Algebra II - Homework 3

Pablo Sánchez Ocal

February 20th, 2017

- 1. Show that $S^{-1}M$ is a $S^{-1}R$ module. First, notice that $(S^{-1}M, +)$ is an abelian group since:
 - (a) Given $m_1/s_1, m_2/s_2 \in$ we have: $s_2m_1 + s_1m_2 \in M, s_1s_2 \in S$ and:

$$\frac{m_1}{s_1} + \frac{m_2}{s_2} = \frac{s_2m_1 + s_1m_2}{s_1s_2} = \frac{s_1m_2 + s_2m_1}{s_1s_2} = \frac{m_2}{s_2} + \frac{m_1}{s_1} \in S^{-1}M.$$

(b) We have that $0/1 \in S^{-1}M$ is the identity element, for every $m/s \in S^{-1}M$:

$$\frac{m}{s} + \frac{0}{1} = \frac{m+0}{s} = \frac{m}{s}.$$

(c) Given $m/s \in S^{-1}M$, we have $(-m)/s \in S^{-1}M$ is its inverse:

$$\frac{m}{s} + \frac{-m}{s} = \frac{sm - sm}{s^2} = \frac{0}{s^2} = \frac{0}{1}.$$

Now, we define the multiplication on $S^{-1}M$ by scalars $S^{-1}R$ as:

$$\begin{array}{cccc} S^{-1}R \times S^{-1}M & \longrightarrow & S^{-1}M \\ \left(\frac{r}{t}, \frac{m}{s}\right) & \longmapsto & \frac{rm}{ts} \end{array}$$

and equipped with this, we notice that for every $m_1/s_1, m_2/s_1, m/s \in S^{-1}M$ and $r_1/t_1, r_2/t_2, r/t \in S^{-1}R$ we have:

- (a) $\frac{r}{t}(\frac{m_1}{s_1} + \frac{m_2}{s_2}) = \frac{r}{t}\frac{s_2m_1 + s_1m_2}{s_1s_2} = \frac{rs_2m_1 + rs_1m_2}{ts_1s_2} = \frac{trs_2m_1 + trs_1m_2}{ts_1ts_2} = \frac{rm_1}{ts_1} + \frac{rm_2}{ts_2} = \frac{r}{ts_1} + \frac{r}{ts_2} = \frac{r}{ts_2} + \frac{r}{ts_1} + \frac{r}{ts_2} = \frac{r}{ts_1} + \frac{r}{ts_2} = \frac{r}{ts_2} + \frac{r}{ts_1} + \frac{r}{ts_2} = \frac{r}{ts_1} + \frac{r}{ts_2} = \frac{r}{ts_2} + \frac{r}{ts_2$
- (b) $\left(\frac{r_1}{t_1} + \frac{r_2}{t_2}\right)\frac{m}{s} = \frac{t_2r_1 + t_1r_2}{t_1t_2}\frac{m}{s} = \frac{t_2r_1m + t_1r_2m}{t_1t_2s} = \frac{t_2sr_1m + t_1sr_2m}{t_1st_2s} = \frac{r_1m}{t_1s} + \frac{r_2m}{t_2s} = \frac{r_1m}{t_$
- (c) $\left(\frac{r_1}{t_1}\frac{r_2}{t_2}\right)\frac{m}{s} = \frac{r_1r_2}{t_1t_2}\frac{m}{s} = \frac{r_1r_2m}{t_1t_2s} = \frac{r_1}{s_1}\frac{r_2m}{t_2s} = \frac{r_1}{t_1}\left(\frac{r_2}{t_2}\frac{m}{s}\right).$
- (d) $\frac{1}{1}\frac{m}{s} = \frac{1m}{1s} = \frac{m}{s}$.

And the axioms of $S^{-1}M$ being an $S^{-1}R$ module are proven, as desired.

