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Exercise 1

1. Show that S~'M is a S~'R module. First, notice that (S~!M,+) is an abelian

group since:

(a) Given my/s1, ma/se € we have: sami + symg € M, s159 € S and:

mq mgo Somi + S1m2 S1Mo + Somy mo mq _
— = = =—+—€eS'M.

871 59 5159 51592 59 S1
(b) We have that 0/1 € S~ M is the identity element, for every m/s € S~ M:

mOm%—Om

S 1 S s

(c) Given m/s € ST1M, we have (—m)/s € S™1M is its inverse:

+ s s 2 1

m —m  Sm—Ssm 0 0
s

Now, we define the multiplication on S~'M by scalars S~ R as:

STIRx S™'M — S M
(z m) — Tm

t? s ts

and equipped with this, we notice that for every my /sy, ma/s1,m/s € ST*M and
r1/t1,r2/t2, 7/t € STIR we have:

(a) 3(m1 4 mz) — T S2mM1+81MmM2 — rsSomi1+rsime — trsomi+trsime _ rmy 4 rma __
t t 5182 ts182 tsitsa tsy tso
Tmi rmg
t 81 t s2
(b) (1;1 4 L)m — lamittirom _ terimitirom __ tasrimAtisrom . rim + rom  __
t1 to/ s t1to S t1tos ti1stos t1s tos
rm + rgm
t1 s 2 8"
(c) (7;17;2)@ _rmrem __ rirem __ Trirem __ 7;1(7;2@)
1t2/ s tito s titas s1 tos t1 \tg s /°
Im _ 1m _ m
(d) 1s = 1s = s

And the axioms of S~'M being an S~'R module are proven, as desired.

2. Given ¢ : M — N an R module homomorphism we define S~1'¢ : S™'M —
STIN via S7t¢(m/s) = ¢(m)/s for m/s € STIM. Although not explicitly asked,
it is clear that S~'¢ is an S~! R module homomorphism since for m1 /s, ma/s2, m/s €
S~IM and r/t € STIR:

-1 1 + _ (samutsime) _ sag(ma)tsid(ma) _
(a) S QS(% + 7:722) - S ¢(82m;1821m2) - 2 511521 2= 2 181821 ==

d(m1) | ¢( )_ —1 4 m 1
m) g $lma) _ g-lg(m) 4 g-lg(me),
(b) STlo(5m) = STlg(5m) = ) — roum) — polm) _ pg-lg(m).

S S




We now show that S71(+) : Mod(R) — Mod(S™!R) is a covariant functor:

(a) To each object M € Mod(R) we have S™'M € Mod(S~!'R) by the above.

(b) To each morphism ¢ : M —s N in Mod(R) we have S~'¢: S™'M — S™IN
a morphism in Mod(S~!R) by the above.

(c) For every m/s € S™*M we have: S~1(idp)(2) = w =T =idg-15("%)
thus S_l(idM) = :S—lM'

(d) Given any morphisms ¢ : M — N and ¢ : N — K, for every m/s € S™'M
we have: S7H(¢op)(2) = UM = go1g(LM) = §lg(Sly (1)) thus
S~ o) = S1po 51y,

And the axioms of S71(-) being a functor are proven, as desired.

. Show that S~1(-) is exact. For this, let N 2 M % K be an exact sequence, that

—1 -1
is, im(¢) = ker(1)), we want to prove that S—'M S0 st S 51K s

exact, that is, im(S~'¢) = ker(S~1).

C) Let m/s € im(S~1¢), that is, there is n/t € STIN with ¢(n)/t = S~1é(n/t) =
m/s. Hence S~1(m/s) = S~ p(¢(n)/t) = 1 o ¢(n)/t = 0/t = 0/1 since ¢p(n) €
im(¢) = ker(v)) thus ¥(¢(n)) = 0, that is, m/s € ker(S~1).

D) Let m/s € ker(S~'¢), that is, 0 = S~ (m/s) = (m)/s, hence there is
t € S with t¢(m) = 0, and since @ is a morphism this happens if and only if
¢(tm) = 0. Hence tm € ker(¢)) = im(¢) and there is n € N with ¢(n) = tm,
with n/ts € STIN. Thus S~1¢(n/ts) = ¢(n)/ts = tm/ts = m/s meaning that
m/s € im(S71¢).



Exercise 2

In the notation as above, let K = S™!R.

1. Show that there is a ring homomorphism ¢ : R — K such that ¢(r) = r/1, and
this is injective if and only if S does not contain 0 nor zero divisors. By simply
defining;:

¢ : R — K
T

T

we note that to each r € R corresponds a single r/1 € K, hence this is a well
defined function. This function is a ring homomorphism since for r1,79 € R we
have:

(a) ¢(rL+r2) = 5972 =0+ 2 = (r1) + ¢(r2),
(b) @(rire) = 52 = 553 = ¢(r2)¢(r2),
(¢) ¢(1) =1/1 the unit element in K.

Notice that for r, s € R we have:

ros
o(r) =¢(s) = 151 5 Jt € S with t(r —s) =0,

hence for proving that ¢ is injective if and only if S does not contain 0 nor zero
divisors:
=) If S contains 0 then using ¢ = 0 above we clearly have that any two elements
r,s € R have the same image, thus ¢ is not injective. If S contains a zero divisor
v, say that vu = 0 for certain non zero u € R, then taking ¢ = v above, we have
that 0 = tu = t(u — 0) thus ¢(u) = ¢(0) with u # 0, hence ¢ is not injective.

