Algebra II - Homework 4

Pablo Sánchez Ocal
March 3rd, 2017

Exercise 1

Let $R=\mathbb{Z}[\sqrt{-6}]$.

1. Show that the ideal $A=(2, \sqrt{-6})$ is not principal. For this, we first define the function $N: R \longrightarrow \mathbb{N}$ as $N(a+b \sqrt{-6})=a^{2}+6+b^{2}$ for $a, b \in \mathbb{Z}$. Notice how for $a_{1}, b_{1}, a_{2}, b_{2} \in \mathbb{Z}$ we have:

$$
\begin{aligned}
N\left(\left(a_{1}+b_{1} \sqrt{-6}\right)\left(a_{2}+b_{2} \sqrt{-6}\right)\right) & =N\left(\left(a_{1} a_{1}-6 b_{1} b_{2}\right)+\left(a_{1} b_{2}+b_{1} a_{2}\right) \sqrt{-6}\right) \\
& =\left(a_{1} a_{1}-6 b_{1} b_{2}\right)^{2}+6\left(a_{1} b_{2}+b_{1} a_{2}\right)^{2} \\
& =a_{1}^{2} a_{2}^{2}+6 b_{1}^{2} a_{2}^{2}+6 a_{1}^{2} b_{2}^{2}+36 b_{1}^{2} b_{2}^{2} \\
& =\left(a_{1}^{2}+6 b_{1}^{2}\right)\left(a_{2}^{2}+6 b_{2}^{2}\right) \\
& =N\left(a_{1}+b_{1} \sqrt{-6}\right) N\left(a_{2}+b_{2} \sqrt{-6}\right),
\end{aligned}
$$

which means that for $r, s \in \mathbb{Z}[\sqrt{-6}]$ we have $N(r s)=N(r) N(s)$. Once we have this, suppose that $(2, \sqrt{-6})=(a)$ for certain $a_{1}+a_{2} \sqrt{-6}=a \in \mathbb{Z}[\sqrt{-6}]$, we want to find a contradiction. This means that there are $r, s \in \mathbb{Z}[\sqrt{-6}]$ such that:

$$
\left.\left.\begin{array}{l}
2=a r \\
\sqrt{-6}=a s
\end{array}\right\} \Longrightarrow \begin{array}{l}
4=N(2)=N(a r)=N(a) N(r) \\
6=N(\sqrt{-6})=N(a s)=N(a) N(s)
\end{array}\right\} \Longrightarrow N(a) \mid \operatorname{gcd}(4,6)=2
$$

because everything is in \mathbb{N}, thus we have either:
(i) $N(a)=1$ meaning that $a= \pm 1$. Hence $1 \in A$ and there are $u, v \in \mathbb{Z}[\sqrt{-6}]$, say $u=u_{1} 2+u_{2} \sqrt{-6}, v=v_{1} 2+v_{2} \sqrt{-6}$, such that:

$$
1=u 2+v \sqrt{-6}=u_{1} 2-6 v_{2}+u_{2} 2 \sqrt{-6}+v_{1} \sqrt{-6} \Longrightarrow 1=2\left(u_{1}-3 v_{2}\right)
$$

which is impossible since $u_{1}-3 v_{2} \in \mathbb{Z}$, thus we have a contradiction.
(ii) $N(a)=2$ meaning that $2=a_{1}^{2}+6 a_{2}^{2}$. If $a_{1}=0$, we have that $2>0$ if $a_{2}=0$ and $2<6 a_{2}^{2}$ for every $a_{2} \neq 0$, a contradiction in either case. If $\left|a_{1}\right|=1$ we have that $2>1$ if $a_{2}=0$ and $2<1+6 a_{2}^{2}$ for every $a_{2} \neq 0$, a contradiction in either case. If $\left|a_{1}\right|>1$ we have that $2<a_{1}^{2}+6 a_{2}^{2}$ for every $a_{2} \in \mathbb{Z}$, a contradiction.

Thus we found a contradiction in every possible outcome. This means that there does not exist such an $a \in \mathbb{Z}[\sqrt{-6}]$ and A is not principal.
2. Show that A is projective as an R-module. Suppose we have R-module homomorphisms $f: N \longrightarrow M$ and $g: M \longrightarrow A$ such that $0 \longrightarrow N \longrightarrow M \longrightarrow A \longrightarrow 0$ is an exact sequence. Since $g: M \longrightarrow A$ is surjective, there are elements $\alpha, \beta \in M$ such that $g(\alpha)=2$ and $g(\beta)=\sqrt{-6}$. Consider the function $\psi: A \longrightarrow M$ defined by $\psi(r 2+s \sqrt{-6})=r \alpha+s \beta$ for every $r, s \in \mathbb{Z}[\sqrt{-6}]$. First, note that this is an R-module homomorphism, since for $r, r_{1}, s_{1}, r_{2}, s_{2} \in \mathbb{Z}[\sqrt{-6}]$ we have:
(a) $\psi\left(\left[r_{1} 2+s_{1} \sqrt{-6}\right]+\left[r_{2} 2+s_{2} \sqrt{-6}\right]\right)=\psi\left(\left[r_{1}+r_{2}\right] 2+\left[s_{1}+s_{2}\right] \sqrt{-6}\right)=\left(r_{1}+r_{2}\right) \alpha+$ $\left(s_{1}+s_{2}\right) \beta=r_{1} \alpha+s_{1} \beta+r_{2} \alpha+s_{2} \beta=\psi\left(r_{1} 2+s_{1} \sqrt{-6}\right)+\psi\left(r_{2} 2+s_{2} \sqrt{-6}\right)$,
(b) $\psi\left(r\left[r_{1} 2+s_{1} \sqrt{-6}\right]\right)=\psi\left(r r_{1} 2+r s_{1} \sqrt{-6}\right)=r r_{1} \alpha+r s_{1} \beta=r\left(r_{1} \alpha+s_{1} \beta\right)=$ $r \psi\left(r_{1} 2+s_{1} \sqrt{-6}\right)$,
and finally we have that for every $r, s \in \mathbb{Z}[\sqrt{-6}]$:
$g \circ \psi(r 2+s \sqrt{-6})=g(r \alpha+s \beta)=r g(\alpha)+s g(\beta)=r 2+s \sqrt{-6}=\operatorname{id}_{A}(r 2+s \sqrt{-6})$
hence $g \circ \psi=\operatorname{id}_{A}$ and ψ is a splitting, meaning that the exact sequence splits and thus A is projective.

