Algebra II - Homework 7

Pablo Sánchez Ocal
April 19th, 2017

Exercise 1

Let K be a field, E / K and algebraic extension, R an integral domain with $K \subset R \subset E$. We want to see that R is a field. Since it is already an integral domain, all the algebraic axioms from the definition of a field via the relation between their elements follow, except the one that every non-zero $r \in R$ has an inverse. Given r, we will find $s \in R$ with $r s=1$.

Since $r \in R \subset E$, there is an element $s \in E$ with $r s=1$. Moreover, since E / K is algebraic, there is a polynomial $f \in K[x]$ that annihilates s, say $f=a_{n} x^{n}+\cdots+a_{0}$ with $a_{i} \in K$ for $i=1, \ldots, n$. Hence:

$$
\begin{aligned}
0 & =a_{n} s^{n}+\cdots+a_{1} s+a_{0} \\
0 & =r^{n-1}\left(a_{n} s^{n}+\cdots+a_{1} s+a_{0}\right) \\
0 & =a_{n}(r s)^{n-1} s+\cdots+a_{1} r s r^{n-2}+a_{0} r^{n-1} \\
0 & =a_{n} s+\cdots+a_{1} r^{n-2}+a_{0} r^{n-1} \\
a_{n} s & =-a_{n-1}-\cdots-a_{0} r^{n-1} \\
s & =-\left(a_{n-1}+\cdots+a_{0} r^{n-1}\right) / a_{n}
\end{aligned}
$$

and since K is a field, we have that $-1 / a_{n} \in K \subset R$, and the right hand side is sum and multiplication of elements in the ring R, so in fact $s \in R$ with $r s=1$, as desired.

Exercise 2

Let L / K be an extension of fields, let $\alpha \in L$ algebraic over K with $[K(\alpha): K]$ odd. We prove that $\left[K\left(\alpha^{2}\right): K\right]$ is also odd and $K(\alpha)=K\left(\alpha^{2}\right)$.

Notice that by the field tower $K \subset K\left(\alpha^{2}\right) \subset K(\alpha)$ we have that $[K(\alpha): K]=$ $\left[K(\alpha): K\left(\alpha^{2}\right)\right]\left[K\left(\alpha^{2}\right): K\right]$. Since $x^{2}-\alpha^{2} \in K\left(\alpha^{2}\right)[x]$ annihilates α, we have that $\left[K(\alpha): K\left(\alpha^{2}\right)\right] \leq 2$. Since multiplying by 2 would result in $[K(\alpha): K]$ even, we need to have $\left[K(\alpha): K\left(\alpha^{2}\right)\right]=1$ and $\left[K\left(\alpha^{2}\right): K\right]=[K(\alpha): K]$ is odd.

Notice that for any field extension F / E, we have $[E: F]=1$ if and only if $E=F$. This follows because $\{1\}$ is linearly independent in E over F (because E is a field), so it is a basis, hence $F=E \cdot 1=E$. Notice how this proves both directions. Since we have that $\left[K(\alpha): K\left(\alpha^{2}\right)\right]=1$, we must have $K(\alpha)=K\left(\alpha^{2}\right)$, as desired.

Exercise 3

Let $\alpha=\sqrt{3}+\sqrt{5} \in \mathbb{R}$. We determine $[\mathbb{Q}(\alpha): \mathbb{Q}]$ and $\operatorname{Irr}(\alpha, \mathbb{Q}, x) \in \mathbb{Q}[x]$.
Notice how:

$$
\alpha^{2}=8+2 \sqrt{15}, \quad \alpha^{3}=18 \sqrt{3}+14 \sqrt{5}, \quad \alpha^{4}=124+32 \sqrt{15}
$$

meaning that $f=x^{4}-16 x^{2}+4 \in \mathbb{Q}[x]$ annihilates α. Since the solutions of f are $s^{2}=8 \pm \sqrt{5}$, that is, $s= \pm \sqrt{8 \pm \sqrt{5}}$, we have that $s, s^{2} \notin \mathbb{Q}$. Hence f cannot decompose in polynomials of degree 1 or 2 , meaning that in fact it cannot decompose in polynomials of degree 3 (because the other factor would have degree 1), which implies that f is irreducible. Since f is already monic, we have that $\operatorname{Irr}(\alpha, \mathbb{Q}, x)=x^{4}-16 x^{2}+4$ and that $[\mathbb{Q}(\alpha): \mathbb{Q}]=\operatorname{deg}(\operatorname{Irr}(\alpha, \mathbb{Q}, x))=4$.

Exercise 4

Let K be a field of characteristic different from $2, L$ algebraically closed field containing K. During this exercise we will use that for every $u, v \in L$ we have $\sqrt{u} \sqrt{v}=\sqrt{u v}$, which is due to both being choices of square roots of the element $u v \in K$.

