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Exercise 1

Let R and S be rings, A a right R-module, B an (R,S)-bimodule, C a left S-module.
We want to prove that A⊗R (B ⊗S C) ∼= (A⊗R B)⊗S C as abelian groups.

First, we want to define a group homomorphism φ : A⊗R(B⊗SC) −→ (A⊗RB)⊗SC.
For this, for every element a ∈ A we consider the maps:

φa : B × C −→ (A⊗R B)⊗S C
(b, c) −→ (a⊗ b)⊗ c

which are S-biadditive, since given b, b′ ∈ B, c, c′ ∈ C and s ∈ S we have:

1. φa(b+ b′, c) = (a⊗ (b+ b′))⊗ c = (a⊗ b+ a⊗ b′)⊗ c = (a⊗ b)⊗ c+ (a⊗ b′)⊗ c =
φa(b, c) + φa(b

′, c),

2. φa(b, c+ c′) = (a⊗ b)⊗ (c+ c′) = (a⊗ b)⊗ c+ (a⊗ b)⊗ c′ = φa(b, c) + φa(b, c
′),

3. φa(bs, c) = (a⊗ (bs))⊗ c = ((a⊗ b)s)⊗ c = (a⊗ b)⊗ (sc) = φa(b, sc).

This yields the commutative diagram:

B × C //

φa ''

B ⊗S C

φ̃a
��

(A⊗R B)⊗ C

that sets φ̃a(b⊗ c) = (a⊗ b)⊗ c a group homomorphism. Now, we consider the map:

φ : A× (B ⊗S C) −→ (A⊗R B)⊗S C
(a, b⊗ c) −→ φ̃a(b⊗ c)

which is well defined since if we have b, b′ ∈ B, c, c′ ∈ C with b⊗ c = b′⊗ c′ then for any
a ∈ A we have φ(a, b ⊗ c) = φ̃a(b ⊗ c) = φ̃a(b

′ ⊗ c′) = φ(a, b′ ⊗ c′), where we have used
that φ̃a is well defined on B ⊗S C by construction. Now φ is R-biadditive, since given
a, a′ ∈ A, b, b′ ∈ B, c, c′ ∈ C and r ∈ R we have:

1. φ(a+a′, b⊗ c) = ((a+a′)⊗ b)⊗ c = (a⊗ b+a′⊗ b)⊗ c = (a⊗ b)⊗ c+ (a′⊗ b)⊗ c =
φ(a, b⊗ c) + φ(a′, b⊗ c),

2. φ(a, b⊗c+b′⊗c′) = φ̃a(b⊗c+b′⊗c′) = φ̃a(b⊗c)+φ̃a(b
′⊗c′) = φ(a, b⊗c)+φ(a, b′⊗c′)

since φ̃a is a group homomorphism,

3. φ(ar, b⊗ c) = ((ar)⊗ b)⊗ c = (a⊗ (rb))⊗ c = φ(a, (rb)⊗ c) = φ(a, r(b⊗ c)),

where we remark that it is enough to prove the properties for pure tensors since for a
general sum of pure tensors we just apply the fact that φ̃a is a group homomorphism
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to divide the sum into the pure tensors, use the properties above and then regroup the
terms as needed to obtain the result. This yields the commutative diagram:

A× (B ⊗S C) //

φ ((

A⊗R (B ⊗S C)

φ

��
(A⊗R B)⊗ C

that sets φ(a⊗ (b⊗ c)) = (a⊗ b)⊗ c a group homomorphism.
Second, we proceed in an perfectly analogous way in the other direction. We omit

the details to not appear ridiculously redundant, so first working on ψc : A × B −→
A⊗R (B⊗S C) in the exact same way and then on ψ : (A⊗RB)×C −→ A⊗R (B⊗S C)
in again the exact same way, we obtain a group homomorphism ψ : (A⊗R B)⊗S C −→
A⊗R (B ⊗S C) that sets ψ((a⊗ b)⊗ c) = a⊗ (b⊗ c).