Exercise 2

Let R be a ring with $1 \neq 0$ and M a finitely generated left R-module.

1. Suppose M is projective. We prove that there are elements $m_{1}, \ldots, m_{k} \in M$ and R-module homomorphisms $f_{1}, \ldots, f_{k}: M \longrightarrow R$ such that for all $m \in M$ we have $m=\sum_{i=1}^{k} f_{i}(m) m_{i}$. Since M is finitely generated, we know that there are elements $m_{1}, \ldots, m_{k} \in M$ (obviously the notation is intended) such that $M=$ $\left\langle m_{1}, \cdots, m_{k}\right\rangle_{R}$. We now define a function from $R m_{1}+\cdots+R m_{k}$, the free left R-module generated by those elements, to M by determining where we send the basis:

$$
\begin{aligned}
g: R m_{1}+\cdots+R m_{k} & \longrightarrow M \\
m_{i} & \longmapsto m_{i}
\end{aligned} \text { for } 1 \leq i \leq k .
$$

Hence we have the exact sequence of left R-modules:

$$
0 \rightarrow \operatorname{ker}(g) \xrightarrow{i} R m_{1}+\cdots+R m_{k} \xrightarrow{g} M \rightarrow 0
$$

which splits since M is projective. This means that there is a splitting, that is, a R-module homomorphism $\psi: M \longrightarrow R m_{1}+\cdots+R m_{k}$ such that $g \circ \psi=\operatorname{id}_{M}$. Now, we have that for every $m \in M$ there are elements $r_{i} \in R, 1 \leq i \leq k$ such that $m=\sum_{i=1}^{k} r_{i} m_{i}$ hence:

$$
\psi(m)=\psi\left(\sum_{i=1}^{k} r_{i} m_{i}\right)=\sum_{i=1}^{k} \psi\left(r_{i} m_{i}\right)=\sum_{i=1}^{k} r_{i} \psi\left(m_{i}\right)
$$

where we remark that the sums after the second equality are in $R m_{1}+\cdots+R m_{k}$ and thus are only formal. We then define $f_{i}: M \longrightarrow R$ as $f_{i}(m)=r_{i}$ with the notation above. We have that f_{i} is a R-module homomorphism since for another $m^{\prime} \in M$, say $\sum_{i=1}^{k} r_{i}^{\prime} m_{i}$ for certain $r_{i}^{\prime} \in R, 1 \leq i \leq k$, and for an arbitrary $r \in R$ we have:
(a) $\psi\left(m+m^{\prime}\right)=\psi(m)+\psi\left(m^{\prime}\right)=\sum_{i=1}^{k} r_{i} \psi\left(m_{i}\right)+\sum_{i=1}^{k} r_{i}^{\prime} \psi\left(m_{i}\right)=\sum_{i=1}^{k}\left(r_{i}+r_{i}^{\prime}\right) \psi\left(m_{i}\right)$ meaning that $f_{i}\left(m+m^{\prime}\right)=r_{i}+r_{i}^{\prime}=f_{i}(m)+f_{i}\left(m^{\prime}\right)$,
(b) $\psi(r m)=r \psi(m)=r \sum_{i=1}^{k} r_{i} \psi\left(m_{i}\right)=\sum_{i=1}^{k} r r_{i} \psi\left(m_{i}\right)$ meaning that $f_{i}(r m)=$ $r r_{i}=r f_{i}(m)$.