- 2. Given $\phi : M \longrightarrow N$ an R module homomorphism we define $S^{-1}\phi : S^{-1}M \longrightarrow S^{-1}N$ via $S^{-1}\phi(m/s) = \phi(m)/s$ for $m/s \in S^{-1}M$. Although not explicitly asked, it is clear that $S^{-1}\phi$ is an $S^{-1}R$ module homomorphism since for $m_1/s_1, m_2/s_2, m/s \in S^{-1}M$ and $r/t \in S^{-1}R$:
 - (a) $S^{-1}\phi(\frac{m_1}{s_2} + \frac{m_2}{s_2}) = S^{-1}\phi(\frac{s_2m_1 + s_1m_2}{s_1s_2}) = \frac{\phi(s_2m_1 + s_1m_2)}{s_1s_2} = \frac{s_2\phi(m_1) + s_1\phi(m_2)}{s_1s_2} = \frac{\phi(m_1) + \phi(m_2)}{s_1s_2} = \frac{\phi(m_1) + \phi($

$$(f_{1}, f_{2}) = 0 \quad \psi(f_{1}, f_{3}) = 0 \quad \psi(f_{1}, f_{3}) = -\frac{1}{ts} = -\frac{1}{ts} = -\frac{1}{t} - \frac{1}{s} = -\frac{1}{t} = 0 \quad \psi(f_{1}, f_{3}) = -\frac{1}{ts} = -\frac{1}{ts$$

We now show that $S^{-1}(\cdot) : \operatorname{Mod}(R) \longrightarrow \operatorname{Mod}(S^{-1}R)$ is a covariant functor:

- (a) To each object $M \in Mod(R)$ we have $S^{-1}M \in Mod(S^{-1}R)$ by the above.
- (b) To each morphism $\phi: M \longrightarrow N$ in Mod(R) we have $S^{-1}\phi: S^{-1}M \longrightarrow S^{-1}N$ a morphism in $Mod(S^{-1}R)$ by the above.
- (c) For every $m/s \in S^{-1}M$ we have: $S^{-1}(\operatorname{id}_M)(\frac{m}{s}) = \frac{\operatorname{id}_M(m)}{s} = \frac{m}{s} = \operatorname{id}_{S^{-1}M}(\frac{m}{s})$ thus $S^{-1}(\operatorname{id}_M) = \beth_{S^{-1}M}$.
- (d) Given any morphisms $\psi: M \longrightarrow N$ and $\phi: N \longrightarrow K$, for every $m/s \in S^{-1}M$ we have: $S^{-1}(\phi \circ \psi)(\frac{m}{s}) = \frac{\phi \circ \psi(m)}{s} = S^{-1}\phi(\frac{\psi(m)}{s}) = S^{-1}\phi(S^{-1}\psi(\frac{m}{s}))$ thus $S^{-1}(\phi \circ \psi) = S^{-1}\phi \circ S^{-1}\psi$.

And the axioms of $S^{-1}(\cdot)$ being a functor are proven, as desired.

3. Show that $S^{-1}(\cdot)$ is exact. For this, let $N \xrightarrow{\phi} M \xrightarrow{\psi} K$ be an exact sequence, that is, $\operatorname{im}(\phi) = \operatorname{ker}(\psi)$, we want to prove that $S^{-1}M \xrightarrow{S^{-1}\phi} S^{-1}M \xrightarrow{S^{-1}\psi} S^{-1}K$ is exact, that is, $\operatorname{im}(S^{-1}\phi) = \operatorname{ker}(S^{-1}\psi)$.

 \supseteq) Let $m/s \in \ker(S^{-1}\psi)$, that is, $0 = S^{-1}\psi(m/s) = \psi(m)/s$, hence there is $t \in S$ with $t\psi(m) = 0$, and since ψ is a morphism this happens if and only if $\phi(tm) = 0$. Hence $tm \in \ker(\psi) = \operatorname{im}(\phi)$ and there is $n \in N$ with $\phi(n) = tm$, with $n/ts \in S^{-1}N$. Thus $S^{-1}\phi(n/ts) = \phi(n)/ts = tm/ts = m/s$ meaning that $m/s \in \operatorname{im}(S^{-1}\phi)$.

In the notation as above, let $K = S^{-1}R$.

