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Exercise 1

1. Show that S−1M is a S−1R module. First, notice that (S−1M,+) is an abelian
group since:

(a) Given m1/s1,m2/s2 ∈ we have: s2m1 + s1m2 ∈M, s1s2 ∈ S and:

m1

s1
+
m2

s2
=
s2m1 + s1m2

s1s2
=
s1m2 + s2m1

s1s2
=
m2

s2
+
m1

s1
∈ S−1M.

(b) We have that 0/1 ∈ S−1M is the identity element, for every m/s ∈ S−1M :

m

s
+

0

1
=
m+ 0

s
=
m

s
.

(c) Given m/s ∈ S−1M , we have (−m)/s ∈ S−1M is its inverse:

m

s
+
−m
s

=
sm− sm

s2
=

0

s2
=

0

1
.

Now, we define the multiplication on S−1M by scalars S−1R as:

S−1R× S−1M −→ S−1M(
r
t ,
m
s

)
7−→ rm

ts

and equipped with this, we notice that for every m1/s1,m2/s1,m/s ∈ S−1M and
r1/t1, r2/t2, r/t ∈ S−1R we have:

(a) r
t (
m1
s1

+ m2
s2

) = r
t
s2m1+s1m2

s1s2
= rs2m1+rs1m2

ts1s2
= trs2m1+trs1m2

ts1ts2
= rm1

ts1
+ rm2

ts2
=

r
t
m1
s1

+ r
t
m2
s2

.

(b) ( r1t1 + r2
t2

)ms = t2r1+t1r2
t1t2

m
s = t2r1m+t1r2m

t1t2s
= t2sr1m+t1sr2m

t1st2s
= r1m

t1s
+ r2m

t2s
=

r1
t1
m
s + r2

t2
m
s .

(c) ( r1t1
r2
t2

)ms = r1r2
t1t2

m
s = r1r2m

t1t2s
= r1

s1
r2m
t2s

= r1
t1

( r2t2
m
s ).

(d) 1
1
m
s = 1m

1s = m
s .

And the axioms of S−1M being an S−1R module are proven, as desired.

2. Given φ : M −→ N an R module homomorphism we define S−1φ : S−1M −→
S−1N via S−1φ(m/s) = φ(m)/s for m/s ∈ S−1M . Although not explicitly asked,
it is clear that S−1φ is an S−1Rmodule homomorphism since form1/s1,m2/s2,m/s ∈
S−1M and r/t ∈ S−1R:

(a) S−1φ(m1
s2

+ m2
s2

) = S−1φ( s2m1+s1m2
s1s2

) = φ(s2m1+s1m2)
s1s2

= s2φ(m1)+s1φ(m2)
s1s2

=
φ(m1)
s1

+ φ(m2)
s2

= S−1φ(m1
s1

) + S−1φ(m2
s2

),

(b) S−1φ( rt
m
s ) = S−1φ( rmts ) = φ(rm)

ts = rφ(m)
ts = r

t
φ(m)
s = r

tS
−1φ(ms ).
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We now show that S−1(·) : Mod(R) −→ Mod(S−1R) is a covariant functor:

(a) To each object M ∈ Mod(R) we have S−1M ∈ Mod(S−1R) by the above.

(b) To each morphism φ : M −→ N in Mod(R) we have S−1φ : S−1M −→ S−1N
a morphism in Mod(S−1R) by the above.

(c) For every m/s ∈ S−1M we have: S−1(idM )(ms ) = idM (m)
s = m

s = idS−1M (ms )
thus S−1(idM ) = iS−1M .

(d) Given any morphisms ψ : M −→ N and φ : N −→ K, for every m/s ∈ S−1M
we have: S−1(φ ◦ ψ)(ms ) = φ◦ψ(m)

s = S−1φ(ψ(m)
s ) = S−1φ(S−1ψ(ms )) thus

S−1(φ ◦ ψ) = S−1φ ◦ S−1ψ.

And the axioms of S−1(·) being a functor are proven, as desired.

3. Show that S−1(·) is exact. For this, let N
φ−→M

ψ−→ K be an exact sequence, that

is, im(φ) = ker(ψ), we want to prove that S−1M
S−1φ−−−→ S−1M

S−1ψ−−−→ S−1K is
exact, that is, im(S−1φ) = ker(S−1ψ).

