$= \sum_{i=1}^{n} r_{i}m_{i} + \sum_{i=1}^{n} s_{i}m_{i} = f\left(\sum_{i=1}^{n} r_{i}x_{i}\right) + f\left(\sum_{i=1}^{n} s_{i}x_{i}\right)$$

(c) f is R-linear, for $r \in R$ we have:

$$f\left(r\sum_{i=1}^{n}r_{i}x_{i}\right) = f\left(\sum_{i=1}^{n}rr_{i}m_{i}\right) = \sum_{i=1}^{n}rr_{i}m_{i} = r\sum_{i=1}^{n}r_{i}m_{i} = rf\left(\sum_{i=1}^{n}r_{i}x_{i}\right)$$

(d) f is unique: if g a morphism of modules such that $g(x_i) = m_i$ for i = 1, ..., n we obtain that:

$$f\left(\sum_{i=1}^{n} r_{i}x_{i}\right) = \sum_{i=1}^{n} r_{i}m_{i} = \sum_{i=1}^{n} r_{i}g(x_{i}) = \sum_{i=1}^{n} g(r_{i}x_{i}) = g\left(\sum_{i=1}^{n} r_{i}m_{i}\right)$$

thus f = g.

2. We want to construct a \mathbb{Z} -module homomorphism $f\mathbb{Z} \oplus \mathbb{Z} \longrightarrow \mathbb{Z}$ such that $f(x_1) = 1$. First, notice that letting $y = x_2/2$, $\{x_1, y\}$ form a basis of $\mathbb{Z} \oplus \mathbb{Z}$ as a free module. By the definition of x_1 , x_2 and x_3 we have that $x_3 = x_1 + x_2/2$, thus applying f we obtain that $f(x_3) = f(x_1) + f(x_2)/2$. It is easy to check that if we set:

$$\begin{cases} f(x_2) = 2 f(x_3) = 2\\ f(x_2) = 4 f(x_3) = 3 \end{cases} \implies \begin{cases} f(x_1) = 1\\ f(y) = 1 \end{cases}$$

thus in virtue of the above, f is uniquely determined (since we have determined its value on a basis) but we have multiple choices for the values of x_2 and x_3 . 3. Show that there exists no \mathbb{Z} -module homomorphism $f\mathbb{Z} \oplus \mathbb{Z} \longrightarrow \mathbb{Z}$ such that $f(x_1) = 1$ and $f(x_2) = 1$, regardless of what we try to pick for $f(x_3)$. Notice that $y = x_2/2$, hence $f(y) = f(x_2)/2 = 1/2$, but $1/2 \notin \mathbb{Z}$. This implies that there is no value to be assigned to y, that is, no such homomorphism f exists.