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Exercise 1

We have R a commutative ring (with 1 # 0), M and N are R-modules such that M is
finitely generated and N is Noetherian. We show that M ®pr N is Noetherian.

Suppose we have M = (myq, ..., my)g, we have seen multiple times in class that this
means that the map ¢ : Rmy @ ---® Rmy, — M given by ¢(m;) =m; fori=1,... kis
a surjective R-module homomorphism. Thus we have the exact sequence of R-modules:

0 — ker(¢) - R* -2 M — 0,

where ¢ denotes the natural inclusion. Applying the right exact functor - ® g N, we
obtain the exact sequence:

0 — ker(¢ @ idy) — RF@p N 2% Mor N — 0,

where the first morphism is the natural inclusion: note that the right exactness only
guarantees that the morphism ¢ ® idy is surjective, but we can always make a surjective
morphism into a short exact sequence by including its kernel before it. Now, since
R®r N = N as R-modules, we have that R* @z N = N* and the exact sequence of
R-modules:

0 — ker(¢ ® idy) — N¥ — M ®@r N — 0.

We have seen in class that when we have a short exact sequence of R-modules, the module
in the middle is Noetherian if and only if the other two modules are Noetherian. Since N
is Noetherian and a finite sum of Noetherian modules is Noetherian, we obtain that N*
is Noetherian. Applying this to the exact sequence above, we obtain that ker(¢ @ idy)
and M ®gr N are Noetherian, the second being the result we desired.



Exercise 2

We consider V' a finite dimensional vector space over a field K, Ay — V a linear
transformation and the multiplication:

Kz xV — V
(fiv)  — f(A

1. We verify that V is a K[z]-module with the multiplication above. First, since V'
is a finite dimensional K vector space, V has the structure of an abelian group
with respect to addition. Hence we only have to verify that given u,v € V and

f,g€ Klx],say f=>1", fixt, g = Sy giz® with fi,gi€e Kfori=1,...,n
(a) We have:

frlutv) = f(A)(u+v) (Zszz> (utv) =) fidl(u+v)
=1

- Zfi(Aiu—kAiv):ZfiAiu+ZfiAiv:f.u+f-v,

i=1 =1 i=1

where we have used that A is K-linear hence A(u +v) = Au + Av.

(b) We have:

(f+g)-v (: fix' + znjgi:v"> v = (i (fi + gz)x’) "
Z fi+gi)A v-ZfZAlv—i—ZglA”v_f v+g-o.
im1

(c) We have:

(f9)-v = [D_ figia™ | -v= Z fig; AT 0 = Z fiAl ZQJAJ
i

n
= ZfiAl(g-v) =f-(g9-v),
i=1
where we have used that A is K-linear hence its action commutes with f;, g; €

Kfori=1,...,n

(d) We have:
1-v=1idyv =w.

This means that indeed V' is a K[x]-module with the above multiplication.



2. Show that V is a finitely generated torsion K [z]-module.

First, we note that V is a finite dimensional vector space, say dim(V) = n, this
means that V' = (v1,...,v,)x where vy,...,v, generate V and are linearly in-
dependent, both over K. This clearly means that V' = (v1,...,vs) k], since we
can generate V with K C K|z] (because the multiplication by elements of K as
a K[z]-module is the same as the usual multiplication by scalars as a K-module)
and adding possible coefficients to the linear combinations doesn’t change that
(however, now we cannot say that vy,...,v, are linearly independent since there
may be a linear combination of the generators with non-zero coefficients in K{z]
that is zero). This proves that V is finitely generated as K[z]-module.

