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Exercise 1

Let R = Z[
√
−6].

1. Show that the ideal A = (2,
√
−6) is not principal. For this, we first define the

function N : R −→ N as N(a + b
√
−6) = a2 + 6 + b2 for a, b ∈ Z. Notice how for

a1, b1, a2, b2 ∈ Z we have:

N((a1 + b1
√
−6)(a2 + b2

√
−6)) = N((a1a1 − 6b1b2) + (a1b2 + b1a2)

√
−6)

= (a1a1 − 6b1b2)
2 + 6(a1b2 + b1a2)

2

= a21a
2
2 + 6b21a

2
2 + 6a21b

2
2 + 36b21b

2
2

= (a21 + 6b21)(a
2
2 + 6b22)

= N(a1 + b1
√
−6)N(a2 + b2

√
−6),

which means that for r, s ∈ Z[
√
−6] we have N(rs) = N(r)N(s). Once we have

this, suppose that (2,
√
−6) = (a) for certain a1 + a2

√
−6 = a ∈ Z[

√
−6], we want

to find a contradiction. This means that there are r, s ∈ Z[
√
−6] such that:

2 = ar
√
−6 = as

}
=⇒

4 = N(2) = N(ar) = N(a)N(r)

6 = N(
√
−6) = N(as) = N(a)N(s)

}
=⇒ N(a)| gcd(4, 6) = 2

because everything is in N, thus we have either:

(i) N(a) = 1 meaning that a = ±1. Hence 1 ∈ A and there are u, v ∈ Z[
√
−6],

say u = u12 + u2
√
−6, v = v12 + v2

√
−6, such that:

1 = u2 + v
√
−6 = u12− 6v2 + u22

√
−6 + v1

√
−6 =⇒ 1 = 2(u1 − 3v2)

which is impossible since u1 − 3v2 ∈ Z, thus we have a contradiction.

(ii) N(a) = 2 meaning that 2 = a21 + 6a22. If a1 = 0, we have that 2 > 0 if a2 = 0
and 2 < 6a22 for every a2 6= 0, a contradiction in either case. If |a1| = 1 we
have that 2 > 1 if a2 = 0 and 2 < 1 + 6a22 for every a2 6= 0, a contradiction
in either case. If |a1| > 1 we have that 2 < a21 + 6a22 for every a2 ∈ Z, a
contradiction.

Thus we found a contradiction in every possible outcome. This means that there
does not exist such an a ∈ Z[

√
−6] and A is not principal.

2. Show that A is projective as an R-module. Suppose we have R-module homomor-
phisms f : N −→ M and g : M −→ A such that 0 −→ N −→ M −→ A −→ 0 is
an exact sequence. Since g : M −→ A is surjective, there are elements α, β ∈ M
such that g(α) = 2 and g(β) =

√
−6. Consider the function ψ : A −→ M defined

by ψ(r2 + s
√
−6) = rα + sβ for every r, s ∈ Z[

√
−6]. First, note that this is an

R-module homomorphism, since for r, r1, s1, r2, s2 ∈ Z[
√
−6] we have:
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(a) ψ([r12+s1
√
−6]+[r22+s2

√
−6]) = ψ([r1+r2]2+[s1+s2]

√
−6) = (r1+r2)α+

(s1 + s2)β = r1α+ s1β + r2α+ s2β = ψ(r12 + s1
√
−6) + ψ(r22 + s2

√
−6),

(b) ψ(r[r12 + s1
√
−6]) = ψ(rr12 + rs1

√
−6) = rr1α + rs1β = r(r1α + s1β) =

rψ(r12 + s1
√
−6),

and finally we have that for every r, s ∈ Z[
√
−6]:

g ◦ ψ(r2 + s
√
−6) = g(rα+ sβ) = rg(α) + sg(β) = r2 + s

√
−6 = idA(r2 + s

√
−6)

hence g ◦ψ = idA and ψ is a splitting, meaning that the exact sequence splits and
thus A is projective.

3



Exercise 2

Let R be a ring with 1 6= 0 and M a finitely generated left R-module.

1. Suppose M is projective. We prove that there are elements m1, . . . ,mk ∈ M and
R-module homomorphisms f1, . . . , fk : M −→ R such that for all m ∈ M we
have m =

∑k
i=1 fi(m)mi. Since M is finitely generated, we know that there are

elements m1, . . . ,mk ∈ M (obviously the notation is intended) such that M =
〈m1, · · · ,mk〉R. We now define a function from Rm1 + · · · + Rmk, the free left
R-module generated by those elements, to M by determining where we send the
basis:

g : Rm1 + · · ·+Rmk −→ M
mi 7−→ mi

for 1 ≤ i ≤ k.