Finally, it is easy to check that for a ∈ A, b ∈ B, c ∈ C we have:

ψ ◦ φ(a⊗ (b⊗ c)) = ψ((a⊗ b)⊗ c) = a⊗ (b⊗ c)
φ ◦ ψ((a⊗ b)⊗ c) = φ(a⊗ (b⊗ c)) = a⊗ (b⊗ c)

hence indeed ψ ◦φ = idA⊗R(B⊗SB) and φ◦ψ = id(A⊗RB)⊗SB so φ is a group isomorphism
with inverse ψ. Hence indeed A ⊗R (B ⊗S C) ∼= (A ⊗R B) ⊗S C as abelian groups, as
desired.
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Exercise 2

Let R be a commutative ring.

1. Let F be a flat R-module and a ∈ R a non-zero divisor. Show that if ax = 0 for
some x ∈ F then x = 0. For this, consider the map φ : R −→ R given by φ(r) = ra
for every r ∈ R. Since a is a non-zero divisor, if we have two elements s, t ∈ R
with as = at, this means a(s− t) = 0 thus s = t, and φ is injective. Now, consider:

0→ R
φ−→ R

π−→ Y/coker(φ)→ 0

with π being the natural projection. This sequence is exact by the fact that φ is
injective and the definition of cokernel. Since F is flat, when we tensor by F via
R we obtain the exact sequence:

0→ F ⊗R R
1⊗φ−−→ F ⊗R R

1⊗π−−→ F ⊗R Y/coker(φ)→ 0.

Hence 1⊗ φ is an injective function, and we have:

(1⊗ φ)(x⊗ 1) = x⊗ a = xa⊗ 1 = 0⊗ 1 = 0⊗ a = (1⊗ φ)(0⊗ 1)

which means that x⊗1 = 0⊗1 by injectivity. Recalling that F ⊗RR is isomorphic
to F as R-modules via the map ψ : F ⊗R R −→ F given by ψ(f ⊗ r) = fr for
f ∈ F and r ∈ R, we have that x = φ(x⊗ 1) = φ(0⊗ 1) = 0, as desired.

2. Let R be a principal ideal domain. We prove that a finitely generated R-module
M is flat if and only if it is torsion free.

⇒) Let M be flat, suppose there is an element x ∈ Mtors, that is, there is a non-
zero element a ∈ R such that ax = 0. Since R is a domain, a is not a zero divisor.
Hence by the section above x = 0 and Mtors = {0}, that is, M is torsion free.

⇐) Let M be torsion free and finitely generated. Over R a principal ideal domain,
we have proven in class that this implies that M is free. This means that M is
projective as R module, which in turn means that M is flat.
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Exercise 3

Let d ∈ Z not a perfect square, consider Q(
√
d) = {a+ b

√
d : a, b ∈ Q}. Let p, q ∈ Z be

primes.

1. We want to define a surjective Q-algebra homomorphism φ : Q(
√
p)[x] −→ Q(

√
p)⊗Q

Q(
√
q) such that ker(φ) = (x2−q). For this, we define φ(1) = 1⊗1, φ(

√
p) =

√
p⊗1

and φ(x) = 1 ⊗√q and then we extend by linearity. We notice that since we are
defining a function from a polynomial ring over a field, it suffices to define the
image of the generator(s) of the ring, which in our case are the variable and the
two generators of the field, hence φ is well defined.

We now check that φ is a Q-algebra homomorphism. Let f, g ∈ Q(
√
p)[x], adding

zero coefficients if necessary we can assume that f and g have the same degree, say
f =

∑n
i=1 fix

i, g =
∑n

i=1 gix
i with fi, gi ∈ Q(

√
p) for i = 1, . . . , n. Let r ∈ Q(

√
p).

