Algebra II - Homework 3

Pablo Sánchez Ocal
February 20th, 2017

Exercise 1

1. Show that $S^{-1} M$ is a $S^{-1} R$ module. First, notice that $\left(S^{-1} M,+\right)$ is an abelian group since:
(a) Given $m_{1} / s_{1}, m_{2} / s_{2} \in$ we have: $s_{2} m_{1}+s_{1} m_{2} \in M, s_{1} s_{2} \in S$ and:

$$
\frac{m_{1}}{s_{1}}+\frac{m_{2}}{s_{2}}=\frac{s_{2} m_{1}+s_{1} m_{2}}{s_{1} s_{2}}=\frac{s_{1} m_{2}+s_{2} m_{1}}{s_{1} s_{2}}=\frac{m_{2}}{s_{2}}+\frac{m_{1}}{s_{1}} \in S^{-1} M
$$

(b) We have that $0 / 1 \in S^{-1} M$ is the identity element, for every $m / s \in S^{-1} M$:

$$
\frac{m}{s}+\frac{0}{1}=\frac{m+0}{s}=\frac{m}{s}
$$

(c) Given $m / s \in S^{-1} M$, we have $(-m) / s \in S^{-1} M$ is its inverse:

$$
\frac{m}{s}+\frac{-m}{s}=\frac{s m-s m}{s^{2}}=\frac{0}{s^{2}}=\frac{0}{1}
$$

Now, we define the multiplication on $S^{-1} M$ by scalars $S^{-1} R$ as:

$$
\begin{array}{clc}
S^{-1} R \times S^{-1} M & \longrightarrow & S^{-1} M \\
\left(\frac{r}{t}, \frac{m}{s}\right) & \longmapsto & \frac{r m}{t s}
\end{array}
$$

and equipped with this, we notice that for every $m_{1} / s_{1}, m_{2} / s_{1}, m / s \in S^{-1} M$ and $r_{1} / t_{1}, r_{2} / t_{2}, r / t \in S^{-1} R$ we have:
(a) $\begin{aligned} & \frac{r}{t}\left(\frac{m_{1}}{s_{1}}+\frac{m_{2}}{s_{2}}\right)=\frac{r}{t} \frac{s_{2} m_{1}+s_{1} m_{2}}{s_{1} s_{2}}=\frac{r s_{2} m_{1}+r s_{1} m_{2}}{t s_{1} s_{2}}=\frac{t r s_{2} m_{1}+t r s_{1} m_{2}}{t s_{1} t s_{2}}=\frac{r m_{1}}{t s_{1}}+\frac{r m_{2}}{t s_{2}}= \\ & \frac{r}{t} \frac{m_{1}}{s_{1}}+\frac{r}{t} \frac{m_{2}}{s_{2}} \text {. }\end{aligned}$
(b) $\left(\frac{r_{1}}{t_{1}}+\frac{r_{2}}{t_{2}}\right) \frac{m}{s}=\frac{t_{2} r_{1}+t_{1} r_{2}}{t_{1} t_{2}} \frac{m}{s}=\frac{t_{2} r_{1} m+t_{1} r_{2} m}{t_{1} t_{2} s}=\frac{t_{2} s r_{1} m+t_{1} s r_{2} m}{t_{1} s t_{2} s}=\frac{r_{1} m}{t_{1} s}+\frac{r_{2} m}{t_{2} s}=$ $\frac{r_{1}}{t_{1}} \frac{m}{s}+\frac{r_{2}}{t_{2}} \frac{m}{s}$.
(c) $\left(\frac{r_{1}}{t_{1}} \frac{r_{2}}{t_{2}}\right) \frac{m}{s}=\frac{r_{1} r_{2}}{t_{1} t_{2}} \frac{m}{s}=\frac{r_{1} r_{2} m}{t_{1} t_{2} s}=\frac{r_{1}}{s_{1}} \frac{r_{2} m}{t_{2} s}=\frac{r_{1}}{t_{1}}\left(\frac{r_{2}}{t_{2}} \frac{m}{s}\right)$.
(d) $\frac{1}{1} \frac{m}{s}=\frac{1 m}{1 s}=\frac{m}{s}$.