Hence we have the exact sequence of left R-modules:

0→ ker(g)
i−→ Rm1 + · · ·+Rmk

g−→M → 0

which splits since M is projective. This means that there is a splitting, that is, a
R-module homomorphism ψ : M −→ Rm1 + · · · + Rmk such that g ◦ ψ = idM .
Now, we have that for every m ∈ M there are elements ri ∈ R, 1 ≤ i ≤ k such
that m =

∑k
i=1 rimi hence:

ψ(m) = ψ

(
k∑
i=1

rimi

)
=

k∑
i=1

ψ(rimi) =

k∑
i=1

riψ(mi),

where we remark that the sums after the second equality are in Rm1 + · · ·+Rmk

and thus are only formal. We then define fi : M −→ R as fi(m) = ri with the
notation above. We have that fi is a R-module homomorphism since for another
m′ ∈ M , say

∑k
i=1 r

′
imi for certain r′i ∈ R, 1 ≤ i ≤ k, and for an arbitrary r ∈ R

we have:

(a) ψ(m+m′) = ψ(m)+ψ(m′) =
∑k

i=1 riψ(mi)+
∑k

i=1 r
′
iψ(mi) =

∑k
i=1 (ri + r′i)ψ(mi)

meaning that fi(m+m′) = ri + r′i = fi(m) + fi(m
′),

(b) ψ(rm) = rψ(m) = r
∑k

i=1 riψ(mi) =
∑k

i=1 rriψ(mi) meaning that fi(rm) =
rri = rfi(m).

Moreover, we have that m =
∑k

i=1 rimi =
∑k

i=1 fi(m)mi by definition of fi, hence
we obtained what we desired.

2. Suppose that there are elements m1, . . . ,mk ∈M and R-module homomorphisms
f1, . . . , fk : M −→ R such that for all m ∈ M we have m =

∑k
i=1 fi(m)mi. We

prove that M is projective. For this, let A, B be left R-modules and let:

0→ A→ B
g−→M → 0
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be an exact sequence of left R-modules. We want to find a splitting, that is, a R-
module homomorphism ψ : M −→ B such that g ◦ ψ = idM . Since g is surjective,
there are elements α1, . . . , αk ∈ B with g(αi) = mi for 1 ≤ i ≤ k. We thus define
ψ(m) =

∑k
i=1 fi(m)αi, which is clearly an element in B, for an arbitrary m ∈M .

We have that ψ is an R-module homomorphism since for another m′ ∈ M , say∑k
i=1 r

′
imi for certain r′i ∈ R, 1 ≤ i ≤ k, and for an arbitrary r ∈ R we have:

(a) ψ(m+m′) =
∑k

i=1 fi(m+m′)αi =
∑k

i=1 (fi(m) + fi(m
′))αi =

∑k
i=1 fi(m)αi+∑k

i=1 fi(m
′)αi = ψ(m) + ψ(m′),

(b) ψ(rm) =
∑k

i=1 fi(rm)αi =
∑k

i=1 rfi(m)αi = r
∑k

i=1 fi(m)αi = rψ(m).

Finally, we check that indeed g ◦ ψ = idM since:

g◦ψ(m) = g

(
k∑
i=1

fi(m)αi

)
=

k∑
i=1

g(fi(m)αi) =
k∑
i=1

fi(m)g(αi) =
k∑
i=1

fi(m)mi = m

and thus ψ is the desired splitting. Since this was done for an arbitrary exact
sequence having M as the third R-module, we obtain that M is projective.
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Exercise 3

Let M and N be right and left R-modules respectively for a ring R.

1. Show that M ⊗R N is unique up to unique isomorphism. For this, suppose we
have (T1, h1) and (T2, h2) abelian groups satisfying the universal property of the
tensor product. Applying the universal property respect to each other with their
respective canonical R-biadditive maps, we obtain the commutative diagrams:

M ×N h1 //

h2 ##

T1

h̃2
��
T2

, M ×N h2 //

h1 ##

T2

h̃1
��
T1

,

where h̃1 and h̃2 are unique with the respective properties:

h̃2 ◦ h1 = h2

h̃1 ◦ h2 = h1.