Moreover, we have that $m=\sum_{i=1}^{k} r_{i} m_{i}=\sum_{i=1}^{k} f_{i}(m) m_{i}$ by definition of f_{i}, hence we obtained what we desired.
2. Suppose that there are elements $m_{1}, \ldots, m_{k} \in M$ and R-module homomorphisms $f_{1}, \ldots, f_{k}: M \longrightarrow R$ such that for all $m \in M$ we have $m=\sum_{i=1}^{k} f_{i}(m) m_{i}$. We prove that M is projective. For this, let A, B be left R-modules and let:

$$
0 \rightarrow A \rightarrow B \xrightarrow{g} M \rightarrow 0
$$

be an exact sequence of left R-modules. We want to find a splitting, that is, a R module homomorphism $\psi: M \longrightarrow B$ such that $g \circ \psi=\mathrm{id}_{M}$. Since g is surjective, there are elements $\alpha_{1}, \ldots, \alpha_{k} \in B$ with $g\left(\alpha_{i}\right)=m_{i}$ for $1 \leq i \leq k$. We thus define $\psi(m)=\sum_{i=1}^{k} f_{i}(m) \alpha_{i}$, which is clearly an element in B, for an arbitrary $m \in M$. We have that ψ is an R-module homomorphism since for another $m^{\prime} \in M$, say $\sum_{i=1}^{k} r_{i}^{\prime} m_{i}$ for certain $r_{i}^{\prime} \in R, 1 \leq i \leq k$, and for an arbitrary $r \in R$ we have:
(a) $\psi\left(m+m^{\prime}\right)=\sum_{i=1}^{k} f_{i}\left(m+m^{\prime}\right) \alpha_{i}=\sum_{i=1}^{k}\left(f_{i}(m)+f_{i}\left(m^{\prime}\right)\right) \alpha_{i}=\sum_{i=1}^{k} f_{i}(m) \alpha_{i}+$ $\sum_{i=1}^{k} f_{i}\left(m^{\prime}\right) \alpha_{i}=\psi(m)+\psi\left(m^{\prime}\right)$,
(b) $\psi(r m)=\sum_{i=1}^{k} f_{i}(r m) \alpha_{i}=\sum_{i=1}^{k} r f_{i}(m) \alpha_{i}=r \sum_{i=1}^{k} f_{i}(m) \alpha_{i}=r \psi(m)$.

Finally, we check that indeed $g \circ \psi=\mathrm{id}_{M}$ since:
$g \circ \psi(m)=g\left(\sum_{i=1}^{k} f_{i}(m) \alpha_{i}\right)=\sum_{i=1}^{k} g\left(f_{i}(m) \alpha_{i}\right)=\sum_{i=1}^{k} f_{i}(m) g\left(\alpha_{i}\right)=\sum_{i=1}^{k} f_{i}(m) m_{i}=m$
and thus ψ is the desired splitting. Since this was done for an arbitrary exact sequence having M as the third R-module, we obtain that M is projective.

Exercise 3

Let M and N be right and left R-modules respectively for a $\operatorname{ring} R$.

1. Show that $M \otimes_{R} N$ is unique up to unique isomorphism. For this, suppose we have $\left(T_{1}, h_{1}\right)$ and $\left(T_{2}, h_{2}\right)$ abelian groups satisfying the universal property of the tensor product. Applying the universal property respect to each other with their respective canonical R-biadditive maps, we obtain the commutative diagrams:

where $\tilde{h_{1}}$ and $\tilde{h_{2}}$ are unique with the respective properties:

$$
\begin{gathered}
\tilde{h_{2}} \circ h_{1}=h_{2} \\
\tilde{h_{1}} \circ h_{2}=h_{1}
\end{gathered}
$$

Hence we obtain the commutative diagrams:

if we are not convinced we can always verify that:

$$
\begin{aligned}
& \tilde{h_{1}} \circ \tilde{h_{2}} \circ h_{1}=\tilde{h_{1}} \circ h_{2}=h_{1} \\
& \tilde{h_{2}} \circ \tilde{h_{1}} \circ h_{2}=\tilde{h_{2}} \circ h_{1}=h_{2}
\end{aligned}
$$

However, note that the following diagrams are clearly commutative:

hence by the uniqueness of the morphisms that extend to the tensor product, we have that:

$$
\tilde{h_{1}} \circ \tilde{h_{2}}=\operatorname{id}_{T_{1}}, \quad \tilde{h_{2}} \circ \tilde{h_{1}}=\operatorname{id}_{T_{2}}
$$

thus $T_{1} \cong T_{2}$ as abelian groups, and such an isomorphism is unique by the uniqueness of $\tilde{h_{1}}$ and $\tilde{h_{2}}$.
2. Suppose R is commutative and M, N are finitely generated as R-modules. Show that $M \otimes_{R} N$ is finitely generated as an R-module and determine a generating set. First, suppose $M=\left\langle\alpha_{1}, \ldots, \alpha_{m}\right\rangle_{R}$ and $N=\left\langle\beta_{1}, \ldots, \beta_{n}\right\rangle_{R}$. Then any pure tensor $m \otimes n \in M \otimes_{R} N$ can be written as:

$$
m \otimes n=\left(r_{1} \alpha_{1}+\cdots+r_{m} \alpha_{m}\right) \otimes\left(s_{1} \beta_{1}+\cdots+s_{n} \beta_{n}\right)=\sum_{i, j}\left(r_{i} s_{j}\right)\left(\alpha_{i} \otimes \beta_{j}\right)
$$

for certain $r_{1}, \ldots, r_{m}, s_{1}, \ldots, s_{n} \in R$ (we have heavily used that R is commutative to be able to multiply by the scalars outside the pure tensors). Now, since any element in $M \otimes_{R} N$ is a finite sum of pure tensors (maybe multiplied by some scalars in R), and the pure tensors are a (finite) sum of the form above, we obtain that the set $\left\{\alpha_{i} \otimes \beta_{j}: i=1, \ldots, m\right.$ and $\left.j=1, \ldots, n\right\}$ generates $M \otimes_{R} N$. Since $i=1, \ldots, m$ and $j=1, \ldots, n$ are finite, the generating set is finite and thus $M \otimes_{R} N$ is finitely generated.