1. Show that there is a ring homomorphism $\phi : R \longrightarrow K$ such that $\phi(r) = r/1$, and this is injective if and only if S does not contain 0 nor zero divisors. By simply defining:

we note that to each $r \in R$ corresponds a single $r/1 \in K$, hence this is a well defined function. This function is a ring homomorphism since for $r_1, r_2 \in R$ we have:

- (a) $\phi(r_1 + r_2) = \frac{r_1 + r_2}{1} = \frac{r_1}{1} + \frac{r_2}{1} = \phi(r_1) + \phi(r_2),$ (b) $\phi(r_1 r_2) = \frac{r_1 r_2}{1} = \frac{r_1}{1} \frac{r_2}{1} = \phi(r_2)\phi(r_2),$
- (c) $\phi(1) = 1/1$ the unit element in K.

Notice that for $r, s \in R$ we have:

$$\phi(r) = \phi(s) \iff \frac{r}{1} = \frac{s}{1} \iff \exists t \in S \text{ with } t(r-s) = 0,$$

hence for proving that ϕ is injective if and only if S does not contain 0 nor zero divisors:

 \Rightarrow) If S contains 0 then using t = 0 above we clearly have that any two elements $r, s \in R$ have the same image, thus ϕ is not injective. If S contains a zero divisor v, say that vu = 0 for certain non zero $u \in R$, then taking t = v above, we have that 0 = tu = t(u - 0) thus $\phi(u) = \phi(0)$ with $u \neq 0$, hence ϕ is not injective.

 \Leftarrow) Suppose ϕ is not injective, this means that there are different $r, s \in R$ and $t \in S$ with $\phi(r) = \phi(s)$, that is, t(r-s) = 0. If t = 0 then $0 \in S$ and if $t \neq 0$ then since $r - s \neq 0$ we have that $t \in S$ is a zero divisor.

2. Let M be an R module, we define the natural multiplication on $S^{-1}M$ by elements of R to make it an R-module. Since we are not asked to prove this, we will take it for granted, but notice how this is a particular case of Exercise 1 by taking $S = \{1\}$ and thus the proof is exactly the same as we have exposed above, by simply replacing the elements in $S^{-1}R$ by elements of the form r/1 with $r \in R$. We want to show that the function:

$$\begin{array}{rcccc} \psi & \colon & M & \longrightarrow & S^{-1}M \\ & & m & \longmapsto & \frac{m}{1} \end{array}$$

is an *R*-module homomorphism. For this, consider $m, n \in M$ and $r \in R$, we have:

- (a) $\psi(m+n) = \frac{m+n}{1} = \frac{m}{1} + \frac{n}{1} = \psi(m) + \psi(n),$
- (b) $\psi(rm) = \frac{rm}{1} = \frac{r}{1}\frac{m}{1} = r\frac{m}{1} = r\psi(m).$

Finally, to compute ker(ψ) we realize that for $m \in M$ we have $\psi(m) = 0/1$ if and only if m/1 = 0/1, that is, whenever there is an $t \in S$ with tm = 0. Hence:

 $\ker(\psi)=\{m\in M: \exists t\in S \text{ with } tm=0\}.$

Let R be a commutative ring, M an R-module, we define for a prime ideal $P \subset R$ the set $S_P = R \setminus P$ and $R_P = S_P^{-1}R$, $M_P = S_P^{-1}M$. We are asked to show that the following are equivalent:

- 1. M = 0,
- 2. $M_P = 0$ for all prime ideals $P \subset R$,
- 3. $M_N = 0$ for all maximal ideals $N \subset R$.

1. \Rightarrow)2. Let $P \subset R$ be a prime ideal. If M = 0 then clearly 0/r = 0/1 for every $r \in S_P$, thus $M_P = \{\frac{0}{1}\} = 0$.

 $2. \Rightarrow 1$. Let $N \subset R$ be a maximal ideal. Since R is commutative, N is a prime ideal, hence $M_N = 0$.