Hence we obtain the commutative diagrams:

T1
h̃2 // T2

h̃1 // T1

M ×N
h1

cc

h2

OO

h1

;; , T2
h̃1 // T1

h̃2 // T2

M ×N
h2

cc

h1

OO

h2

;; ,

if we are not convinced we can always verify that:

h̃1 ◦ h̃2 ◦ h1 = h̃1 ◦ h2 = h1

h̃2 ◦ h̃1 ◦ h2 = h̃2 ◦ h1 = h2.

However, note that the following diagrams are clearly commutative:

T1
idT1 // T1

M ×N
h1

cc

h1

;; , T2
idT2 // T2

M ×N
h2

cc

h2

;; ,

hence by the uniqueness of the morphisms that extend to the tensor product, we
have that:

h̃1 ◦ h̃2 = idT1 , h̃2 ◦ h̃1 = idT2

thus T1 ∼= T2 as abelian groups, and such an isomorphism is unique by the unique-
ness of h̃1 and h̃2.
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2. Suppose R is commutative and M , N are finitely generated as R-modules. Show
that M ⊗RN is finitely generated as an R-module and determine a generating set.
First, suppose M = 〈α1, . . . , αm〉R and N = 〈β1, . . . , βn〉R. Then any pure tensor
m⊗ n ∈M ⊗R N can be written as:

m⊗ n = (r1α1 + · · ·+ rmαm)⊗ (s1β1 + · · ·+ snβn) =
∑
i,j

(risj)(αi ⊗ βj)

for certain r1, . . . , rm, s1, . . . , sn ∈ R (we have heavily used that R is commutative
to be able to multiply by the scalars outside the pure tensors). Now, since any
element in M ⊗R N is a finite sum of pure tensors (maybe multiplied by some
scalars in R), and the pure tensors are a (finite) sum of the form above, we obtain
that the set {αi ⊗ βj : i = 1, . . . ,m and j = 1, . . . , n} generates M ⊗R N . Since
i = 1, . . . ,m and j = 1, . . . , n are finite, the generating set is finite and thus
M ⊗R N is finitely generated.
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Exercise 4

1. For m,n ∈ N+, show that Z/mZ⊗ Z/nZ ∼= Z/tZ for some t ∈ N+, and determine
such t. We claim that t = gcd(m,n). To prove such an isomorphism, consider the
map:

ψ : Z/mZ× Z/nZ −→ Z/tZ
(a, b) 7−→ ab

.

First, note that ψ is well defined since if (a, b) = (p, q), that is a = p + nk and
b = q +ms for some k, s ∈ Z, then:

ψ(a, b) = ab = (p+ nk)(q +ms) = pq + pms+ qnk + nkms = pq = ψ(p, q)

since m = n = 0 in Z/tZ because t divides m and n. Moreover, notice that ψ is
Z-biadditive since for r, a, a1, a2, b, b1, b2 ∈ Z we have:

(a) ψ(a1 + a2, b) = ψ(a1 + a2, b) = (a1 + a2)b = a1b+ a2b = ψ(a1, b) + ψ(a2, b),

(b) ψ(a, b1 + b2) = ψ(a, b1 + b2) = a(b1 + b2) = ab1 + ab2 = ψ(a, b1) + ψ(a, b2),

(c) ψ(ra, b) = ψ(ra, b) = rab = arb = ψ(a, rb) = ψ(a, rb) and rψ(a, b) = rab =
rab, thus rψ(a, b) = ψ(ra, b) = ψ(a, rb).

This means that ψ induces by the universal property of the tensor product a
morphism of abelian groups φ : Z/mZ ⊗ Z/nZ −→ Z/tZ such that φ(1 ⊗ 1) =
ψ(1, 1) = 1. Clearly 1 ⊗ 1 generates Z/mZ ⊗ Z/nZ since for a, b ∈ N any pure
tensor a⊗ b = (ab)(1⊗ 1). Now, notice that:

m(1⊗ 1) = m⊗ 1 = 0⊗ 1 = 0,

n(1⊗ 1) = 1⊗ n = 1⊗ 0 = 0,

hence the order of 1 ⊗ 1 in Z/mZ ⊗ Z/nZ divides m and n, thus it must divide
gcd(m,n) = t (in particular since the order is positive, it is less than or equal to
t). Moreover for any k ∈ N+ with k < t:

φ(k(1⊗ 1)) = φ(k ⊗ 1) = φ(k, 1) = k,

which is different than 0 in Z/tZ because k < t. Hence since φ is an abelian group
homomorphism, we must have k(1 ⊗ 1) 6= 0 in Z/mZ ⊗ Z/nZ and thus the order
of 1⊗ 1 must be greater or equal to t. Combining these two conditions we obtain
that the order of 1⊗ 1 is exactly t, hence φ is an isomorphism of abelian groups.