⊆) Let m/s ∈ im(S−1φ), that is, there is n/t ∈ S−1N with φ(n)/t = S−1φ(n/t) =
m/s. Hence S−1ψ(m/s) = S−1ψ(φ(n)/t) = ψ ◦ φ(n)/t = 0/t = 0/1 since φ(n) ∈
im(φ) = ker(ψ) thus ψ(φ(n)) = 0, that is, m/s ∈ ker(S−1ψ).

⊇) Let m/s ∈ ker(S−1ψ), that is, 0 = S−1ψ(m/s) = ψ(m)/s, hence there is
t ∈ S with tψ(m) = 0, and since ψ is a morphism this happens if and only if
φ(tm) = 0. Hence tm ∈ ker(ψ) = im(φ) and there is n ∈ N with φ(n) = tm,
with n/ts ∈ S−1N . Thus S−1φ(n/ts) = φ(n)/ts = tm/ts = m/s meaning that
m/s ∈ im(S−1φ).
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Exercise 2

In the notation as above, let K = S−1R.

1. Show that there is a ring homomorphism φ : R −→ K such that φ(r) = r/1, and
this is injective if and only if S does not contain 0 nor zero divisors. By simply
defining:

φ : R −→ K
r 7−→ r

1

we note that to each r ∈ R corresponds a single r/1 ∈ K, hence this is a well
defined function. This function is a ring homomorphism since for r1, r2 ∈ R we
have:

(a) φ(r1 + r2) = r1+r2
1 = r1

1 + r2
1 = φ(r1) + φ(r2),

(b) φ(r1r2) = r1r2
1 = r1

1
r2
1 = φ(r2)φ(r2),

(c) φ(1) = 1/1 the unit element in K.

Notice that for r, s ∈ R we have:

φ(r) = φ(s) ⇐⇒ r

1
=
s

1
⇐⇒ ∃t ∈ S with t(r − s) = 0,

hence for proving that φ is injective if and only if S does not contain 0 nor zero
divisors:

⇒) If S contains 0 then using t = 0 above we clearly have that any two elements
r, s ∈ R have the same image, thus φ is not injective. If S contains a zero divisor
v, say that vu = 0 for certain non zero u ∈ R, then taking t = v above, we have
that 0 = tu = t(u− 0) thus φ(u) = φ(0) with u 6= 0, hence φ is not injective.

⇐) Suppose φ is not injective, this means that there are different r, s ∈ R and
t ∈ S with φ(r) = φ(s), that is, t(r − s) = 0. If t = 0 then 0 ∈ S and if t 6= 0 then
since r − s 6= 0 we have that t ∈ S is a zero divisor.

2. Let M be an R module, we define the natural multiplication on S−1M by elements
of R to make it an R-module. Since we are not asked to prove this, we will take
it for granted, but notice how this is a particular case of Exercise 1 by taking
S = {1} and thus the proof is exactly the same as we have exposed above, by
simply replacing the elements in S−1R by elements of the form r/1 with r ∈ R.
We want to show that the function:

ψ : M −→ S−1M
m 7−→ m

1

is an R-module homomorphism. For this, consider m,n ∈M and r ∈ R, we have:

(a) ψ(m+ n) = m+n
1 = m

1 + n
1 = ψ(m) + ψ(n),

(b) ψ(rm) = rm
1 = r

1
m
1 = rm1 = rψ(m).
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Finally, to compute ker(ψ) we realize that for m ∈M we have ψ(m) = 0/1 if and
only if m/1 = 0/1, that is, whenever there is an t ∈ S with tm = 0. Hence:

ker(ψ) = {m ∈M : ∃t ∈ S with tm = 0}.
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Exercise 3

Let R be a commutative ring, M an R-module, we define for a prime ideal P ⊂ R the
set SP = R\P and RP = S−1P R, MP = S−1P M . We are asked to show that the following
are equivalent:

1. M = 0,

2. MP = 0 for all prime ideals P ⊂ R,

3. MN = 0 for all maximal ideals N ⊂ R.

1. ⇒)2. Let P ⊂ R be a prime ideal. If M = 0 then clearly 0/r = 0/1 for every
r ∈ SP , thus MP = {01} = 0.