2. ⇒)1. Suppose $M \neq 0$, pick $m \in M$ non zero. Consider the set $\{r \in R : rm = 0\}$, which is clearly an ideal of R by the properties of the multiplication on M by R as a module (that is, it is an additive group and $R\{r \in R : rm = 0\} \subset \{r \in R : rm = 0\}$). Since every ideal is contained in a maximal ideal, there is a maximal ideal N with $\{r \in R : rm = 0\} \subset N$. However, now $m/1 \neq 0/1$ in M_N , since if m/1 = 0/1 in M_N this means there is an element $t \in S_N$ with tm = 0, but now $t \in \{r \in R : rm = 0\}$, which is a contradiction. Hence $M_N \neq 0$ and by contrapositive we are done.

Let R be a ring (we assume with unity) and let R' = Hom(R, R). Show that we have $R' \cong R^{op}$ where R^{op} is the opposite ring of R. We will prove the equivalent statement that $R \cong \text{Hom}(R^{op}, R^{op})$. For this, we define:

which is clearly well defined since f_a is a multiplication by an element of the ring which is always a morphism of rings, thus:

- 1. ϕ is a morphism of rings, for $a, b \in R$ and $r \in R^{op}$ we have:
 - (a) $\phi(a+b)(r) = r * (a+b) = (a+b)r = ar + br = r * a + r * b = \phi(a)(r) + \phi(b)(r)$ so $\phi(a+b) = \phi(a) + \phi(b)$,
 - (b) $\phi(ab)(r) = r * (ab) = abr = a(r * b) = (r * b) * a = \phi(a)(r * b) = \phi(a)(\phi(b)(r))$ so $\phi(ab) = \phi(a) \circ \phi(b)$,
 - (c) $\phi(1)(r) = r * 1 = 1r = r = id_R(r).$
- 2. ϕ is injective: suppose we have $\phi(a)(r) = \phi(b)(r)$, this happens if and only if ar = r * a = r * b = br thus in particular taking r = 1 we obtain a = b and injectivity.
- 3. ϕ is surjective: suppose we have a function $f : \mathbb{R}^{op} \longrightarrow \mathbb{R}^{op}$, let $f(1) \in \mathbb{R}^{op}$, we claim that $\phi(f(1)) = f$. For this, notice that $\phi(f(1))(r) = r * f(1) = f(r1) = f(r)$ as desired, where we used that f is a morphism.

Hence ϕ is an isomorphism of rings, as desired.

Let K be a field, V a finite dimensional vector space over K.

- 1. Show that V satisfies the ascending chain condition. Suppose we have $\{V_i\}_{i=0}^{\infty}$ a sequence of subspaces such that $V_0 \subset V_1 \subset \cdots$. Since V is finite dimensional, suppose dim(V) = n. Hence $d_i = \dim(V_i) \leq n$ for every *i*. Moreover since subspaces of the same dimension are are isomorphic, we can consider the chain above up to isomorphism to obtain $V_{i_0} \subsetneq V_{i_1} \subsetneq \cdots$. This induces a strictly increasing sequence of natural numbers $d_{i_0} < d_{i_1} < \cdots$. Since we have $0 \leq d_i \leq n$, this is a strictly increasing sequence of natural numbers bounded above by *n*, hence it must stabilize, say on d_{i_j} . Thus taking $N = i_j$, for $i \geq N$ we must have $V_i = V_N$, as desired.
- 2. Show that V satisfies the descending chain condition. The argument is exactly the same, but changing the sense of the inclusions. Suppose we have $\{V_i\}_{i=0}^{\infty}$ a sequence of subspaces such that $V_0 \supset V_1 \supset \cdots$. Since V is finite dimensional, suppose dim(V) = n. Hence $d_i = \dim(V_i) \leq n$ for every *i*. Moreover since subspaces of the same dimension are are isomorphic, we can consider the chain above up to isomorphism to obtain $V_{i_0} \supseteq V_{i_1} \supseteq \cdots$. This induces a strictly decreasing sequence of natural numbers $d_{i_0} > d_{i_1} > \cdots$. Since we have $0 \leq d_i \leq n$, this is a strictly decreasing sequence of natural numbers $d_{i_0} > d_{i_1} > \cdots$. Since we must have $V_i = V_N$, as desired.