2. We first show that Q⊗Z Q ∼= Q as a Q vector space. For this, we define the map:

ψ : Q×Q −→ Q(
a1
b1
, a2b2

)
7−→ a1a2

b1b2

.

Notice that ψ is Z-biadditive since for p, q, a1, a2, b1, b2 ∈ Z we have:
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(a) ψ(a1/b1+a2/b2, p/q) = ψ((a1b2+a2b1)/(b1b2), p/q) = (a1b2+a2b1)p/(b1b2q) =
((a1b2+a2b1)/(b1b2))(p/q) = (a1/b1+a2/b2)(p/q) = (a1/b1)(p/q)+(a2/b2)(p/q) =
a1p/b1q + a2p/b2q = ψ(a1/b1, p/q) + ψ(a2/b2, p/q),

(b) ψ(p/q, a1/b1+a2/b2) = ψ(p/q, (a1b2+a2b1)/(b1b2)) = p(a1b2+a2b1)/(qb1b2) =
(p/q)((a1b2+a2b1)/(b1b2)) = (p/q)(a1/b1+a2/b2) = (p/q)(a1/b1)+(p/q)(a2/b2) =
pa1/qb1 + pa2/qb2 = ψ(p/q, a1/b1) + ψ(p/q, a2/b2),

(c) ψ(p(a1/b1), a2/b2) = ψ(pa1/b1, a2/b2) = pa1a2/b1b2 = a1pa2/b1b2 = ψ(a1/b1, pa2/b2) =
ψ(a1/b1, p(a2/b2)) and pψ(a1/b1, a2/b2) = p(a1a2/b1b2) = pa1a2/b1b2, thus
pψ(a1/b1, a2/b2) = ψ(p(a1/b1), a2/b2) = ψ(a1/b1, p(a2/b2)).

This means that ψ induces by the universal property of the tensor product a
morphism of abelian groups φ : Q ⊗Z Q −→ Q such that φ(1 ⊗ 1) = ψ(1, 1) = 1.
We first want to define a multiplication by scalars on Q ⊗Z Q, which we do by
means of the pure tensors as:

Q×Q⊗Z Q −→ Q⊗Z Q(
p
q ,

a1
b1
⊗ a2

b2

)
7−→ pa1

qb1
⊗ a2

b2

and we extend to Q ⊗Z Q by linearity. The axioms of Q ⊗Z Q being a Q module
with the multiplication above follow from the linearity on the second component
(requested by definition) and the properties of the multiplication in Q.

Notice how for p, q, a1, a2, b1, b2 ∈ Z we have:

pa1
qb1
⊗ a2
b2

=
a1
qb1
⊗ pa2

b2
=

a1
qb1
⊗ qpa2

qb2
=
qa1
qb1
⊗ pa2
qb2

=
a1
b1
⊗ pa2
qb2

.

This means that as a Qmodule, Q⊗ZQ is generated by 1⊗1 since for a1, a2, b1, b2 ∈
Z we have (a1/b1)⊗ (a2/b2) = (a1a2/b1b2)⊗ 1 = (a1a2/b1b2)(1⊗ 1), and hence for
finite sums of pure tensors we can always reduce to 1 ⊗ 1 multiplied by a scalar
in Q (in particular every element in Q⊗Z Q is a pure tensor). Now, we can prove
that φ is a linear map that is a bijection (we can reduce us by the above to the
case where we only deal with pure tensors):

(a) φ is Q linear since it is already a group homomorphism by the universal
property of the tensor product that defined it, and for a, b, a1, a2, b1, b2 ∈ Z
we have:

φ

((a
b

)(a1
b1
⊗ a2
b2

))
= φ

(
aa1
bb1
⊗ a2
b2

)
= ψ

(
aa1
bb1

,
a2
b2

)
=
aa1a2
bb1b2

=
a

b

a1a2
b1b2

=
(a
b

)
ψ

(
a1
b1
,
a2
b2

)
=
(a
b

)
φ

(
a1
b1
⊗ a2
b2

)
.

