# Algebra II - Homework 6 

Pablo Sánchez Ocal
April 5th, 2017

## Exercise 1

We have $R$ a commutative ring (with $1 \neq 0$ ), $M$ and $N$ are $R$-modules such that $M$ is finitely generated and $N$ is Noetherian. We show that $M \otimes_{R} N$ is Noetherian.

Suppose we have $M=\left\langle m_{1}, \ldots, m_{k}\right\rangle_{R}$, we have seen multiple times in class that this means that the map $\phi: R m_{1} \oplus \cdots \oplus R m_{k} \longrightarrow M$ given by $\phi\left(m_{i}\right)=m_{i}$ for $i=1, \ldots, k$ is a surjective $R$-module homomorphism. Thus we have the exact sequence of $R$-modules:

$$
0 \longrightarrow \operatorname{ker}(\phi) \xrightarrow{\iota} R^{k} \xrightarrow{\phi} M \longrightarrow 0,
$$

where $\iota$ denotes the natural inclusion. Applying the right exact functor $\cdot \otimes_{R} N$, we obtain the exact sequence:

$$
0 \longrightarrow \operatorname{ker}\left(\phi \otimes \operatorname{id}_{N}\right) \longrightarrow R^{k} \otimes_{R} N \xrightarrow{\phi \otimes \mathrm{id}_{N}} M \otimes_{R} N \longrightarrow 0,
$$

where the first morphism is the natural inclusion: note that the right exactness only guarantees that the morphism $\phi \otimes \operatorname{id}_{N}$ is surjective, but we can always make a surjective morphism into a short exact sequence by including its kernel before it. Now, since $R \otimes_{R} N \cong N$ as $R$-modules, we have that $R^{k} \otimes_{R} N \cong N^{k}$ and the exact sequence of $R$-modules:

$$
0 \longrightarrow \operatorname{ker}\left(\phi \otimes \operatorname{id}_{N}\right) \longrightarrow N^{k} \longrightarrow M \otimes_{R} N \longrightarrow 0
$$

We have seen in class that when we have a short exact sequence of $R$-modules, the module in the middle is Noetherian if and only if the other two modules are Noetherian. Since $N$ is Noetherian and a finite sum of Noetherian modules is Noetherian, we obtain that $N^{k}$ is Noetherian. Applying this to the exact sequence above, we obtain that $\operatorname{ker}\left(\phi \otimes \operatorname{id}_{N}\right)$ and $M \otimes_{R} N$ are Noetherian, the second being the result we desired.

## Exercise 2

We consider $V$ a finite dimensional vector space over a field $K, A_{V} \longrightarrow V$ a linear transformation and the multiplication:

$$
\begin{array}{ccc}
K[x] \times V & \longrightarrow & V \\
(f, v) & \longmapsto & f(A) v
\end{array}
$$

1. We verify that $V$ is a $K[x]$-module with the multiplication above. First, since $V$ is a finite dimensional $K$ vector space, $V$ has the structure of an abelian group with respect to addition. Hence we only have to verify that given $u, v \in V$ and $f, g \in K[x]$, say $f=\sum_{i=1}^{n} f_{i} x^{i}, g=\sum_{i=1}^{n} g_{i} x^{i}$ with $f_{i}, g_{i} \in K$ for $i=1, \ldots, n$ :
(a) We have:

$$
\begin{aligned}
f \cdot(u+v) & =f(A)(u+v)=\left(\sum_{i=1}^{n} f_{i} A^{i}\right)(u+v)=\sum_{i=1}^{n} f_{i} A^{i}(u+v) \\
& =\sum_{i=1}^{n} f_{i}\left(A^{i} u+A^{i} v\right)=\sum_{i=1}^{n} f_{i} A^{i} u+\sum_{i=1}^{n} f_{i} A^{i} v=f \cdot u+f \cdot v
\end{aligned}
$$

where we have used that $A$ is $K$-linear hence $A(u+v)=A u+A v$.
(b) We have:

$$
\begin{aligned}
(f+g) \cdot v & =\left(\sum_{i=1}^{n} f_{i} x^{i}+\sum_{i=1}^{n} g_{i} x^{i}\right) \cdot v=\left(\sum_{i=1}^{n}\left(f_{i}+g_{i}\right) x^{i}\right) \cdot v \\
& =\sum_{i=1}^{n}\left(f_{i}+g_{i}\right) A^{i} v=\sum_{i=1}^{n} f_{i} A^{i} v+\sum_{i=1}^{n} g_{i} A^{i} v=f \cdot v+g \cdot v
\end{aligned}
$$