Exercise 4

1. For $m, n \in \mathbb{N}^{+}$, show that $\mathbb{Z} / m \mathbb{Z} \otimes \mathbb{Z} / n \mathbb{Z} \cong \mathbb{Z} / t \mathbb{Z}$ for some $t \in \mathbb{N}^{+}$, and determine such t. We claim that $t=\operatorname{gcd}(m, n)$. To prove such an isomorphism, consider the map:

$$
\begin{array}{rll}
\psi: \mathbb{Z} / m \mathbb{Z} \times \mathbb{Z} / n \mathbb{Z} & \longrightarrow \mathbb{Z} / t \mathbb{Z} \\
(\bar{a}, \bar{b}) & \longmapsto \frac{a b}{a b}
\end{array}
$$

First, note that ψ is well defined since if $(\bar{a}, \bar{b})=(\bar{p}, \bar{q})$, that is $a=p+n k$ and $b=q+m s$ for some $k, s \in \mathbb{Z}$, then:

$$
\psi(\bar{a}, \bar{b})=\overline{a b}=\overline{(p+n k)(q+m s)}=\overline{p q}+\overline{p m s}+\overline{q n k}+\overline{n k m s}=\overline{p q}=\psi(\bar{p}, \bar{q})
$$

since $\bar{m}=\bar{n}=0$ in $\mathbb{Z} / t \mathbb{Z}$ because t divides m and n. Moreover, notice that ψ is \mathbb{Z}-biadditive since for $r, a, a_{1}, a_{2}, b, b_{1}, b_{2} \in \mathbb{Z}$ we have:
(a) $\psi\left(\overline{a_{1}}+\overline{a_{2}}, \bar{b}\right)=\psi\left(\overline{a_{1}+a_{2}}, \bar{b}\right)=\overline{\left(a_{1}+a_{2}\right) b}=\overline{a_{1} b}+\overline{a_{2} b}=\psi\left(\overline{a_{1}}, \bar{b}\right)+\psi\left(\overline{a_{2}}, \bar{b}\right)$,
(b) $\psi\left(\bar{a}, \overline{b_{1}}+\overline{b_{2}}\right)=\psi\left(\bar{a}, \overline{b_{1}+b_{2}}\right)=\overline{a\left(b_{1}+b_{2}\right)}=\overline{a b_{1}}+\overline{a b_{2}}=\psi\left(\bar{a}, \overline{b_{1}}\right)+\psi\left(\bar{a}, \overline{b_{2}}\right)$,
(c) $\psi(r \bar{a}, \bar{b})=\psi(\overline{r a}, \bar{b})=\overline{r a b}=\overline{a r b}=\psi(\bar{a}, \overline{r b})=\psi(\bar{a}, r \bar{b})$ and $r \psi(\bar{a}, \bar{b})=r \overline{a b}=$ $\overline{r a b}$, thus $r \psi(\bar{a}, \bar{b})=\psi(r \bar{a}, \bar{b})=\psi(\bar{a}, r \bar{b})$.

This means that ψ induces by the universal property of the tensor product a morphism of abelian groups $\phi: \mathbb{Z} / m \mathbb{Z} \otimes \mathbb{Z} / n \mathbb{Z} \longrightarrow \mathbb{Z} / t \mathbb{Z}$ such that $\phi(\overline{1} \otimes \overline{1})=$ $\psi(\overline{1}, \overline{1})=\overline{1}$. Clearly $\overline{1} \otimes \overline{1}$ generates $\mathbb{Z} / m \mathbb{Z} \otimes \mathbb{Z} / n \mathbb{Z}$ since for $a, b \in \mathbb{N}$ any pure tensor $\bar{a} \otimes \bar{b}=(a b)(\overline{1} \otimes \overline{1})$. Now, notice that:

$$
\begin{aligned}
m(\overline{1} \otimes \overline{1}) & =\bar{m} \otimes \overline{1}=\overline{0} \otimes \overline{1}=0, \\
n(\overline{1} \otimes \overline{1}) & =\overline{1} \otimes \bar{n}=\overline{1} \otimes \overline{0}=0,
\end{aligned}
$$

hence the order of $\overline{1} \otimes \overline{1}$ in $\mathbb{Z} / m \mathbb{Z} \otimes \mathbb{Z} / n \mathbb{Z}$ divides m and n, thus it must divide $\operatorname{gcd}(m, n)=t$ (in particular since the order is positive, it is less than or equal to $t)$. Moreover for any $k \in \mathbb{N}^{+}$with $k<t$:

$$
\phi(k(\overline{1} \otimes \overline{1}))=\phi(\bar{k} \otimes \overline{1})=\phi(\bar{k}, \overline{1})=\bar{k},
$$

which is different than $\overline{0}$ in $\mathbb{Z} / t \mathbb{Z}$ because $k<t$. Hence since ϕ is an abelian group homomorphism, we must have $k(\overline{1} \otimes \overline{1}) \neq \overline{0}$ in $\mathbb{Z} / m \mathbb{Z} \otimes \mathbb{Z} / n \mathbb{Z}$ and thus the order of $\overline{1} \otimes \overline{1}$ must be greater or equal to t. Combining these two conditions we obtain that the order of $\overline{1} \otimes \overline{1}$ is exactly t, hence ϕ is an isomorphism of abelian groups.
2. We first show that $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q}$ as a \mathbb{Q} vector space. For this, we define the map:

$$
\begin{array}{rll}
\psi: \mathbb{Q} \times \mathbb{Q} & \longrightarrow & \mathbb{Q} \\
\left(\frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{2}}\right) & \longmapsto & \frac{a_{1} a_{2}}{b_{1} b_{2}} .
\end{array}
$$