(b) φ is injective: for a1, a2, b1, b2 we have φ((a1/b1) ⊗ (a2/b2)) = 0, this means
(a1a2)/(b1b2) = 0 hence a1a2 = 0 and thus a1 = 0 or a2 = 0, meaning that
a1/b1 = 0 or a2/b2 = 0, in either case (a1/b1) ⊗ (a2/b2) = 0, thus the kernel
is trivial.
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(c) φ is surjective: for a/b ∈ Q we have φ((a/b)⊗ 1) = ψ(a/b, 1) = a/b.

Hence indeed φ is an isomorphism of Q vector spaces and Q⊗Z Q ∼= Q.

We now prove that R⊗QR � R. In an analogous way as we proved above, we have
that R⊗Q R is an R vector space via:

R× R⊗Q R −→ R⊗Q R
(r, r1 ⊗ r2) 7−→ (rr1)⊗ r2

and we extend to R⊗Q R by linearity. We know that R is an infinite dimensional
Q vector space, consider {αi}i∈I a Q basis for R. We claim that {1⊗ αi}i∈I is an
R basis for R ⊗Q R. First, it generates the pure tensors (hence it generates the
whole space) since for r, s ∈ R we have:

r ⊗ s = r ⊗

(∑
i∈I

qiαi

)
=
∑
i∈I

r ⊗ (qiαi) =
∑
i∈I

(qir)⊗ αi =
∑
i∈I

(rqi)(1⊗ αi)

for some qi ∈ Q for i ∈ I (all zero but a finite number, thus the sum is finite).
Second, to see that they are linearly independent, we are interested in the isomor-
phisms R⊗QR ∼= R⊗Q

(⊕
i∈I Qαi

) ∼= ⊕i∈I (R⊗Q Qαi), whose composition sends
(in the notation above) a pure tensor r ⊗ s to its coordinates (rqi)i∈I . Thus when
we have that a (finite) linear combination of {1⊗αi}i∈I is zero in R⊗Q R, via the
isomorphisms we have that in the direct sum all the coordinates are zero, hence
all the coefficients that multiplied {1⊗ αi}i∈I must have been zero already.

Thus, we found that dimR(R ⊗Q R) = dimQ(R) > 1, but dimR(R) = 1, thus we
cannot have that R⊗Q R and R are isomorphic because their bases have different
cardinality, hence R⊗Q R � R as desired.
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Exercise 5

Let R be commutative, M , N , P be R-modules. We want to show that HomR(M ⊗R
N,P ) ∼= HomR(M,HomR(N,P )). For this, we will build two morphisms of R-modules
ψ : HomR(M⊗RN,P ) −→ HomR(M,HomR(N,P )) and φ : HomR(M,HomR(N,P )) −→
HomR(M ⊗RN,P ) such that φ◦ψ = idHomR(M⊗RN,P ) and ψ ◦φ = idHomR(M,HomR(N,P )).

We start by letting f ∈ HomR(M ⊗R N,P ), say:

f : M ⊗R N −→ P
m⊗ n 7−→ f(m⊗ n)

then we define:

ψ : HomR(M ⊗R N,P ) −→ HomR(M,HomR(N,P ))
f 7−→ ψ(f)

by setting for m ∈M the function ψ(f)(m) : N −→ P as:

ψ(f)(m) : N −→ P
n 7−→ f(m⊗ n)

so that ψ(f)(m)(n) = f(m ⊗ n). To verify that this is well defined, we need that
ψ(f)(m) ∈ HomR(N,P ) and ψ(f) ∈ HomR(M,HomR(N,P )). Let n, n1, n2 ∈ N and
r ∈ R, we have:

1. ψ(f)(m)(n1+n2) = f(m⊗(n1+n2)) = f(m⊗n1+m⊗n2) = f(m⊗n1)+f(m⊗n2) =
ψ(f)(m)(n1) + ψ(f)(m)(n2),

2. ψ(f)(m)(rn) = f(m⊗ (rn)) = f(r(m⊗ n)) = rf(m⊗ n) = rψ(f)(m)(n),

where we heavily used that f is a morphism ofR-modules, hence ψ(f)(m) ∈ HomR(N,P ).
Let m1,m2 ∈M , we have:

1. ψ(f)(m1 + m2)(n) = f((m1 + m2) ⊗ n) = f(m1 ⊗ n + m2 ⊗ n) = f(m1 ⊗ n) +
f(m2 ⊗ n) = ψ(f)(m1)(n) + ψ(f)(m2)(n),