(c) We have:

$$
\begin{aligned}
(f g) \cdot v & =\left(\sum_{i, j} f_{i} g_{j} x^{i+j}\right) \cdot v=\sum_{i, j} f_{i} g_{j} A^{i+j} v=\sum_{i=1}^{n} f_{i} A^{i}\left(\sum_{j=1}^{n} g_{j} A^{j} v\right) \\
& =\sum_{i=1}^{n} f_{i} A^{i}(g \cdot v)=f \cdot(g \cdot v)
\end{aligned}
$$

where we have used that $A$ is $K$-linear hence its action commutes with $f_{i}, g_{i} \in$ $K$ for $i=1, \ldots, n$.
(d) We have:

$$
1 \cdot v=\mathrm{id}_{V} v=v
$$

This means that indeed $V$ is a $K[x]$-module with the above multiplication.
2. Show that $V$ is a finitely generated torsion $K[x]$-module.

First, we note that $V$ is a finite dimensional vector space, say $\operatorname{dim}(V)=n$, this means that $V=\left\langle v_{1}, \ldots, v_{n}\right\rangle_{K}$ where $v_{1}, \ldots, v_{n}$ generate $V$ and are linearly independent, both over $K$. This clearly means that $V=\left\langle v_{1}, \ldots, v_{n}\right\rangle_{K[x]}$ since we can generate $V$ with $K \subset K[x]$ (because the multiplication by elements of $K$ as a $K[x]$-module is the same as the usual multiplication by scalars as a $K$-module) and adding possible coefficients to the linear combinations doesn't change that (however, now we cannot say that $v_{1}, \ldots, v_{n}$ are linearly independent since there may be a linear combination of the generators with non-zero coefficients in $K[x]$ that is zero). This proves that $V$ is finitely generated as $K[x]$-module.

To prove that it is a torsion module, let $v \in V$ and define the map:

$$
\begin{aligned}
& \varphi_{v}: K[x] \longrightarrow \\
& f \longrightarrow f \cdot v \\
&,
\end{aligned}
$$

notice that $\varphi_{v}$ is a homomorphism of $K[x]$-modules, since given $f, g \in K[x]$, say $f=\sum_{i=1}^{n} f_{i} x^{i}, g=\sum_{i=1}^{n} g_{i} x^{i}$, with $f_{i}, g_{i}, \in K$ for $i=1, \ldots, n$, we have:
(a) $\varphi_{v}(f+g)=(f+g) \cdot v=f \cdot v+g \cdot v=\varphi_{v}(f)+\varphi_{v}(g)$,
(b) $\varphi_{v}(f g)=(f g) \cdot v=f \cdot(g \cdot v)=f \cdot \varphi_{v}(g)$,
where we have used the properties of the multiplication proved in the section above. This yields the short exact sequence of $K[x]$-modules:

$$
0 \longrightarrow \operatorname{ker}\left(\varphi_{v}\right) \xrightarrow{\iota} K[x] \xrightarrow{\varphi_{v}} \operatorname{im}\left(\varphi_{v}\right) \longrightarrow 0,
$$