(a) We have:

φ(f + g) = φ

(
n∑
i=1

(fi + gi)x
i

)
=

n∑
i=1

φ(fi + gi)φ(x)i

=

n∑
i=1

(φ(fi) + φ(gi))φ(x)i =

n∑
i=1

φ(fi)φ(x)i +

n∑
i=1

φ(gi)φ(x)i

= φ(f) + φ(g),

where we have used that φ(fi+gi) = φ(fi)+φ(gi). To check this, it is enough
to prove that φ(a+ b) = φ(a) +φ(b) for a, b ∈ Q(

√
p), say say a = a1 + a2

√
p,

b = b1 + b2
√
p with a1, a2, b1, b2 ∈ Q. Now:

φ(a+ b) = φ(a1 + b1 + (a2 + b2)
√
p) = (a1 + b1)φ(1) + (a2 + b2)φ(

√
p)

= (a1 + b1)1⊗ 1 + (a2 + b2)
√
p⊗ 1 = a11⊗ 1 + b11⊗ 1

+ a2
√
p⊗ 1 + b2

√
p⊗ 1 = a1φ(1) + a2φ(

√
p) + b1φ(1) + b2φ(

√
p)

= φ(a1 + a2
√
p) + φ(b1 + b2

√
p) = φ(a) + φ(b).

(b) We have:

φ(fg) = φ

∑
i,j

figjx
i+j

 =
∑
i,j

φ(figj)φ(x)i+j =
∑
i,j

φ(fi)φ(gj)φ(x)iφ(x)j

=

(
n∑
i=1

φ(fi)φ(x)i

)(
n∑
i=1

φ(gi)φ(x)i

)
= φ(f)φ(g)

where we have used that φ(figj) = φ(fi)φ(gj). To check this, it is enough
to prove that φ(ab) = φ(a)φ(b) for a, b ∈ Q(

√
p), say say a = a1 + a2

√
p,
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b = b1 + b2
√
p with some a1, a2, b1, b2 ∈ Q. Now:

φ(ab) = φ(a1b1 + (a1b2 + a2b1)
√
p+ a2b2p) = (a1b1 + a2b2p)φ(1)

+ (a1b2 + a2b1)φ(
√
p) = (a1b1 + a2b2p)1⊗ 1 + (a1b2

+ a2b1)
√
p⊗ 1 = a1b11⊗ 1 + a2b2p⊗ 1 + (a1b2 + a2b1)

√
p⊗ 1

= (a11⊗ 1 + a2
√
p⊗ 1)(b11⊗ 1 + b2

√
p⊗ 1) = (a1φ(1)

+ a2φ(
√
p))(b1φ(1) + b2φ(

√
p)) = φ(a)φ(b),

where we have used the multilinearity of the tensor product.

(c) By definition φ(1) = 1⊗ 1.

(d) We have:

φ(rf) = φ

(
n∑
i=1

rfix
i

)
=

n∑
i=1

φ(rfi)φ(x)i =
n∑
i=1

rφ(fi)φ(x)i

= r
n∑
i=1

φ(fi)φ(x)i = rφ(f),

where we have used that φ(rfi) = rφ(fi). To check this, it is enough to
prove that φ(ra) = rφ(a) for a,∈ Q(

√
p), say say a = a1 + a2

√
p with some

a1, a2 ∈ Q. Now:

φ(ra) = φ(ra1 + ra2
√
p) = ra1φ(1) + ra2φ(

√
p) = r(a1φ(1) + a2φ(

√
p))

= rφ(a1 + a2
√
p) = rφ(a).

This proves that φ is a Q-algebra homomorphism.

Clearly φ is surjective since for any pure tensor s⊗ t ∈ Q(
√
p)⊗Q Q(

√
q) we have

s = s1 + s2
√
p and t = t1 + t2

√
q with some s1, s2, t1, t2 ∈ Q. Then:

φ(s1t1 + s2t1
√
p+ s1t2x+ s2t2

√
px) = (s1t1)1⊗ 1 + (s2t1)

√
p⊗ 1

+ (s1t2)1⊗
√
q + (s2t2)

√
p⊗√q = s1 ⊗ t1 + s2

√
p⊗ t1

+ s1 ⊗ t2
√
q + s2

√
p⊗ t2

√
q = (s1 + s2

√
p)⊗ (t1 + t2

√
q) = s⊗ t,

where the multilinearity of the tensor product has been used. If any pure tensor
belongs to the image, by the linearity of φ any sum of pure tensors belongs to the
image.