Notice that ψ is \mathbb{Z}-biadditive since for $p, q, a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{Z}$ we have:
(a) $\psi\left(a_{1} / b_{1}+a_{2} / b_{2}, p / q\right)=\psi\left(\left(a_{1} b_{2}+a_{2} b_{1}\right) /\left(b_{1} b_{2}\right), p / q\right)=\left(a_{1} b_{2}+a_{2} b_{1}\right) p /\left(b_{1} b_{2} q\right)=$ $\left(\left(a_{1} b_{2}+a_{2} b_{1}\right) /\left(b_{1} b_{2}\right)\right)(p / q)=\left(a_{1} / b_{1}+a_{2} / b_{2}\right)(p / q)=\left(a_{1} / b_{1}\right)(p / q)+\left(a_{2} / b_{2}\right)(p / q)=$ $a_{1} p / b_{1} q+a_{2} p / b_{2} q=\psi\left(a_{1} / b_{1}, p / q\right)+\psi\left(a_{2} / b_{2}, p / q\right)$,
(b) $\psi\left(p / q, a_{1} / b_{1}+a_{2} / b_{2}\right)=\psi\left(p / q,\left(a_{1} b_{2}+a_{2} b_{1}\right) /\left(b_{1} b_{2}\right)\right)=p\left(a_{1} b_{2}+a_{2} b_{1}\right) /\left(q b_{1} b_{2}\right)=$ $(p / q)\left(\left(a_{1} b_{2}+a_{2} b_{1}\right) /\left(b_{1} b_{2}\right)\right)=(p / q)\left(a_{1} / b_{1}+a_{2} / b_{2}\right)=(p / q)\left(a_{1} / b_{1}\right)+(p / q)\left(a_{2} / b_{2}\right)=$ $p a_{1} / q b_{1}+p a_{2} / q b_{2}=\psi\left(p / q, a_{1} / b_{1}\right)+\psi\left(p / q, a_{2} / b_{2}\right)$,
(c) $\psi\left(p\left(a_{1} / b_{1}\right), a_{2} / b_{2}\right)=\psi\left(p a_{1} / b_{1}, a_{2} / b_{2}\right)=p a_{1} a_{2} / b_{1} b_{2}=a_{1} p a_{2} / b_{1} b_{2}=\psi\left(a_{1} / b_{1}, p a_{2} / b_{2}\right)=$ $\psi\left(a_{1} / b_{1}, p\left(a_{2} / b_{2}\right)\right)$ and $p \psi\left(a_{1} / b_{1}, a_{2} / b_{2}\right)=p\left(a_{1} a_{2} / b_{1} b_{2}\right)=p a_{1} a_{2} / b_{1} b_{2}$, thus $p \psi\left(a_{1} / b_{1}, a_{2} / b_{2}\right)=\psi\left(p\left(a_{1} / b_{1}\right), a_{2} / b_{2}\right)=\psi\left(a_{1} / b_{1}, p\left(a_{2} / b_{2}\right)\right)$.

This means that ψ induces by the universal property of the tensor product a morphism of abelian groups $\phi: \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \longrightarrow \mathbb{Q}$ such that $\phi(1 \otimes 1)=\psi(1,1)=\overline{1}$. We first want to define a multiplication by scalars on $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$, which we do by means of the pure tensors as:

$$
\begin{aligned}
\mathbb{Q} \times \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} & \longrightarrow \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \\
\left(\frac{p}{q}, \frac{a_{1}}{b_{1}} \otimes \frac{a_{2}}{b_{2}}\right) & \longmapsto \frac{p a_{1}}{q b_{1}} \otimes \frac{a_{2}}{b_{2}}
\end{aligned}
$$

and we extend to $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$ by linearity. The axioms of $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$ being a \mathbb{Q} module with the multiplication above follow from the linearity on the second component (requested by definition) and the properties of the multiplication in \mathbb{Q}.
Notice how for $p, q, a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{Z}$ we have:

$$
\frac{p a_{1}}{q b_{1}} \otimes \frac{a_{2}}{b_{2}}=\frac{a_{1}}{q b_{1}} \otimes \frac{p a_{2}}{b_{2}}=\frac{a_{1}}{q b_{1}} \otimes \frac{q p a_{2}}{q b_{2}}=\frac{q a_{1}}{q b_{1}} \otimes \frac{p a_{2}}{q b_{2}}=\frac{a_{1}}{b_{1}} \otimes \frac{p a_{2}}{q b_{2}} .
$$