To prove that it is a torsion module, let v € V' and define the map:

v, K] — V
o= v

notice that ¢, is a homomorphism of K[z]-modules, since given f,g € K|z], say
f=>0" fix',g=>", gix", with f;,¢9;,€ K for i =1,...,n, we have:

(@) wo(f+g)=(f+g)-v=Ff-v+g-v=0p(f)+pulg),
() @u(fg)=(fg)-v="F(9-v)=f vul9),

where we have used the properties of the multiplication proved in the section above.
This yields the short exact sequence of K [z]-modules:
0 — ker(p,) — K[z] 2% im(p,) — 0,

where ¢ denotes the natural inclusion. In particular, this is a short exact sequence
of K-modules with K a field, and since every vector space has a basis, all the
modules in the sequence are free modules, meaning that the sequence splits. Thus
as K vector spaces, we have that K[z] = ker(p,)®im(p,). Notice that im(¢,) C V
and we know that a sub-vector space of a finite dimensional vector space is also
finite dimensional (with the dimension bounded by the dimension of the vector
space containing it), thus im(¢,) is a finite dimensional K vector space. Moreover,
K|[x] is an infinite dimensional K vector space. Suppose ker(y,) = {0}, this means
that an infinite dimensional K vector space is isomorphic to a finite dimensional
K vector space, which is absurd, hence we must have ker(yp,) # {0}. In particular,
there is a non-zero element f, € ker(y,), that is, f, - v = p,(fy,) = 0. Hence, we
found f, € K|z| such that f, -v = 0, that is, v is a torsion element. Since this is
true for every v € V, we have that V' is a torsion K [z]-module.

3. Suppose K =R, V = R? and:



We want to find a polynomial ¢ € R[z| so that V = R[z]/(q) as R[z]-modules.
Since we have that A% = —4idy,, we foresee that ¢ = 22 + 4.

For this, we first consider R? with the usual basis (1,0) and (0,1). We now define
the map:

Ty e el

Notice that ¢ = ¢(1 ) in the notation of the section above, thus in particular ¢ is
a R[z]-module homomorphism.

Moreover, it is surjective, since ¢(1) = 1 (1,0) = (1,0) and (%) = %5(0,-2) =
(0,1), so both elements of the canonical basis of R? belong to the image of .
The fact that ¢ is a R[z]-module homomorphism ensures that im(v)) is a R[z]-
module (hence linear combinations with coefficients in R[z] of elements in the
image remains in the image), so R? C im(¢), meaning that im(¢) = R.

We prove that ker(¢) = (z2+4). Clearly ¢(2?+4) = A?+4idy = —4idy +4idy = 0,
so (z%2+4) C ker(v)). Suppose f € ker(3), since we are in R[x], we use the division
algorithm to obtain f = (22 +4)h+r with deg(r) < 2. Applying 9 to this equality
and using the above, we obtain that:

0=v(f) = v(a® + 4)(h) +(r) = p(r),

and if we write » = r¢ + r1x we obtain that:

0_ 1+ 0 2 1_7‘0+ 0 :>7"():0 :>7’0:0
ol =" lo| T =2 o] |o] T o] |=2r D =0
meaning that r = 0 and thus f = (22 4+ 4)h, that is f € (2% + 4) hence ker(¢)) C
(22 + 4). This means that indeed ker () = (22 + 4).

Finally, we have V = im(y) = R[z]/ ker(¢)) = R[z]/(2? + 4) by the First Isomor-
phism Theorem. Setting ¢ = 22 + 4 € R|x], this is the desired isomorphism of
R[z]-modules.



Exercise 3

We use the notation in the sections above, with A : V — V a linear transformation of
V a finite dimensional K vector space, say dim(V) = n.

1. We show that there is a unique polynomial g4 € KJz]| of least degree for which
qa(A) =0, and we determine its expression in terms of the elementary divisors of
V as K[z]-module.

For this, consider the set {deg(f):0# f € Klz|, f-v=0Vv € V} C N. We note
that this set is non empty since given a K basis v1, ..., v, of V, this being a torsion
K[z]-module assures us that there are polynomials f,,,..., f,, € K[z] such that
Jo, -vi =0 for i = 1,...,n. In particular for a general v € V, say v = > ;" | kjv;
for k1,...,k, € K we have:

for o Fon 0= Ki(for -+ fon) vi= > kilfo, = for - foufo)) - vi =0
=1 =1

because V is a K[z]-module. Hence the considered set contains deg(fy, - - fu,)-
Now, since the minimum degree attainable for a polynomial annihilating every
vector in V is 1, because the identity doesn’t annihilate any non-zero vector, and
the degrees have discrete values because they belong in N, we have that the infimum
of the considered set is attained, that is, inf{deg(f):0# f € Klz|, f-v=0%v €
V'} is attained by some polynomial, say ¢ € K|[z]. This proves existence of ¢, a
polynomial of least degree such that ¢ -v = 0 for every v € V. Now, dividing
all the coefficients in ¢ by its leading coefficient, we obtain g4 € K[z] a monic
polynomial of least degree, and since g4 differs of ¢ by multiplication of a scalar in
K, we still have that that g4 - v = 0 for every v € V. Moreover, this last property
implies that ga(A) = 0 as a matrix: suppose that g4(A4) # 0, this means that
using the above K-basis vy,...,v, for both V' in the domain and target, g4(A)
has a non-zero entry, say a;; € K, but this means that g4(A)v; has a;; (which is
non-zero) as coefficient for v;, a contradiction with g4 - v; = 0. Note that this is a
general proof, we actually proved that f € K[x] with f-v = 0 implies f(A) = 0.
Finally, suppose there is ¢/; € K[z], ¢y # ga, a monic polynomial of least degree
for which ¢/;(A) = 0, then g4 — ¢4 is a non-zero polynomial of degree strictly less
than both ¢4 and ¢/, for which (ga—¢’y)-v = (ga—q’4)(A)v = qa(A)v—¢,(A)v = 0,
which is a contradiction with the minimality of the degree. This means that ¢4 is
unique. Thus g4 € K|[x] is the unique monic polynomial of least degree for which
ga(A) =0, as desired.

To describe g4 in terms of the elementary divisors, we use that V is finitely gen-

erated as K[r]-module, say with generators ey,...,e,. Let F be the free K|[z]-
module with basis eq,...,e;,, as noted multiple times this means that the map
¢ : F — M given by ¢(e;) = e; for i = 1,...,m is a surjective K|[z]-module

homomorphism. Thus we have the exact sequence of K[z]-modules:

0 — ker(¢) - F -5V — 0,



where ¢ denotes the natural inclusion. Applying the First Isomorphism Theorem
we have that V' = F/ker(¢), and by the Elementary Divisors Theorem, using
that V is a torsion K[z]-module, we obtain that V = K[z]/(q1) & --- & K|[z]/(qr)
with q1,...,¢, € K[z] and q1|---|g, (notice that the degree of all the elementary
divisors is greater than 1 because K is a field, in particular it has no zero divisors.
This will be useful later). Now, let v € V' considered as an element of the direct
sum, we have that ¢, - v = 0 since ¢, annihilates every component of the direct
sum in virtue of gi|---|g- (in particular by the above g¢,(A) = 0). The division
algorithm gives us that g4 = ¢,h+r with deg(g,) < deg(r), and since 0 = q4(A) =
4 (A)h(A) + 1(4) = 7(A), and deg(qa) = deg(qh) = deg(q) + deg(h) < deg(r)
the minimality of the degree of g4 guarantees that r = 0. Moreover, if deg(h) > 0
we have that deg(qa) < deg(q,), thus again by the minimality of the degree of g4
we have h € K. Since g4 is monic, the only possible value for h is the inverse of
the leading coefficient of g, that is, g4 is the monic polynomial that arises from
qr, this is the relation that we desired.

. Let pa(x) = det(z - idy — A) € K[z] the characteristic polynomial of A. We want
to relate p4 to the elementary divisors of A. As we have seen above, we can write
V =2 Kz]/(q1) ® - & K[z]/(¢,) with ¢1,...,¢, € K[z] and q1]---|¢ (we can
assume that they are monic), say this isomorphism is given by 1. Since we set
dimg (V) = n and the dimension over K of each K[z]/(¢;) is the degree of ¢;, we
have that n = dimg (V') = deg(q1) + - - - + deg(q,). Moreover, since deg(pa) = n,
we foresee that we will have that p4 = ¢1 - - - ¢-. To prove this, we will have to find
an explicit expression of the action by A on K[z]/(q1) & --- & K|z]/(¢:). Notice:

v A 1%

‘| |s

Klz)/(q) & & K[]/(gr) - Z > K[a]/(q1) & --- & K[2]/(q,)

where we have defined B = v o A o ¢~! (where the compositions are in fact
multiplication of matrices), which translates the action on A as desired. We are
interested in computing p4, but notice that:

pp = det(z-idy — B) = det(z -idy — - A-y™1)
= det(tp- (z-idy — A) -1 = det(¢) det(z - idy — A) det(p™1)
= det(¢p) det(yp ') det(z - idy — A) = det(¢- v~ )pa = pa,

thus we will compute pg.

Since the composition of K[z]-module homomorphisms is a K [z]-module homo-
morphism, in particular B is linear and we have that restricting the domain to one
summand of the direct sums, the target is the same summand: B; = B|g(y]/(q,)
K(x])/(¢i) — K]z]/(q;) for every i« = 1,...,7. Hence B = B, & --- & B, :
Klz]/(q1) ® -+ @ K[x]/(¢p) — Klz]/(q1) ® -+ ® K]z]/(gr). This means that



considering the canonical K basis for each summand in K[x]/(q1)®-- & K|[z]/(qr)
and writing B as a matrix from this space to itself, it has the form of r square

matrices on the diagonal:

where B; for i = 1, ..., r represents the matrix of the i-th summand. In particular:

pp = det(z-idy — A) =

where we have used the Linear Algebra result that the determinant can be com-
puted by expanding along the blocs. Hence it is enough to compute the pp, for
1=1,...,n.

For this, we need to know what the action of B is explicitly. Given an element in
Klz]/(q1) ® -+ ® K[x]/(¢,), we can write it uniquely as ¢ (v) for a certain v € V,
and now B(y(v)) = o Ao ((v)) = ¥(Av) = Y(z-v) = z - (v) because ¥
is a K[z]-module isomorphism. Hence the action of B is simply multiplying by
x € KJz|. This translates to every direct summand, hence for every i = 1,...,r
letting ¢; = rltag 12 4 Hag (as noted in the section above, here we must have
d > 1), we have that B; : K[z]/(¢;) — K][x]/(q;) acts on the canonical K basis of

K[z]/(¢:) as B(1) = x,...,B(z% %) = 2971 B(z¥ 1) = 2¢ = —ag_12% 1 — - —ay,
that is: ~ _
0 —ap
10 - —a,
B; = : ,
0 —agq—2
i 1 —ag-

that is, the matrix with the coefficients of ¢; with changed sign in the last column,
zeroes on the rest of the diagonal and ones under the diagonal. As a small prelude,
we compute the following determinant by induction: we prove that, in general:

"1;‘ e a/o
_1 x ... al
=ag+ - +ag_12% ! 2t
T ad—2
-1 x4+aq1



For this, we proceed by induction on the dimension of the matrix. When itisa 1x1
matrix, we clearly have det(z) = x. Now suppose this is true for (d — 1) x (d — 1)
matrices and d > 1, for d x d matrices we have:

:U DY ao x e a].
_1 x PEEEEY al _1 ;U . a2
pry €T -
T aq—2 R ad—2
-1 z+4+aq-1 -1 z4+aq1
-1 =z 0
0 -1 0
+ (—1)d71a0
-1 =z
0 -1

= a(ay + -+ ag2? + 297

+ (_1)d_1(—1)d_1a0 =ag+---+ adflxd_l L

where we have first expanded along the first row and then used the induction
hypothesis. This is clearly what we claimed. We now have that:

x e ao
-1 €T - al
. : d—1 d
PB; = . : =ap+ -+ aq-1x + 2" =q;
z ad—2
-1 T+ aqg—1

meaning that pp = pp, ---PB, = q1 - - - ¢, the relation with the elementary divisors
of V' that we desired.

. We want to see that pa(A) = 0. By the section above, we know that ¢4 divides
pa, that is, there is h € K[z]| such that py = g4h. This means that when we apply
this to A we obtain pa(A) = ga(A)h(A) = 0 since g4(A) = 0, the desired result.