<) Suppose ¢ is not injective, this means that there are different r,s € R and
t € S with ¢(r) = ¢(s), that is, t(r —s) = 0. If t =0 then 0 € S and if ¢ # 0 then
since r — s # 0 we have that t € S is a zero divisor.

2. Let M be an R module, we define the natural multiplication on S~'M by elements
of R to make it an R-module. Since we are not asked to prove this, we will take
it for granted, but notice how this is a particular case of Exercise 1 by taking
S = {1} and thus the proof is exactly the same as we have exposed above, by
simply replacing the elements in S™!R by elements of the form r/1 with r € R.
We want to show that the function:

() lm 4 n) = =4 = 54§ = (m) + ()

(b) p(rm) = 0 = T = 2 = pyy(m),



Finally, to compute ker(1)) we realize that for m € M we have ¢(m) = 0/1 if and
only if m/1 = 0/1, that is, whenever there is an t € S with tm = 0. Hence:

ker(¢)) = {m € M : 3t € S with tm = 0}.



Exercise 3

Let R be a commutative ring, M an R-module, we define for a prime ideal P C R the
set Sp = R\ P and Rp = S;lR, Mp = S;lM. We are asked to show that the following

are equivalent:
1. M =0,
2. Mp = 0 for all prime ideals P C R,
3. My = 0 for all maximal ideals N C R.

1. =)2. Let P C R be a prime ideal. If M = 0 then clearly 0/r = 0/1 for every
r € Sp, thus Mp = {9} = 0.

2. =)1. Let N C R be a maximal ideal. Since R is commutative, N is a prime ideal,
hence My = 0.

2. =)1. Suppose M # 0, pick m € M non zero. Consider the set {r € R : rm = 0},
which is clearly an ideal of R by the properties of the multiplication on M by R as a
module (that is, it is an additive group and R{r € R:rm =0} C {r € R : rm = 0}).
Since every ideal is contained in a maximal ideal, there is a maximal ideal N with
{r € R:rm =0} C N. However, now m/1 # 0/1 in My, since if m/1 = 0/1 in My this
means there is an element ¢t € Sy with tm = 0, but now ¢ € {r € R : rm = 0}, which is
a contradiction. Hence My # 0 and by contrapositive we are done.



Exercise 4

Let R be a ring (we assume with unity) and let R* = Hom(R, R). Show that we have
R’ = R where R is the opposite ring of R. We will prove the equivalent statement
that R = Hom(R, R°P). For this, we define:

¢ : R — Hom(R, RP) . fa R’ — R
,  with
a +— fa r o o r*xa

which is clearly well defined since f, is a multiplication by an element of the ring which
is always a morphism of rings, thus:

1. ¢ is a morphism of rings, for a,b € R and r € R°° we have:

(a) ¢pla+b)(r) =rx(a+b) =(a+br=ar+br=rxa+rxb= ¢(a)(r)+¢(b)(r)
so ¢(a+b) = ¢(a) + ¢(b),
(b) @(ab)(r) =7 (ab) = abr = a(r «b) = (rxb) xa = ¢(a)(r xb) = ¢(a)(A(b)(r))
so ¢(ab) = ¢(a) o ¢(b),
(c) p(1)(r) =r=x1=1r =r =idg(r).
2. ¢ is injective: suppose we have ¢(a)(r) = ¢(b)(r), this happens if and only if
ar = r*a = r* b = br thus in particular taking » = 1 we obtain a = b and
injectivity.

3. ¢ is surjective: suppose we have a function f : R’ — R let f(1) € RP, we
claim that ¢(f(1)) = f. For this, notice that ¢(f(1))(r) =r= f(1) = f(rl) = f(r)
as desired, where we used that f is a morphism.

Hence ¢ is an isomorphism of rings, as desired.



Exercise 5

Let K be a field, V a finite dimensional vector space over K.

1. Show that V satisfies the ascending chain condition. Suppose we have {V;}°, a
sequence of subspaces such that Vy € V4 C ---. Since V is finite dimensional,
suppose dim(V) = n. Hence d; = dim(V;) < n for every i. Moreover since
subspaces of the same dimension are are isomorphic, we can consider the chain
above up to isomorphism to obtain V;, C V;, € ---. This induces a strictly
increasing sequence of natural numbers d;, < d;; < ---. Since we have 0 < d; < n,
this is a strictly increasing sequence of natural numbers bounded above by n, hence
it must stabilize, say on d;;. Thus taking N = i;, for ¢ > N we must have V; = Vy,

as desired.

2. Show that V satisfies the descending chain condition. The argument is exactly the
same, but changing the sense of the inclusions. Suppose we have {V;}2°, a sequence
of subspaces such that Vj D V43 D ---. Since V is finite dimensional, suppose
dim(V) = n. Hence d; = dim(V;) < n for every i. Moreover since subspaces
of the same dimension are are isomorphic, we can consider the chain above up
to isomorphism to obtain V;, 2 V;; 2 ---. This induces a strictly decreasing
sequence of natural numbers d;, > d;; > ---. Since we have 0 < d; < n, this is
a strictly decreasing sequence of natural numbers bounded below by 0, hence it
must stabilize, say on d;;. Thus taking N = ;, for ¢ > N we must have V; = Vy,
as desired.