And the axioms of $S^{-1} M$ being an $S^{-1} R$ module are proven, as desired.
2. Given $\phi: M \longrightarrow N$ an R module homomorphism we define $S^{-1} \phi: S^{-1} M \longrightarrow$ $S^{-1} N$ via $S^{-1} \phi(m / s)=\phi(m) / s$ for $m / s \in S^{-1} M$. Although not explicitly asked, it is clear that $S^{-1} \phi$ is an $S^{-1} R$ module homomorphism since for $m_{1} / s_{1}, m_{2} / s_{2}, m / s \in$ $S^{-1} M$ and $r / t \in S^{-1} R$:
(a) $S^{-1} \phi\left(\frac{m_{1}}{s_{2}}+\frac{m_{2}}{s_{2}}\right)=S^{-1} \phi\left(\frac{s_{2} m_{1}+s_{1} m_{2}}{s_{1} s_{2}}\right)=\frac{\phi\left(s_{2} m_{1}+s_{1} m_{2}\right)}{s_{1} s_{2}}=\frac{s_{2} \phi\left(m_{1}\right)+s_{1} \phi\left(m_{2}\right)}{s_{1} s_{2}}=$ $\frac{\phi\left(m_{1}\right)}{s_{1}}+\frac{\phi\left(m_{2}\right)}{s_{2}}=S^{-1} \phi\left(\frac{m_{1}}{s_{1}}\right)+S^{-1} \phi\left(\frac{m_{2}}{s_{2}}\right)$,
(b) $S^{-1} \phi\left(\frac{r}{t} \frac{m}{s}\right)=S^{-1} \phi\left(\frac{r m}{t s}\right)=\frac{\phi(r m)}{t s}=\frac{r \phi(m)}{t s}=\frac{r}{t} \frac{\phi(m)}{s}=\frac{r}{t} S^{-1} \phi\left(\frac{m}{s}\right)$.

We now show that $S^{-1}(\cdot): \operatorname{Mod}(R) \longrightarrow \operatorname{Mod}\left(S^{-1} R\right)$ is a covariant functor:
(a) To each object $M \in \operatorname{Mod}(R)$ we have $S^{-1} M \in \operatorname{Mod}\left(S^{-1} R\right)$ by the above.
(b) To each morphism $\phi: M \longrightarrow N$ in $\operatorname{Mod}(R)$ we have $S^{-1} \phi: S^{-1} M \longrightarrow S^{-1} N$ a morphism in $\operatorname{Mod}\left(S^{-1} R\right)$ by the above.
(c) For every $m / s \in S^{-1} M$ we have: $S^{-1}\left(\operatorname{id}_{M}\right)\left(\frac{m}{s}\right)=\frac{\operatorname{id}_{M}(m)}{s}=\frac{m}{s}=\operatorname{id}_{S^{-1} M}\left(\frac{m}{s}\right)$ thus $S^{-1}\left(\mathrm{id}_{M}\right)=\beth_{S^{-1} M}$.
(d) Given any morphisms $\psi: M \longrightarrow N$ and $\phi: N \longrightarrow K$, for every $m / s \in S^{-1} M$ we have: $S^{-1}(\phi \circ \psi)\left(\frac{m}{s}\right)=\frac{\phi \circ \psi(m)}{s}=S^{-1} \phi\left(\frac{\psi(m)}{s}\right)=S^{-1} \phi\left(S^{-1} \psi\left(\frac{m}{s}\right)\right)$ thus $S^{-1}(\phi \circ \psi)=S^{-1} \phi \circ S^{-1} \psi$.

And the axioms of $S^{-1}(\cdot)$ being a functor are proven, as desired.
3. Show that $S^{-1}(\cdot)$ is exact. For this, let $N \xrightarrow{\phi} M \xrightarrow{\psi} K$ be an exact sequence, that is, $\operatorname{im}(\phi)=\operatorname{ker}(\psi)$, we want to prove that $S^{-1} M \xrightarrow{S^{-1} \phi} S^{-1} M \xrightarrow{S^{-1} \psi} S^{-1} K$ is exact, that is, $\operatorname{im}\left(S^{-1} \phi\right)=\operatorname{ker}\left(S^{-1} \psi\right)$.
$\subseteq)$ Let $m / s \in \operatorname{im}\left(S^{-1} \phi\right)$, that is, there is $n / t \in S^{-1} N$ with $\phi(n) / t=S^{-1} \phi(n / t)=$ m / s. Hence $S^{-1} \psi(m / s)=S^{-1} \psi(\phi(n) / t)=\psi \circ \phi(n) / t=0 / t=0 / 1$ since $\phi(n) \in$ $\operatorname{im}(\phi)=\operatorname{ker}(\psi)$ thus $\psi(\phi(n))=0$, that is, $m / s \in \operatorname{ker}\left(S^{-1} \psi\right)$.
$\supseteq)$ Let $m / s \in \operatorname{ker}\left(S^{-1} \psi\right)$, that is, $0=S^{-1} \psi(m / s)=\psi(m) / s$, hence there is $t \in S$ with $t \psi(m)=0$, and since ψ is a morphism this happens if and only if $\phi(t m)=0$. Hence $t m \in \operatorname{ker}(\psi)=\operatorname{im}(\phi)$ and there is $n \in N$ with $\phi(n)=t m$, with $n / t s \in S^{-1} N$. Thus $S^{-1} \phi(n / t s)=\phi(n) / t s=t m / t s=m / s$ meaning that $m / s \in \operatorname{im}\left(S^{-1} \phi\right)$.