where $\iota$ denotes the natural inclusion. In particular, this is a short exact sequence of $K$-modules with $K$ a field, and since every vector space has a basis, all the modules in the sequence are free modules, meaning that the sequence splits. Thus as $K$ vector spaces, we have that $K[x] \cong \operatorname{ker}\left(\varphi_{v}\right) \oplus \operatorname{im}\left(\varphi_{v}\right)$. Notice that $\operatorname{im}\left(\varphi_{v}\right) \subset V$ and we know that a sub-vector space of a finite dimensional vector space is also finite dimensional (with the dimension bounded by the dimension of the vector space containing it), thus $\operatorname{im}\left(\varphi_{v}\right)$ is a finite dimensional $K$ vector space. Moreover, $K[x]$ is an infinite dimensional $K$ vector space. Suppose $\operatorname{ker}\left(\varphi_{v}\right)=\{0\}$, this means that an infinite dimensional $K$ vector space is isomorphic to a finite dimensional $K$ vector space, which is absurd, hence we must have $\operatorname{ker}\left(\varphi_{v}\right) \neq\{0\}$. In particular, there is a non-zero element $f_{v} \in \operatorname{ker}\left(\varphi_{v}\right)$, that is, $f_{v} \cdot v=\varphi_{v}\left(f_{v}\right)=0$. Hence, we found $f_{v} \in K[x]$ such that $f_{v} \cdot v=0$, that is, $v$ is a torsion element. Since this is true for every $v \in V$, we have that $V$ is a torsion $K[x]$-module.
3. Suppose $K=\mathbb{R}, V=\mathbb{R}^{2}$ and:

$$
A=\left[\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right]
$$

We want to find a polynomial $q \in \mathbb{R}[x]$ so that $V \cong \mathbb{R}[x] /(q)$ as $\mathbb{R}[x]$-modules. Since we have that $A^{2}=-4 \mathrm{id}_{V}$, we foresee that $q=x^{2}+4$.
For this, we first consider $\mathbb{R}^{2}$ with the usual basis $(1,0)$ and $(0,1)$. We now define the map:

$$
\begin{array}{rlll}
\psi: \mathbb{R}[x] & \longrightarrow & \mathbb{R}^{2} \\
f & \longmapsto & f \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right], & \text { recall } \quad f \cdot\left[\begin{array}{l}
1 \\
0
\end{array}\right]=f(A)\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
\end{array}
$$

Notice that $\psi=\varphi_{(1,0)}$ in the notation of the section above, thus in particular $\psi$ is a $\mathbb{R}[x]$-module homomorphism.
Moreover, it is surjective, since $\psi(1)=1 \cdot(1,0)=(1,0)$ and $\psi\left(\frac{x}{-2}\right)=\frac{1}{-2}(0,-2)=$ $(0,1)$, so both elements of the canonical basis of $\mathbb{R}^{2}$ belong to the image of $\psi$. The fact that $\psi$ is a $\mathbb{R}[x]$-module homomorphism ensures that $\operatorname{im}(\psi)$ is a $\mathbb{R}[x]$ module (hence linear combinations with coefficients in $\mathbb{R}[x]$ of elements in the image remains in the image), so $\mathbb{R}^{2} \subset \operatorname{im}(\psi)$, meaning that $\operatorname{im}(\psi)=\mathbb{R}^{2}$.
We prove that $\operatorname{ker}(\psi)=\left(x^{2}+4\right)$. Clearly $\psi\left(x^{2}+4\right)=A^{2}+4 \mathrm{id}_{V}=-4 \mathrm{id}_{V}+4 \mathrm{id}_{V}=0$, so $\left(x^{2}+4\right) \subset \operatorname{ker}(\psi)$. Suppose $f \in \operatorname{ker}(\psi)$, since we are in $\mathbb{R}[x]$, we use the division algorithm to obtain $f=\left(x^{2}+4\right) h+r$ with $\operatorname{deg}(r)<2$. Applying $\psi$ to this equality and using the above, we obtain that:

$$
0=\psi(f)=\psi\left(x^{2}+4\right) \psi(h)+\psi(r)=\psi(r),
$$

and if we write $r=r_{0}+r_{1} x$ we obtain that:
$\left[\begin{array}{l}0 \\ 0\end{array}\right]=r_{0}\left[\begin{array}{l}1 \\ 0\end{array}\right]+r_{2}\left[\begin{array}{cc}0 & 2 \\ -2 & 0\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{c}r_{0} \\ 0\end{array}\right]+\left[\begin{array}{c}0 \\ -2 r_{2}\end{array}\right] \Longrightarrow\left\{\begin{array}{l}r_{0}=0 \\ -2 r_{1}=0\end{array} \Longrightarrow\left\{\begin{array}{l}r_{0}=0 \\ r_{1}=0\end{array}\right.\right.$,
meaning that $r=0$ and thus $f=\left(x^{2}+4\right) h$, that is $f \in\left(x^{2}+4\right)$ hence $\operatorname{ker}(\psi) \subset$ $\left(x^{2}+4\right)$. This means that indeed $\operatorname{ker}(\psi)=\left(x^{2}+4\right)$.
Finally, we have $V=\operatorname{im}(\psi) \cong \mathbb{R}[x] / \operatorname{ker}(\psi)=\mathbb{R}[x] /\left(x^{2}+4\right)$ by the First Isomorphism Theorem. Setting $q=x^{2}+4 \in \mathbb{R}[x]$, this is the desired isomorphism of $\mathbb{R}[x]$-modules.

## Exercise 3

We use the notation in the sections above, with $A: V \longrightarrow V$ a linear transformation of $V$ a finite dimensional $K$ vector space, say $\operatorname{dim}(V)=n$.

1. We show that there is a unique polynomial $q_{A} \in K[x]$ of least degree for which $q_{A}(A)=0$, and we determine its expression in terms of the elementary divisors of $V$ as $K[x]$-module.
For this, consider the set $\{\operatorname{deg}(f): 0 \neq f \in K[x], f \cdot v=0 \forall v \in V\} \subset \mathbb{N}$. We note that this set is non empty since given a $K$ basis $v_{1}, \ldots, v_{n}$ of $V$, this being a torsion $K[x]$-module assures us that there are polynomials $f_{v_{1}}, \ldots, f_{v_{n}} \in K[x]$ such that $f_{v_{i}} \cdot v_{i}=0$ for $i=1, \ldots, n$. In particular for a general $v \in V$, say $v=\sum_{i=1}^{n} k_{i} v_{i}$ for $k_{1}, \ldots, k_{n} \in K$ we have:

$$
f_{v_{1}} \cdots f_{v_{n}} \cdot v=\sum_{i=1}^{n} k_{i}\left(f_{v_{1}} \cdots f_{v_{n}}\right) \cdot v_{i}=\sum_{i=1}^{n} k_{i}\left(f_{v_{1}} \cdots \hat{f_{v_{i}}} \cdots f_{v_{n}} f_{v_{i}}\right) \cdot v_{i}=0
$$

because $V$ is a $K[x]$-module. Hence the considered set contains $\operatorname{deg}\left(f_{v_{1}} \cdots f_{v_{n}}\right)$. Now, since the minimum degree attainable for a polynomial annihilating every vector in $V$ is 1 , because the identity doesn't annihilate any non-zero vector, and the degrees have discrete values because they belong in $\mathbb{N}$, we have that the infimum of the considered set is attained, that is, $\inf \{\operatorname{deg}(f): 0 \neq f \in K[x], f \cdot v=0 \forall v \in$ $V\}$ is attained by some polynomial, say $q \in K[x]$. This proves existence of $q$, a polynomial of least degree such that $q \cdot v=0$ for every $v \in V$. Now, dividing all the coefficients in $q$ by its leading coefficient, we obtain $q_{A} \in K[x]$ a monic polynomial of least degree, and since $q_{A}$ differs of $q$ by multiplication of a scalar in $K$, we still have that that $q_{A} \cdot v=0$ for every $v \in V$. Moreover, this last property implies that $q_{A}(A)=0$ as a matrix: suppose that $q_{A}(A) \neq 0$, this means that using the above $K$-basis $v_{1}, \ldots, v_{n}$ for both $V$ in the domain and target, $q_{A}(A)$ has a non-zero entry, say $a_{i j} \in K$, but this means that $q_{A}(A) v_{j}$ has $a_{i j}$ (which is non-zero) as coefficient for $v_{i}$, a contradiction with $q_{A} \cdot v_{j}=0$. Note that this is a general proof, we actually proved that $f \in K[x]$ with $f \cdot v=0$ implies $f(A)=0$. Finally, suppose there is $q_{A}^{\prime} \in K[x], q_{A}^{\prime} \neq q_{A}$, a monic polynomial of least degree for which $q_{A}^{\prime}(A)=0$, then $q_{A}-q_{A}^{\prime}$ is a non-zero polynomial of degree strictly less than both $q_{A}$ and $q_{A}^{\prime}$ for which $\left(q_{A}-q_{A}^{\prime}\right) \cdot v=\left(q_{A}-q_{A}^{\prime}\right)(A) v=q_{A}(A) v-q_{A}^{\prime}(A) v=0$, which is a contradiction with the minimality of the degree. This means that $q_{A}$ is unique. Thus $q_{A} \in K[x]$ is the unique monic polynomial of least degree for which $q_{A}(A)=0$, as desired.
To describe $q_{A}$ in terms of the elementary divisors, we use that $V$ is finitely generated as $K[x]$-module, say with generators $e_{1}, \ldots, e_{m}$. Let $F$ be the free $K[x]$ module with basis $e_{1}, \ldots, e_{m}$, as noted multiple times this means that the map $\phi: F \longrightarrow M$ given by $\phi\left(e_{i}\right)=e_{i}$ for $i=1, \ldots, m$ is a surjective $K[x]$-module homomorphism. Thus we have the exact sequence of $K[x]$-modules:

$$
0 \longrightarrow \operatorname{ker}(\phi) \xrightarrow{\iota} F \xrightarrow{\phi} V \longrightarrow 0,
$$

where $\iota$ denotes the natural inclusion. Applying the First Isomorphism Theorem we have that $V \cong F / \operatorname{ker}(\phi)$, and by the Elementary Divisors Theorem, using that $V$ is a torsion $K[x]$-module, we obtain that $V \cong K[x] /\left(q_{1}\right) \oplus \cdots \oplus K[x] /\left(q_{r}\right)$ with $q_{1}, \ldots, q_{r} \in K[x]$ and $q_{1}|\cdots| q_{r}$ (notice that the degree of all the elementary divisors is greater than 1 because $K$ is a field, in particular it has no zero divisors. This will be useful later). Now, let $v \in V$ considered as an element of the direct sum, we have that $q_{r} \cdot v=0$ since $q_{r}$ annihilates every component of the direct sum in virtue of $q_{1}|\cdots| q_{r}$ (in particular by the above $q_{r}(A)=0$ ). The division algorithm gives us that $q_{A}=q_{r} h+r$ with $\operatorname{deg}\left(q_{r}\right)<\operatorname{deg}(r)$, and since $0=q_{A}(A)=$ $q_{r}(A) h(A)+r(A)=r(A)$, and $\operatorname{deg}\left(q_{A}\right)=\operatorname{deg}\left(q_{r} h\right)=\operatorname{deg}\left(q_{r}\right)+\operatorname{deg}(h)<\operatorname{deg}(r)$ the minimality of the degree of $q_{A}$ guarantees that $r=0$. Moreover, if $\operatorname{deg}(h)>0$ we have that $\operatorname{deg}\left(q_{A}\right)<\operatorname{deg}\left(q_{r}\right)$, thus again by the minimality of the degree of $q_{A}$ we have $h \in K$. Since $q_{A}$ is monic, the only possible value for $h$ is the inverse of the leading coefficient of $q_{r}$, that is, $q_{A}$ is the monic polynomial that arises from $q_{r}$, this is the relation that we desired.
2. Let $p_{A}(x)=\operatorname{det}\left(x \cdot \operatorname{id}_{V}-A\right) \in K[x]$ the characteristic polynomial of $A$. We want to relate $p_{A}$ to the elementary divisors of $A$. As we have seen above, we can write $V \cong K[x] /\left(q_{1}\right) \oplus \cdots \oplus K[x] /\left(q_{r}\right)$ with $q_{1}, \ldots, q_{r} \in K[x]$ and $q_{1}|\cdots| q_{r}$ (we can assume that they are monic), say this isomorphism is given by $\psi$. Since we set $\operatorname{dim}_{K}(V)=n$ and the dimension over $K$ of each $K[x] /\left(q_{i}\right)$ is the degree of $q_{i}$, we have that $n=\operatorname{dim}_{K}(V)=\operatorname{deg}\left(q_{1}\right)+\cdots+\operatorname{deg}\left(q_{r}\right)$. Moreover, since $\operatorname{deg}\left(p_{A}\right)=n$, we foresee that we will have that $p_{A}=q_{1} \cdots q_{r}$. To prove this, we will have to find an explicit expression of the action by $A$ on $K[x] /\left(q_{1}\right) \oplus \cdots \oplus K[x] /\left(q_{r}\right)$. Notice:

where we have defined $B=\psi \circ A \circ \psi^{-1}$ (where the compositions are in fact multiplication of matrices), which translates the action on $A$ as desired. We are interested in computing $p_{A}$, but notice that:

$$
\begin{aligned}
p_{B} & =\operatorname{det}\left(x \cdot \operatorname{id}_{V}-B\right)=\operatorname{det}\left(x \cdot \operatorname{id}_{V}-\psi \cdot A \cdot \psi^{-1}\right) \\
& =\operatorname{det}\left(\psi \cdot\left(x \cdot \operatorname{id}_{V}-A\right) \cdot \psi^{-1}\right)=\operatorname{det}(\psi) \operatorname{det}\left(x \cdot \operatorname{id}_{V}-A\right) \operatorname{det}\left(\psi^{-1}\right) \\
& =\operatorname{det}(\psi) \operatorname{det}\left(\psi^{-1}\right) \operatorname{det}\left(x \cdot \operatorname{id}_{V}-A\right)=\operatorname{det}\left(\psi \cdot \psi^{-1}\right) p_{A}=p_{A},
\end{aligned}
$$

thus we will compute $p_{B}$.
Since the composition of $K[x]$-module homomorphisms is a $K[x]$-module homomorphism, in particular $B$ is linear and we have that restricting the domain to one summand of the direct sums, the target is the same summand: $B_{i}=\left.B\right|_{K[x] /\left(q_{i}\right)}$ : $K[x] /\left(q_{i}\right) \longrightarrow K[x] /\left(q_{i}\right)$ for every $i=1, \ldots, r$. Hence $B=B_{1} \oplus \cdots \oplus B_{r}:$ $K[x] /\left(q_{1}\right) \oplus \cdots \oplus K[x] /\left(q_{r}\right) \longrightarrow K[x] /\left(q_{1}\right) \oplus \cdots \oplus K[x] /\left(q_{r}\right)$. This means that
considering the canonical $K$ basis for each summand in $K[x] /\left(q_{1}\right) \oplus \cdots \oplus K[x] /\left(q_{r}\right)$ and writing $B$ as a matrix from this space to itself, it has the form of $r$ square matrices on the diagonal:

$$
B=\left[\begin{array}{|ccc}
\boxed{B_{1}} & & \\
& \ddots & \\
& & \boxed{B_{r}}
\end{array}\right]
$$

where $B_{i}$ for $i=1, \ldots, r$ represents the matrix of the $i$-th summand. In particular:

$$
\begin{aligned}
& p_{B}=\operatorname{det}\left(x \cdot \operatorname{id}_{V}-A\right)=\left\lvert\, \begin{array}{|ccc|}
\hline x \cdot \mathrm{id}_{V}-B_{1} & & \\
& \ddots & \\
& & \boxed{x \cdot \mathrm{id}_{V}-B_{r}}
\end{array}\right. \\
& =\operatorname{det}\left(x \cdot \operatorname{id}_{V}-B_{1}\right) \cdots \operatorname{det}\left(x \cdot \operatorname{id}_{V}-B_{r}\right)=p_{B_{1}} \cdots p_{B_{r}},
\end{aligned}
$$