1. Let $a, b \in K$ with $x^{2}-a$ and $x^{2}-b$ both irreducible in $K[x]$. Denote \sqrt{a}, \sqrt{b} choices of square roots of a, b respectively. We will abuse that $[K(\sqrt{a}, \sqrt{b}): K]=$ $[K(\sqrt{a}, \sqrt{b}): K(\sqrt{b})][K(\sqrt{b}): K]$.
If $a b$ is a square in K, that is, there is $t \in K$ with $t^{2}=a b$, otherwise said, $t=\sqrt{a b}$ is a choice of a square root in K, we have that in $K(\sqrt{b})$:

$$
\left(\frac{t}{\sqrt{b}}\right)^{2}=\frac{t^{2}}{b}=\frac{a b}{b}=a
$$

and thus $t / \sqrt{b} \in K(\sqrt{b})$ is a choice of square root of a, that is $\sqrt{a}= \pm t / \sqrt{b} \in$ $K(\sqrt{b})$, and thus $K(\sqrt{a}, \sqrt{b})=K(\sqrt{b})$. As noted in a section above, this means $[K(\sqrt{a}, \sqrt{b}): K(\sqrt{b})]=1$ and $[K(\sqrt{a}, \sqrt{b}): K]=[K(\sqrt{b}): K]=2$ because $x^{2}-b$ is monic and irreducible in $K[x]$.
If $a b$ is not a square in K, we now prove that $x^{2}-a$ is irreducible in $K(\sqrt{b})$. Suppose not, that is, $x^{2}-a$ has a solution in $K(\sqrt{b})$, otherwise said, $\sqrt{a} \in K(\sqrt{b})$. Since we have $K(\sqrt{b}) \cong\{r+s \sqrt{b}: r, s \in K\}$ in virtue of $K(\sqrt{b}) \cong K[x] /\left(x^{2}-b\right)$, this means that we can write $\sqrt{a}=r+s \sqrt{b}$ for certain $r, s \in K$. Taking the square on both sides we obtain $a=r^{2}+s^{2} b+2 r s \sqrt{b}$, meaning that we must have $r s=0$. Since K is a field, this means that either $r=0$ or $s=0$. Now $s=0$ implies $\sqrt{a}=r \in K$, contradicting that $x^{2}-a$ is irreducible in $K[x]$. Now $r=0$ implies that $\sqrt{a}=s \sqrt{b}$ and thus $(s b)^{2}=s^{2} b b=a b$, meaning that $a b$ is a square in K, a contradiction. Hence $x^{2}-a$ is indeed irreducible and monic, so $[K(\sqrt{a}, \sqrt{b}): K(\sqrt{b})]=2$ and $[K(\sqrt{a}, \sqrt{b}): K]=2 \cdot 2=4$.
2. Let $c, d \in K$ with d not a square in K. Fix $\sqrt{b} \in L$ a square root of d in L. Let $\alpha=\sqrt{c+\sqrt{d}}$ be a choice of square root of $c+\sqrt{d}$ in L. We prove that there are $a, b \in K$ with $\alpha=\sqrt{a}+\sqrt{b}$ if and only if $c^{2}-d$ is a square in K.
$\Rightarrow)$ Using $\alpha=\sqrt{c+\sqrt{d}}$ we have that $\alpha^{2}=c+\sqrt{d}$ and $\alpha^{4}=c^{2}+d+2 c \sqrt{d}$, so $f=x^{4}-2 c x^{2}+\left(c^{2}-d\right) \in K[x]$ annihilates α. Using $\alpha=\sqrt{a}+\sqrt{b}$ we have that $\alpha^{2}=a+b+2 \sqrt{a b}$ and $\alpha^{4}=6 a b+a^{2}+b^{2}+4 a \sqrt{a b}+4 b \sqrt{a b}$, so $f=x^{4}-2(a+b) x^{2}+(a-b)^{2} \in K[x]$ annihilates α. Now, we have that $[K(\alpha)$: $K]=[K(\alpha): K(\sqrt{d})][K(\sqrt{d}): K]$ and we know that $[K(\sqrt{d}): K]=2$ because d is not a square in K. Moreover, $h=x^{2}-c-\sqrt{d} \in K(\sqrt{d})$ annihilates α, so $[K(\alpha): K(\sqrt{d})]$ must be 1 or 2 .
If $[K(\alpha): K(\sqrt{d})]=2$ we have that $[K(\alpha): K]=2 \cdot 2=4$, meaning that $f=g$ by uniqueness of the monic polynomial of minimal degree annihilating α. Hence comparing coefficients we find that $c^{2}-d=(a-b)^{2}$ is a square in K.