Exercise 2

In the notation as above, let $K=S^{-1} R$.

1. Show that there is a ring homomorphism $\phi: R \longrightarrow K$ such that $\phi(r)=r / 1$, and this is injective if and only if S does not contain 0 nor zero divisors. By simply defining:

$$
\begin{array}{c:ccc}
\phi: & R & \longrightarrow & K \\
r & \longmapsto & \frac{r}{1}
\end{array}
$$

we note that to each $r \in R$ corresponds a single $r / 1 \in K$, hence this is a well defined function. This function is a ring homomorphism since for $r_{1}, r_{2} \in R$ we have:
(a) $\phi\left(r_{1}+r_{2}\right)=\frac{r_{1}+r_{2}}{1}=\frac{r_{1}}{1}+\frac{r_{2}}{1}=\phi\left(r_{1}\right)+\phi\left(r_{2}\right)$,
(b) $\phi\left(r_{1} r_{2}\right)=\frac{r_{1} r_{2}}{1}=\frac{r_{1}}{1} \frac{r_{2}}{1}=\phi\left(r_{2}\right) \phi\left(r_{2}\right)$,
(c) $\phi(1)=1 / 1$ the unit element in K.

Notice that for $r, s \in R$ we have:

$$
\phi(r)=\phi(s) \Longleftrightarrow \frac{r}{1}=\frac{s}{1} \Longleftrightarrow \exists t \in S \text { with } t(r-s)=0,
$$

hence for proving that ϕ is injective if and only if S does not contain 0 nor zero divisors:
$\Rightarrow)$ If S contains 0 then using $t=0$ above we clearly have that any two elements $r, s \in R$ have the same image, thus ϕ is not injective. If S contains a zero divisor v, say that $v u=0$ for certain non zero $u \in R$, then taking $t=v$ above, we have that $0=t u=t(u-0)$ thus $\phi(u)=\phi(0)$ with $u \neq 0$, hence ϕ is not injective.
$\Leftarrow)$ Suppose ϕ is not injective, this means that there are different $r, s \in R$ and $t \in S$ with $\phi(r)=\phi(s)$, that is, $t(r-s)=0$. If $t=0$ then $0 \in S$ and if $t \neq 0$ then since $r-s \neq 0$ we have that $t \in S$ is a zero divisor.
2. Let M be an R module, we define the natural multiplication on $S^{-1} M$ by elements of R to make it an R-module. Since we are not asked to prove this, we will take it for granted, but notice how this is a particular case of Exercise 1 by taking $S=\{1\}$ and thus the proof is exactly the same as we have exposed above, by simply replacing the elements in $S^{-1} R$ by elements of the form $r / 1$ with $r \in R$. We want to show that the function:

$$
\begin{aligned}
\psi: M & \longrightarrow \\
m & \longmapsto S^{-1} M \\
& \longmapsto \frac{m}{1}
\end{aligned}
$$

is an R-module homomorphism. For this, consider $m, n \in M$ and $r \in R$, we have:
(a) $\psi(m+n)=\frac{m+n}{1}=\frac{m}{1}+\frac{n}{1}=\psi(m)+\psi(n)$,
(b) $\psi(r m)=\frac{r m}{1}=\frac{r}{1} \frac{m}{1}=r \frac{m}{1}=r \psi(m)$.

Finally, to compute $\operatorname{ker}(\psi)$ we realize that for $m \in M$ we have $\psi(m)=0 / 1$ if and only if $m / 1=0 / 1$, that is, whenever there is an $t \in S$ with $t m=0$. Hence:

$$
\operatorname{ker}(\psi)=\{m \in M: \exists t \in S \text { with } t m=0\} .
$$

Exercise 3

Let R be a commutative ring, M an R-module, we define for a prime ideal $P \subset R$ the set $S_{P}=R \backslash P$ and $R_{P}=S_{P}^{-1} R, M_{P}=S_{P}^{-1} M$. We are asked to show that the following are equivalent:

1. $M=0$,
2. $M_{P}=0$ for all prime ideals $P \subset R$,
3. $M_{N}=0$ for all maximal ideals $N \subset R$.
4. $\Rightarrow) 2$. Let $P \subset R$ be a prime ideal. If $M=0$ then clearly $0 / r=0 / 1$ for every $r \in S_{P}$, thus $M_{P}=\left\{\frac{0}{1}\right\}=0$.
$2 . \Rightarrow) 1$. Let $N \subset R$ be a maximal ideal. Since R is commutative, N is a prime ideal, hence $M_{N}=0$.
5. $\Rightarrow) 1$. Suppose $M \neq 0$, pick $m \in M$ non zero. Consider the set $\{r \in R: r m=0\}$, which is clearly an ideal of R by the properties of the multiplication on M by R as a module (that is, it is an additive group and $R\{r \in R: r m=0\} \subset\{r \in R: r m=0\}$). Since every ideal is contained in a maximal ideal, there is a maximal ideal N with $\{r \in R: r m=0\} \subset N$. However, now $m / 1 \neq 0 / 1$ in M_{N}, since if $m / 1=0 / 1$ in M_{N} this means there is an element $t \in S_{N}$ with $t m=0$, but now $t \in\{r \in R: r m=0\}$, which is a contradiction. Hence $M_{N} \neq 0$ and by contrapositive we are done.

Exercise 4

Let R be a ring (we assume with unity) and let $R^{\prime}=\operatorname{Hom}(R, R)$. Show that we have $R^{\prime} \cong R^{o p}$ where $R^{o p}$ is the opposite ring of R. We will prove the equivalent statement that $R \cong \operatorname{Hom}\left(R^{o p}, R^{o p}\right)$. For this, we define:
which is clearly well defined since f_{a} is a multiplication by an element of the ring which is always a morphism of rings, thus:

1. ϕ is a morphism of rings, for $a, b \in R$ and $r \in R^{o p}$ we have:
(a) $\phi(a+b)(r)=r *(a+b)=(a+b) r=a r+b r=r * a+r * b=\phi(a)(r)+\phi(b)(r)$ so $\phi(a+b)=\phi(a)+\phi(b)$,
(b) $\phi(a b)(r)=r *(a b)=a b r=a(r * b)=(r * b) * a=\phi(a)(r * b)=\phi(a)(\phi(b)(r))$ so $\phi(a b)=\phi(a) \circ \phi(b)$,
(c) $\phi(1)(r)=r * 1=1 r=r=\operatorname{id}_{R}(r)$.
2. ϕ is injective: suppose we have $\phi(a)(r)=\phi(b)(r)$, this happens if and only if $a r=r * a=r * b=b r$ thus in particular taking $r=1$ we obtain $a=b$ and injectivity.
3. ϕ is surjective: suppose we have a function $f: R^{o p} \longrightarrow R^{o p}$, let $f(1) \in R^{o p}$, we claim that $\phi(f(1))=f$. For this, notice that $\phi(f(1))(r)=r * f(1)=f(r 1)=f(r)$ as desired, where we used that f is a morphism.

Hence ϕ is an isomorphism of rings, as desired.

Exercise 5

Let K be a field, V a finite dimensional vector space over K.

1. Show that V satisfies the ascending chain condition. Suppose we have $\left\{V_{i}\right\}_{i=0}^{\infty}$ a sequence of subspaces such that $V_{0} \subset V_{1} \subset \cdots$. Since V is finite dimensional, $\operatorname{suppose} \operatorname{dim}(V)=n$. Hence $d_{i}=\operatorname{dim}\left(V_{i}\right) \leq n$ for every i. Moreover since subspaces of the same dimension are are isomorphic, we can consider the chain above up to isomorphism to obtain $V_{i_{0}} \subsetneq V_{i_{1}} \subsetneq \cdots$. This induces a strictly increasing sequence of natural numbers $d_{i_{0}}<d_{i_{1}}<\cdots$. Since we have $0 \leq d_{i} \leq n$, this is a strictly increasing sequence of natural numbers bounded above by n, hence it must stabilize, say on $d_{i_{j}}$. Thus taking $N=i_{j}$, for $i \geq N$ we must have $V_{i}=V_{N}$, as desired.
2. Show that V satisfies the descending chain condition. The argument is exactly the same, but changing the sense of the inclusions. Suppose we have $\left\{V_{i}\right\}_{i=0}^{\infty}$ a sequence of subspaces such that $V_{0} \supset V_{1} \supset \cdots$. Since V is finite dimensional, suppose $\operatorname{dim}(V)=n$. Hence $d_{i}=\operatorname{dim}\left(V_{i}\right) \leq n$ for every i. Moreover since subspaces of the same dimension are are isomorphic, we can consider the chain above up to isomorphism to obtain $V_{i_{0}} \supsetneq V_{i_{1}} \supsetneq \cdots$. This induces a strictly decreasing sequence of natural numbers $d_{i_{0}}>d_{i_{1}}>\cdots$. Since we have $0 \leq d_{i} \leq n$, this is a strictly decreasing sequence of natural numbers bounded below by 0 , hence it must stabilize, say on $d_{i_{j}}$. Thus taking $N=i_{j}$, for $i \geq N$ we must have $V_{i}=V_{N}$, as desired.