where we have used the Linear Algebra result that the determinant can be computed by expanding along the blocs. Hence it is enough to compute the $p_{B_{i}}$ for $i=1, \ldots, n$.
For this, we need to know what the action of $B$ is explicitly. Given an element in $K[x] /\left(q_{1}\right) \oplus \cdots \oplus K[x] /\left(q_{r}\right)$, we can write it uniquely as $\psi(v)$ for a certain $v \in V$, and now $B(\psi(v))=\psi \circ A \circ \psi^{-1}(\psi(v))=\psi(A v)=\psi(x \cdot v)=x \cdot \psi(v)$ because $\psi$ is a $K[x]$-module isomorphism. Hence the action of $B$ is simply multiplying by $x \in K[x]$. This translates to every direct summand, hence for every $i=1, \ldots, r$ letting $q_{i}=x^{d}+a_{d-1} x^{d-1}+\cdots+a_{0}$ (as noted in the section above, here we must have $d>1$ ), we have that $B_{i}: K[x] /\left(q_{i}\right) \longrightarrow K[x] /\left(q_{i}\right)$ acts on the canonical $K$ basis of $K[x] /\left(q_{i}\right)$ as $B(1)=x, \ldots, B\left(x^{d-2}\right)=x^{d-1}, B\left(x^{d-1}\right)=x^{d}=-a_{d-1} x^{d-1}-\cdots-a_{0}$, that is:

$$
B_{i}=\left[\begin{array}{cccc}
0 & & \cdots & \\
1 & 0 & \cdots & -a_{0} \\
& & \ddots & -a_{1} \\
& & \ddots & 0 \\
& & & 1
\end{array}\right]-a_{d-2},
$$

that is, the matrix with the coefficients of $q_{i}$ with changed sign in the last column, zeroes on the rest of the diagonal and ones under the diagonal. As a small prelude, we compute the following determinant by induction: we prove that, in general:

$$
\left|\begin{array}{cccc}
x & & \cdots & \\
-1 & x & \cdots & a_{0} \\
& & \ddots & a_{1} \\
& & \ddots & x \\
& & & -1 \\
& & & a_{d-2} \\
-a_{d-1}
\end{array}\right|=a_{0}+\cdots+a_{d-1} x^{d-1}+x^{d}
$$

For this, we proceed by induction on the dimension of the matrix. When it is a $1 \times 1$ matrix, we clearly have $\operatorname{det}(x)=x$. Now suppose this is true for $(d-1) \times(d-1)$ matrices and $d>1$, for $d \times d$ matrices we have:

$$
\begin{aligned}
& \left|\begin{array}{ccccc}
x & & \cdots & & a_{0} \\
-1 & x & \cdots & & a_{1} \\
& & \ddots & & \vdots \\
& & \ddots & x & a_{d-2} \\
& & -1 & x+a_{d-1}
\end{array}\right|=x \cdot\left|\begin{array}{ccccc}
x & & \cdots & & a_{1} \\
-1 & x & \cdots & & a_{2} \\
& & \ddots & & \vdots \\
& & \ddots & x & a_{d-2} \\
& & & & \\
-1 & x+a_{d-1}
\end{array}\right| \\
& +\quad(-1)^{d-1} a_{0}\left|\begin{array}{ccccc}
-1 & x & \cdots & & 0 \\
0 & -1 & \cdots & & 0 \\
& & \ddots & & \vdots \\
& & \ddots & -1 & x \\
& & & 0 & -1
\end{array}\right| \\
& =x\left(a_{1}+\cdots+a_{d-1} x^{d-2}+x^{d-1}\right) \\
& +(-1)^{d-1}(-1)^{d-1} a_{0}=a_{0}+\cdots+a_{d-1} x^{d-1}+x^{d}
\end{aligned}
$$

where we have first expanded along the first row and then used the induction hypothesis. This is clearly what we claimed. We now have that:

$$
\left.p_{B_{i}}=\left\lvert\, \begin{array}{cccc}
x & & \cdots & \\
-1 & x & \cdots & a_{0} \\
& & \ddots & a_{1} \\
& & \ddots & x
\end{array}\right.\right] \begin{aligned}
& a_{d-2} \\
& \\
&
\end{aligned}
$$

meaning that $p_{B}=p_{B_{1}} \cdots p_{B_{r}}=q_{1} \cdots q_{r}$, the relation with the elementary divisors of $V$ that we desired.
3. We want to see that $p_{A}(A)=0$. By the section above, we know that $q_{A}$ divides $p_{A}$, that is, there is $h \in K[x]$ such that $p_{A}=q_{A} h$. This means that when we apply this to $A$ we obtain $p_{A}(A)=q_{A}(A) h(A)=0$ since $q_{A}(A)=0$, the desired result.