2. ψ(f)(rm)(n) = f((rm)⊗ n) = f(r(m⊗ n)) = rf(m⊗ n) = rψ(f)(m)(n),

where we again used that f is a morphism ofR-modules, hence ψ(f) ∈ HomR(M,HomR(N,P )).
Thus, ψ is well defined. We now prove that ψ is an R-module morphism, let f, f1, f2 ∈
HomR(M ⊗R N,P ), we have:

1. ψ(f1 + f2)(m)(n) = (f1 + f2)(m ⊗ n) = f1(m ⊗ n) + f2(m ⊗ n) = ψ(f1)(m)(n) +
ψ(f2)(m)(n),

2. ψ(rf)(m)(n) = (rf)(m⊗ n) = f(r(m⊗ n)) = rf(m⊗ n) = rψ(f)(m)(n),
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where we rely on f being a morphism of R-modules, hence ψ is as desired.
Now, we continue by letting α ∈ HomR(M,HomR(N,P )), say:

α : M −→ HomR(N,P )
m 7−→ α(m)

then we define:
α̃ : M ×N −→ P

(m,n) 7−→ α(m)(n)

which is R-biadditive since for r ∈ R, m,m′ ∈M , n, n′ ∈ N we have:

1. α̃(m + m′, n) = α(m + m′)(n) = (α(m) + α(m′))(n) = α(m)(n) + α(m′)(n) =
α̃(m,n) + α̃(m′, n) since α ∈ HomR(M,HomR(N,P )),

2. α̃(m,n + n′) = α(m)(n + n′) = α(m)(n) + α(m)(n′) = α̃(m,n) + α̃(m,n′) since
α(m) ∈ HomR(N,P ),

3. α̃(rm, n) = α(rm)(n) = rα(m)(n) = rα̃(m,n) since α ∈ HomR(M,HomR(N,P ))
and α̃(m, rn) = α(m)(rn) = rα(m)(n) = rα̃(m,n) since α(m) ∈ HomR(N,P ),
hence α̃(rm, n) = rα̃(m,n) = α̃(m, rn).

This means that by the universal property of the tensor product, there is a unique group
homomorphism, that we name φ(α), such that the following diagram commutes:

M ×N h //

α̃
&&

M ⊗R N
φ(α)
��
P

,

that is α̃ = φ(α) ◦ h, otherwise said, over the pure tensors m ⊗ n ∈ M ⊗R N we have
φ(α)(m⊗ n) = α̃(m,n) = α(m)(n). Then we define:

φ : HomR(M,HomR(N,P )) −→ HomR(M ⊗R N,P )
α 7−→ φ(α)

by setting φ(α) as above. To verify that this is well defined, we need that φ(α) ∈
HomR(M ⊗R N,P ). Let m⊗ n ∈M ⊗R N , we have:

1. Since φ(α) is a group homomorphism, we already know that behaves as desired
when applied to a sum of pure tensors.

2. φ(α)(r(m⊗ n)) = φ(α)((rm)⊗ n) = α(rm)(n) = rα(m)(n) = rφ(α)(m⊗ n),

where we used that α ∈ HomR(M,HomR(N,P )), hence φ(α) ∈ HomR(M ⊗R N,P ) and
thus φ is well defined. We now prove that φ is an R-module morphism, let α, α1, α2 ∈
HomR(M,HomR(N,P )), we have:
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1. φ(α1 + α2)(m⊗ n) = (α1 + α2)(m)(n) = α1(m)(n) + α2(m)(n) = φ(α1)(m⊗ n) +
φ(α2)(m⊗ n),

2. φ(rα)(m⊗ n) = (rα)(m)(n) = α(rm)(n) = rα(m)(n) = rφ(α)(m⊗ n),

where we rely on α being a morphism of R-modules, hence φ is as desired.
Finally, we have that:

φ ◦ ψ(f)(m⊗ n) = ψ(f)(m)(n) = f(m⊗ n) = idHomR(M⊗RN,P )(f)(m⊗ n)

ψ ◦ φ(α)(m)(n) = φ(α)(m⊗ n) = α(m)(n) = idHomR(M,HomR(N,P ))(α)(m)(n)

hence indeed φ◦ψ = idHomR(M⊗RN,P ) and ψ◦φ = idHomR(M,HomR(N,P )), and HomR(M⊗R
N,P ) ∼= HomR(M,HomR(N,P )).
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