If $[K(\alpha): K(\sqrt{d})]=1$ we have that $K(\alpha)=K(\sqrt{d})$ and thus $\alpha \in K(\sqrt{d})$. By the noted above, this means that we can find $r, s \in K$ with $\alpha=r+s \sqrt{d}$. Squaring both sides we obtain that $c+\sqrt{d}=r^{2}+s^{2} d+2 r s \sqrt{d}$, so comparing coefficients we must have that $r^{2}+s^{2} d=c$ and $2 r s=1$. Hence $c^{2}-d=s^{4} d^{2}+(r s-1) d+r^{4}$, otherwise said the polynomial $h=s^{4} x^{2}+(r s-1) x+r^{4} \in K[x]$ satisfies $h(d)=c^{2}-d$. The discriminant of h is:

$$
(r s-1)^{2}-4 r^{4} s^{4}=\left(2 r^{2} s^{2}-1\right)^{2}-4 r^{4} s^{4}=4 r^{4} s^{4}+1-4 r^{2} s^{2}-4 r^{4} s^{4}=0
$$

where we used multiple times that $2 r s=1$. Thus the root of h is $(1-r s) / 2 s^{4}$ and we can write $h=s^{4}\left(x-(1-r s) / 2 s^{4}\right)^{2}=\left(s^{2}\left(x-(1-r s) / 2 s^{4}\right)\right)^{2}$, meaning that $c^{2}-d=h(d)=\left(s^{2}\left(d-(1-r s) / 2 s^{4}\right)\right)^{2}$ with $s^{2}\left(d-(1-r s) / 2 s^{4}\right) \in K$, thus $c^{2}-d$ is again a square in K.
$\Leftarrow)$ Suppose we can write $c^{2}-d=t^{2}$ for certain $t \in K$, in particular $d=c^{2}-t^{2}=$ $(c+t)(c-t)$. We want $a, b \in K$ with $\sqrt{a}+\sqrt{b}=\sqrt{c+\sqrt{d}}=\sqrt{c+\sqrt{(c+t)(c-t)}}$, so squaring we must have $a+b+2 \sqrt{a b}=c+\sqrt{(c+t)(c-t)}$. For this, one would expect to have $a+b=c$ and $2 \sqrt{a b}=\sqrt{(c+t)(c-t)}$, so it looks natural to propose $a=(c+t) / 2$ and $b=(c-t) / 2$. They indeed satisfy:

$$
(\sqrt{a}+\sqrt{b})^{2}=\frac{c+t}{2}+\frac{c-t}{2}+2 \sqrt{\frac{c+t}{2}} \sqrt{\frac{c-t}{2}}=c+\sqrt{d}
$$

Since we have $a, b \in K$, we obtained the desired elements.
3. Show that $\mathbb{Q}(\sqrt{3+\sqrt{5}}) / \mathbb{Q}$ is a biquadratic extension and find $a, b \in \mathbb{Q}$ with $\sqrt{3+\sqrt{5}}=\sqrt{a}+\sqrt{b}$.
We rename $\alpha=\sqrt{3+\sqrt{5}}$. In this particular case we have $c=3$ and $d=5$, and since $c^{2}-d=9-5=4=2^{2}$ is a square in K, by the above we are guaranteed that $a=5 / 2, b=1 / 2 \in \mathbb{Q}$ satisfy $\sqrt{3+\sqrt{5}}=\sqrt{5 / 2}+\sqrt{1 / 2}=\sqrt{a}+\sqrt{b}$.
Moreover $f=x^{4}-2 c x^{2}+\left(c^{2}-d\right)=x^{4}-6 x^{2}+4 \in \mathbb{Q}[x]$ annihilates α. Since the solutions of f are $s^{2}=3 \pm \sqrt{5}$, that is, $s= \pm \sqrt{3 \pm \sqrt{5}}$, we have that $s, s^{2} \notin \mathbb{Q}$. Hence as reasoned above, f cannot decompose in polynomials of degree 1 or 2 , meaning that in fact it cannot decompose in polynomials of degree 3 (because the other factor would have degree 1), which implies that f is irreducible in \mathbb{Q}. Since f is already monic, we have that $f=\operatorname{Irr}(\alpha, \mathbb{Q}, x)$ and that $[\mathbb{Q}(\alpha): \mathbb{Q}]=$ $\operatorname{deg}(\operatorname{Irr}(\alpha, \mathbb{Q}, x))=4$. Moreover, since $\left(x^{2}-5 / 2\right)\left(x^{2}-1 / 2\right) \in \mathbb{Q}[x]$ is monic of degree 4 and annihilates both $\sqrt{5 / 2}, \sqrt{1 / 2}$, we have that $[\mathbb{Q}(\sqrt{5 / 2}, \sqrt{1 / 2}): \mathbb{Q}] \leq 4$. Considering $\mathbb{Q}(\alpha) \subset \mathbb{Q}(\sqrt{a}+\sqrt{b}) \subset \mathbb{Q}(\sqrt{a}, \sqrt{b})$, the first element having dimension 4 over \mathbb{Q} and the last having at most dimension 4 over \mathbb{Q} means that in fact $[\mathbb{Q}(\sqrt{5 / 2}, \sqrt{1 / 2}): \mathbb{Q}]=4$, all the above inclusions are equalities and $\mathbb{Q}(\alpha)=$ $\mathbb{Q}(\sqrt{a}, \sqrt{b})$. Hence the extension $\mathbb{Q}(\sqrt{5 / 2}), \sqrt{1 / 2}) / \mathbb{Q}$ is biquadratic, as desired.