We just have to prove that ker(φ) = (x2 − q).
⊇) Clearly φ(x2 − q) = φ(x)2 − qφ(1) = 1⊗ q − q ⊗ 1 = 0.

⊇ Let f ∈ ker(φ), since Q(
√
p) is a field, we have that Q(

√
p)[x] is an Euclidean

domain. In fact, it suffices that it has a division algorithm. We divide by x2− q to
obtain a decomposition f = g(x2 − q) + h where g, h ∈ Q(

√
p)[x] and deg(h) < 2.
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This means that h = h0 + h1x with h0, h1 ∈ Q(
√
p), say h0 = h0,1 + h0,2

√
p and

h1 = h1,1 + h2,2
√
q with some h0,1, h0,2, h1,1, h1,2 ∈ Q. Now applying φ we obtain:

0 = φ(f) = φ(g(x2 − q) + h) = φ(g)φ(x2 − q) + φ(h) = φ(h) = h0,1φ(1)

+ h0,2φ(
√
p) + h1,1φ(x) + h1,2φ(

√
p)φ(x) = h0,11⊗ 1 + h0,2

√
p⊗ 1

+ h1,11⊗
√
q + h1,2

√
p⊗√q,

that is, a Q-linear combination of the pure tensors 1⊗ 1,
√
p⊗ 1, 1⊗√q,√p⊗√q.

However, we note that since they always differ in a factor of
√
p or

√
q inside at

least one component of tensor product, and those factors cannot be multilinearly
transferred to the other component since they do not belong in Q, we have that
those four pure tensors are Q-linearly independent. Thus we must have h0,1 =
h0,2 = h1,1 = h1,2 = 0, meaning that h = 0 and f ∈ (x2 − q).
We have thus constructed a Q-algebra homomorphism that is surjective with kernel
(x2 − q), as desired.

2. If p 6= q, show that Q(
√
p) ⊗Q Q(

√
q) is a field. Applying the First Isomorphism

Theorem to the section above, we obtain that Q(
√
p)⊗QQ(

√
q) ∼= Q(

√
p)[x]/(x2−

q). Since everything is commutative, for this quotient to be a field it is enough
that the ideal (x2 − q) is maximal, which happens if and only if the polynomial
x2− q ∈ Q(

√
p)[x] is irreducible. Note that x2− q has no roots, since the solutions

are ±√q /∈ Q(
√
p) since p 6= q and q is not a perfect square. Since x−q is of degree

two, this means that it cannot decompose in factors of degree one, meaning that
it is indeed irreducible, as desired. Hence Q(

√
p)⊗Q Q(

√
q) is a field.

3. Show that Q(
√
p) ⊗Q Q(

√
p) is not a domain by finding a zero divisor. For this,

we consider a, b, f, g ∈ Q and impose the multiplication:

0 = (a⊗ p+ b⊗√p)(f ⊗ p+ g ⊗√p)
= af ⊗ p2 + ag ⊗ p√p+ bf ⊗ p√p+ bg ⊗ p

0 = afp⊗ 1 + ag ⊗√p+ bf ⊗√p+ bg ⊗ 1

where we have divided by p to obtain the second equation. Factoring out and
imposing that the first components in the tensor product are zero, we obtain the
system of equations:{

afp+ bg = 0

ag + bf = 0
=⇒ b = a

√
p, g = −f√p

which is a solution of the first equation, and also works for the second. Now
choosing a = 1 = f , we obtain that:

(1⊗p+(−1)⊗√p)(1⊗p+1⊗√p) = 1⊗p2 +1⊗p√p+(−1)⊗p√p+(−1)⊗p = 0

thus 1 ⊗ p + 1 ⊗ √p is a zero divisor and Q(
√
p) ⊗Q Q(

√
p) is not a domain, as

desired.
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