This means that as a \mathbb{Q} module, $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$ is generated by $1 \otimes 1$ since for $a_{1}, a_{2}, b_{1}, b_{2} \in$ \mathbb{Z} we have $\left(a_{1} / b_{1}\right) \otimes\left(a_{2} / b_{2}\right)=\left(a_{1} a_{2} / b_{1} b_{2}\right) \otimes 1=\left(a_{1} a_{2} / b_{1} b_{2}\right)(1 \otimes 1)$, and hence for finite sums of pure tensors we can always reduce to $1 \otimes 1$ multiplied by a scalar in \mathbb{Q} (in particular every element in $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$ is a pure tensor). Now, we can prove that ϕ is a linear map that is a bijection (we can reduce us by the above to the case where we only deal with pure tensors):
(a) ϕ is \mathbb{Q} linear since it is already a group homomorphism by the universal property of the tensor product that defined it, and for $a, b, a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{Z}$ we have:

$$
\begin{aligned}
\phi\left(\left(\frac{a}{b}\right)\left(\frac{a_{1}}{b_{1}} \otimes \frac{a_{2}}{b_{2}}\right)\right) & =\phi\left(\frac{a a_{1}}{b b_{1}} \otimes \frac{a_{2}}{b_{2}}\right)=\psi\left(\frac{a a_{1}}{b b_{1}}, \frac{a_{2}}{b_{2}}\right)=\frac{a a_{1} a_{2}}{b b_{1} b_{2}} \\
& =\frac{a}{b} \frac{a_{1} a_{2}}{b_{1} b_{2}}=\left(\frac{a}{b}\right) \psi\left(\frac{a_{1}}{b_{1}}, \frac{a_{2}}{b_{2}}\right)=\left(\frac{a}{b}\right) \phi\left(\frac{a_{1}}{b_{1}} \otimes \frac{a_{2}}{b_{2}}\right) .
\end{aligned}
$$

(b) ϕ is injective: for $a_{1}, a_{2}, b_{1}, b_{2}$ we have $\phi\left(\left(a_{1} / b_{1}\right) \otimes\left(a_{2} / b_{2}\right)\right)=0$, this means $\left(a_{1} a_{2}\right) /\left(b_{1} b_{2}\right)=0$ hence $a_{1} a_{2}=0$ and thus $a_{1}=0$ or $a_{2}=0$, meaning that $a_{1} / b_{1}=0$ or $a_{2} / b_{2}=0$, in either case $\left(a_{1} / b_{1}\right) \otimes\left(a_{2} / b_{2}\right)=0$, thus the kernel is trivial.
(c) ϕ is surjective: for $a / b \in \mathbb{Q}$ we have $\phi((a / b) \otimes 1)=\psi(a / b, 1)=a / b$.

Hence indeed ϕ is an isomorphism of \mathbb{Q} vector spaces and $\mathbb{Q} \otimes \mathbb{\mathbb { Q }} \cong \mathbb{Q}$.
We now prove that $\mathbb{R} \otimes_{\mathbb{Q}} \mathbb{R} \not \nexists \mathbb{R}$. In an analogous way as we proved above, we have that $\mathbb{R} \otimes_{\mathbb{Q}} \mathbb{R}$ is an \mathbb{R} vector space via:

$$
\begin{aligned}
\mathbb{R} \times \mathbb{R} \otimes_{\mathbb{Q}} \mathbb{R} & \longrightarrow \\
\left(r, r_{1} \otimes r_{2}\right) & \longmapsto \mathbb{R} \\
& \left(r r_{1}\right) \otimes r_{2}
\end{aligned}
$$

and we extend to $\mathbb{R} \otimes_{\mathbb{Q}} \mathbb{R}$ by linearity. We know that \mathbb{R} is an infinite dimensional \mathbb{Q} vector space, consider $\left\{\alpha_{i}\right\}_{i \in I}$ a \mathbb{Q} basis for R. We claim that $\left\{1 \otimes \alpha_{i}\right\}_{i \in I}$ is an \mathbb{R} basis for $\mathbb{R} \otimes_{\mathbb{Q}} \mathbb{R}$. First, it generates the pure tensors (hence it generates the whole space) since for $r, s \in \mathbb{R}$ we have:

$$
r \otimes s=r \otimes\left(\sum_{i \in I} q_{i} \alpha_{i}\right)=\sum_{i \in I} r \otimes\left(q_{i} \alpha_{i}\right)=\sum_{i \in I}\left(q_{i} r\right) \otimes \alpha_{i}=\sum_{i \in I}\left(r q_{i}\right)\left(1 \otimes \alpha_{i}\right)
$$