2.⇒)1. Let N ⊂ R be a maximal ideal. Since R is commutative, N is a prime ideal,
hence MN = 0.

2.⇒)1. Suppose M 6= 0, pick m ∈ M non zero. Consider the set {r ∈ R : rm = 0},
which is clearly an ideal of R by the properties of the multiplication on M by R as a
module (that is, it is an additive group and R{r ∈ R : rm = 0} ⊂ {r ∈ R : rm = 0}).
Since every ideal is contained in a maximal ideal, there is a maximal ideal N with
{r ∈ R : rm = 0} ⊂ N . However, now m/1 6= 0/1 in MN , since if m/1 = 0/1 in MN this
means there is an element t ∈ SN with tm = 0, but now t ∈ {r ∈ R : rm = 0}, which is
a contradiction. Hence MN 6= 0 and by contrapositive we are done.
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Exercise 4

Let R be a ring (we assume with unity) and let R′ = Hom(R,R). Show that we have
R′ ∼= Rop where Rop is the opposite ring of R. We will prove the equivalent statement
that R ∼= Hom(Rop, Rop). For this, we define:

φ : R −→ Hom(Rop, Rop)
a 7−→ fa

, with
fa : Rop −→ Rop

r 7−→ r ∗ a

which is clearly well defined since fa is a multiplication by an element of the ring which
is always a morphism of rings, thus:

1. φ is a morphism of rings, for a, b ∈ R and r ∈ Rop we have:

(a) φ(a+ b)(r) = r ∗ (a+ b) = (a+ b)r = ar+ br = r ∗a+ r ∗ b = φ(a)(r) +φ(b)(r)
so φ(a+ b) = φ(a) + φ(b),

(b) φ(ab)(r) = r ∗ (ab) = abr = a(r ∗ b) = (r ∗ b) ∗ a = φ(a)(r ∗ b) = φ(a)(φ(b)(r))
so φ(ab) = φ(a) ◦ φ(b),

(c) φ(1)(r) = r ∗ 1 = 1r = r = idR(r).

2. φ is injective: suppose we have φ(a)(r) = φ(b)(r), this happens if and only if
ar = r ∗ a = r ∗ b = br thus in particular taking r = 1 we obtain a = b and
injectivity.

3. φ is surjective: suppose we have a function f : Rop −→ Rop, let f(1) ∈ Rop, we
claim that φ(f(1)) = f . For this, notice that φ(f(1))(r) = r ∗ f(1) = f(r1) = f(r)
as desired, where we used that f is a morphism.

Hence φ is an isomorphism of rings, as desired.
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Exercise 5

Let K be a field, V a finite dimensional vector space over K.

1. Show that V satisfies the ascending chain condition. Suppose we have {Vi}∞i=0 a
sequence of subspaces such that V0 ⊂ V1 ⊂ · · · . Since V is finite dimensional,
suppose dim(V ) = n. Hence di = dim(Vi) ≤ n for every i. Moreover since
subspaces of the same dimension are are isomorphic, we can consider the chain
above up to isomorphism to obtain Vi0 ( Vi1 ( · · · . This induces a strictly
increasing sequence of natural numbers di0 < di1 < · · · . Since we have 0 ≤ di ≤ n,
this is a strictly increasing sequence of natural numbers bounded above by n, hence
it must stabilize, say on dij . Thus taking N = ij , for i ≥ N we must have Vi = VN ,
as desired.

2. Show that V satisfies the descending chain condition. The argument is exactly the
same, but changing the sense of the inclusions. Suppose we have {Vi}∞i=0 a sequence
of subspaces such that V0 ⊃ V1 ⊃ · · · . Since V is finite dimensional, suppose
dim(V ) = n. Hence di = dim(Vi) ≤ n for every i. Moreover since subspaces
of the same dimension are are isomorphic, we can consider the chain above up
to isomorphism to obtain Vi0 ) Vi1 ) · · · . This induces a strictly decreasing
sequence of natural numbers di0 > di1 > · · · . Since we have 0 ≤ di ≤ n, this is
a strictly decreasing sequence of natural numbers bounded below by 0, hence it
must stabilize, say on dij . Thus taking N = ij , for i ≥ N we must have Vi = VN ,
as desired.
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