for some $q_{i} \in \mathbb{Q}$ for $i \in I$ (all zero but a finite number, thus the sum is finite). Second, to see that they are linearly independent, we are interested in the isomorphisms $\mathbb{R} \otimes_{\mathbb{Q}} \mathbb{R} \cong \mathbb{R} \otimes_{\mathbb{Q}}\left(\bigoplus_{i \in I} \mathbb{Q} \alpha_{i}\right) \cong \bigoplus_{i \in I}\left(\mathbb{R} \otimes_{\mathbb{Q}} \mathbb{Q} \alpha_{i}\right)$, whose composition sends (in the notation above) a pure tensor $r \otimes s$ to its coordinates $\left(r q_{i}\right)_{i \in I}$. Thus when we have that a (finite) linear combination of $\left\{1 \otimes \alpha_{i}\right\}_{i \in I}$ is zero in $\mathbb{R} \otimes_{\mathbb{Q}} \mathbb{R}$, via the isomorphisms we have that in the direct sum all the coordinates are zero, hence all the coefficients that multiplied $\left\{1 \otimes \alpha_{i}\right\}_{i \in I}$ must have been zero already.
Thus, we found that $\operatorname{dim}_{\mathbb{R}}\left(\mathbb{R} \otimes_{\mathbb{Q}} \mathbb{R}\right)=\operatorname{dim}_{\mathbb{Q}}(\mathbb{R})>1$, but $\operatorname{dim}_{\mathbb{R}}(\mathbb{R})=1$, thus we cannot have that $\mathbb{R} \otimes_{\mathbb{Q}} \mathbb{R}$ and \mathbb{R} are isomorphic because their bases have different cardinality, hence $\mathbb{R} \otimes_{\mathbb{Q}} \mathbb{R} \not \equiv \mathbb{R}$ as desired.

Exercise 5

Let R be commutative, M, N, P be R-modules. We want to show that $\operatorname{Hom}_{R}\left(M \otimes_{R}\right.$ $N, P) \cong \operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(N, P)\right)$. For this, we will build two morphisms of R-modules $\psi: \operatorname{Hom}_{R}\left(M \otimes_{R} N, P\right) \longrightarrow \operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(N, P)\right)$ and $\phi: \operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(N, P)\right) \longrightarrow$ $\operatorname{Hom}_{R}\left(M \otimes_{R} N, P\right)$ such that $\phi \circ \psi=\operatorname{id}_{\operatorname{Hom}_{R}\left(M \otimes_{R} N, P\right)}$ and $\psi \circ \phi=\operatorname{id}_{\operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(N, P)\right)}$.

We start by letting $f \in \operatorname{Hom}_{R}\left(M \otimes_{R} N, P\right)$, say:

$$
\begin{array}{rlc}
f: M \otimes_{R} N & \longrightarrow & P \\
m \otimes n & \longmapsto & f(m \otimes n)
\end{array}
$$

then we define:

$$
\begin{array}{ccc}
\psi: \operatorname{Hom}_{R}\left(M \otimes_{R} N, P\right) & \longrightarrow & \operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(N, P)\right) \\
f & \longmapsto & \psi(f)
\end{array}
$$

by setting for $m \in M$ the function $\psi(f)(m): N \longrightarrow P$ as:

$$
\begin{array}{cccc}
\psi(f)(m): & N & \longrightarrow & P \\
& n & \longmapsto & f(m \otimes n)
\end{array}
$$

so that $\psi(f)(m)(n)=f(m \otimes n)$. To verify that this is well defined, we need that $\psi(f)(m) \in \operatorname{Hom}_{R}(N, P)$ and $\psi(f) \in \operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(N, P)\right)$. Let $n, n_{1}, n_{2} \in N$ and $r \in R$, we have:

1. $\psi(f)(m)\left(n_{1}+n_{2}\right)=f\left(m \otimes\left(n_{1}+n_{2}\right)\right)=f\left(m \otimes n_{1}+m \otimes n_{2}\right)=f\left(m \otimes n_{1}\right)+f\left(m \otimes n_{2}\right)=$ $\psi(f)(m)\left(n_{1}\right)+\psi(f)(m)\left(n_{2}\right)$,
2. $\psi(f)(m)(r n)=f(m \otimes(r n))=f(r(m \otimes n))=r f(m \otimes n)=r \psi(f)(m)(n)$,
where we heavily used that f is a morphism of R-modules, hence $\psi(f)(m) \in \operatorname{Hom}_{R}(N, P)$. Let $m_{1}, m_{2} \in M$, we have:
3. $\psi(f)\left(m_{1}+m_{2}\right)(n)=f\left(\left(m_{1}+m_{2}\right) \otimes n\right)=f\left(m_{1} \otimes n+m_{2} \otimes n\right)=f\left(m_{1} \otimes n\right)+$ $f\left(m_{2} \otimes n\right)=\psi(f)\left(m_{1}\right)(n)+\psi(f)\left(m_{2}\right)(n)$,
4. $\psi(f)(r m)(n)=f((r m) \otimes n)=f(r(m \otimes n))=r f(m \otimes n)=r \psi(f)(m)(n)$,
where we again used that f is a morphism of R-modules, hence $\psi(f) \in \operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(N, P)\right)$. Thus, ψ is well defined. We now prove that ψ is an R-module morphism, let $f, f_{1}, f_{2} \in$ $\operatorname{Hom}_{R}\left(M \otimes_{R} N, P\right)$, we have:
5. $\psi\left(f_{1}+f_{2}\right)(m)(n)=\left(f_{1}+f_{2}\right)(m \otimes n)=f_{1}(m \otimes n)+f_{2}(m \otimes n)=\psi\left(f_{1}\right)(m)(n)+$ $\psi\left(f_{2}\right)(m)(n)$,
6. $\psi(r f)(m)(n)=(r f)(m \otimes n)=f(r(m \otimes n))=r f(m \otimes n)=r \psi(f)(m)(n)$,
where we rely on f being a morphism of R-modules, hence ψ is as desired.
Now, we continue by letting $\alpha \in \operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(N, P)\right)$, say:

$$
\begin{array}{c:c}
\alpha: M & \longrightarrow \\
m & \longmapsto \operatorname{Hom}_{R}(N, P) \\
& \longmapsto(m)
\end{array}
$$

then we define:

$$
\begin{array}{lccc}
\tilde{\alpha}: M \times N & \longrightarrow & P \\
(m, n) & \longmapsto \alpha(m)(n)
\end{array}
$$

which is R-biadditive since for $r \in R, m, m^{\prime} \in M, n, n^{\prime} \in N$ we have:

1. $\tilde{\alpha}\left(m+m^{\prime}, n\right)=\alpha\left(m+m^{\prime}\right)(n)=\left(\alpha(m)+\alpha\left(m^{\prime}\right)\right)(n)=\alpha(m)(n)+\alpha\left(m^{\prime}\right)(n)=$ $\tilde{\alpha}(m, n)+\tilde{\alpha}\left(m^{\prime}, n\right)$ since $\alpha \in \operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(N, P)\right)$,
2. $\tilde{\alpha}\left(m, n+n^{\prime}\right)=\alpha(m)\left(n+n^{\prime}\right)=\alpha(m)(n)+\alpha(m)\left(n^{\prime}\right)=\tilde{\alpha}(m, n)+\tilde{\alpha}\left(m, n^{\prime}\right)$ since $\alpha(m) \in \operatorname{Hom}_{R}(N, P)$,
3. $\tilde{\alpha}(r m, n)=\alpha(r m)(n)=r \alpha(m)(n)=r \tilde{\alpha}(m, n)$ since $\alpha \in \operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(N, P)\right)$ and $\tilde{\alpha}(m, r n)=\alpha(m)(r n)=r \alpha(m)(n)=r \tilde{\alpha}(m, n)$ since $\alpha(m) \in \operatorname{Hom}_{R}(N, P)$, hence $\tilde{\alpha}(r m, n)=r \tilde{\alpha}(m, n)=\tilde{\alpha}(m, r n)$.

This means that by the universal property of the tensor product, there is a unique group homomorphism, that we name $\phi(\alpha)$, such that the following diagram commutes:

that is $\tilde{\alpha}=\phi(\alpha) \circ h$, otherwise said, over the pure tensors $m \otimes n \in M \otimes_{R} N$ we have $\phi(\alpha)(m \otimes n)=\tilde{\alpha}(m, n)=\alpha(m)(n)$. Then we define:

$$
\begin{array}{cl}
\phi: \operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(N, P)\right) & \longrightarrow \\
\alpha & \longmapsto \\
\operatorname{Hom}_{R}\left(M \otimes_{R} N, P\right) \\
\phi(\alpha)
\end{array}
$$

by setting $\phi(\alpha)$ as above. To verify that this is well defined, we need that $\phi(\alpha) \in$ $\operatorname{Hom}_{R}\left(M \otimes_{R} N, P\right)$. Let $m \otimes n \in M \otimes_{R} N$, we have:

1. Since $\phi(\alpha)$ is a group homomorphism, we already know that behaves as desired when applied to a sum of pure tensors.
2. $\phi(\alpha)(r(m \otimes n))=\phi(\alpha)((r m) \otimes n)=\alpha(r m)(n)=r \alpha(m)(n)=r \phi(\alpha)(m \otimes n)$,
where we used that $\alpha \in \operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(N, P)\right)$, hence $\phi(\alpha) \in \operatorname{Hom}_{R}\left(M \otimes_{R} N, P\right)$ and thus ϕ is well defined. We now prove that ϕ is an R-module morphism, let $\alpha, \alpha_{1}, \alpha_{2} \in$ $\operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(N, P)\right)$, we have:
3. $\phi\left(\alpha_{1}+\alpha_{2}\right)(m \otimes n)=\left(\alpha_{1}+\alpha_{2}\right)(m)(n)=\alpha_{1}(m)(n)+\alpha_{2}(m)(n)=\phi\left(\alpha_{1}\right)(m \otimes n)+$ $\phi\left(\alpha_{2}\right)(m \otimes n)$,
4. $\phi(r \alpha)(m \otimes n)=(r \alpha)(m)(n)=\alpha(r m)(n)=r \alpha(m)(n)=r \phi(\alpha)(m \otimes n)$,
where we rely on α being a morphism of R-modules, hence ϕ is as desired.
Finally, we have that:

$$
\begin{aligned}
\phi \circ \psi(f)(m \otimes n) & =\psi(f)(m)(n)=f(m \otimes n)=\operatorname{id}_{\operatorname{Hom}_{R}\left(M \otimes_{R} N, P\right)}(f)(m \otimes n) \\
\psi \circ \phi(\alpha)(m)(n) & =\phi(\alpha)(m \otimes n)=\alpha(m)(n)=\operatorname{id}_{\operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(N, P)\right)}(\alpha)(m)(n)
\end{aligned}
$$

hence indeed $\phi \circ \psi=\operatorname{id}_{\operatorname{Hom}_{R}\left(M \otimes_{R} N, P\right)}$ and $\psi \circ \phi=\operatorname{id}_{\operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(N, P)\right)}$, and $\operatorname{Hom}_{R}\left(M \otimes_{R}\right.$ $N, P) \cong \operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(N, P)\right)$.

