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Exercise 1

Let K be a field, E/K and algebraic extension, R an integral domain with K ⊂ R ⊂ E.
We want to see that R is a field. Since it is already an integral domain, all the algebraic
axioms from the definition of a field via the relation between their elements follow,
except the one that every non-zero r ∈ R has an inverse. Given r, we will find s ∈ R
with rs = 1.

Since r ∈ R ⊂ E, there is an element s ∈ E with rs = 1. Moreover, since E/K is
algebraic, there is a polynomial f ∈ K[x] that annihilates s, say f = anx

n + · · · + a0
with ai ∈ K for i = 1, . . . , n. Hence:

0 = ans
n + · · ·+ a1s+ a0

0 = rn−1(ans
n + · · ·+ a1s+ a0)

0 = an(rs)n−1s+ · · ·+ a1rsr
n−2 + a0r

n−1

0 = ans+ · · ·+ a1r
n−2 + a0r

n−1

ans = −an−1 − · · · − a0rn−1

s = −(an−1 + · · ·+ a0r
n−1)/an

and since K is a field, we have that −1/an ∈ K ⊂ R, and the right hand side is sum
and multiplication of elements in the ring R, so in fact s ∈ R with rs = 1, as desired.
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Exercise 2

Let L/K be an extension of fields, let α ∈ L algebraic over K with [K(α) : K] odd. We
prove that [K(α2) : K] is also odd and K(α) = K(α2).

Notice that by the field tower K ⊂ K(α2) ⊂ K(α) we have that [K(α) : K] =
[K(α) : K(α2)][K(α2) : K]. Since x2 − α2 ∈ K(α2)[x] annihilates α, we have that
[K(α) : K(α2)] ≤ 2. Since multiplying by 2 would result in [K(α) : K] even, we need to
have [K(α) : K(α2)] = 1 and [K(α2) : K] = [K(α) : K] is odd.

Notice that for any field extension F/E, we have [E : F ] = 1 if and only if E = F .
This follows because {1} is linearly independent in E over F (because E is a field), so it
is a basis, hence F = E · 1 = E. Notice how this proves both directions. Since we have
that [K(α) : K(α2)] = 1, we must have K(α) = K(α2), as desired.
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Exercise 3

Let α =
√

3 +
√

5 ∈ R. We determine [Q(α) : Q] and Irr(α,Q, x) ∈ Q[x].
Notice how:

α2 = 8 + 2
√

15, α3 = 18
√

3 + 14
√

5, α4 = 124 + 32
√

15

meaning that f = x4 − 16x2 + 4 ∈ Q[x] annihilates α. Since the solutions of f are

s2 = 8±
√

5, that is, s = ±
√

8±
√

5, we have that s, s2 /∈ Q. Hence f cannot decompose
in polynomials of degree 1 or 2, meaning that in fact it cannot decompose in polynomials
of degree 3 (because the other factor would have degree 1), which implies that f is
irreducible. Since f is already monic, we have that Irr(α,Q, x) = x4− 16x2 + 4 and that
[Q(α) : Q] = deg(Irr(α,Q, x)) = 4.
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Exercise 4

Let K be a field of characteristic different from 2, L algebraically closed field containing
K. During this exercise we will use that for every u, v ∈ L we have

√
u
√
v =
√
uv, which

is due to both being choices of square roots of the element uv ∈ K.

1. Let a, b ∈ K with x2 − a and x2 − b both irreducible in K[x]. Denote
√
a,
√
b

choices of square roots of a, b respectively. We will abuse that [K(
√
a,
√
b) : K] =

[K(
√
a,
√
b) : K(

√
b)][K(

√
b) : K].

If ab is a square in K, that is, there is t ∈ K with t2 = ab, otherwise said, t =
√
ab

is a choice of a square root in K, we have that in K(
√
b):(

t√
b

)2

=
t2

b
=
ab

b
= a,

and thus t/
√
b ∈ K(

√
b) is a choice of square root of a, that is

√
a = ±t/

√
b ∈

K(
√
b), and thus K(

√
a,
√
b) = K(

√
b). As noted in a section above, this means

[K(
√
a,
√
b) : K(

√
b)] = 1 and [K(

√
a,
√
b) : K] = [K(

√
b) : K] = 2 because x2 − b

is monic and irreducible in K[x].

If ab is not a square in K, we now prove that x2−a is irreducible in K(
√
b). Suppose

not, that is, x2−a has a solution in K(
√
b), otherwise said,

√
a ∈ K(

√
b). Since we

have K(
√
b) ∼= {r+s

√
b : r, s ∈ K} in virtue of K(

√
b) ∼= K[x]/(x2−b), this means

that we can write
√
a = r + s

√
b for certain r, s ∈ K. Taking the square on both

sides we obtain a = r2 + s2b+ 2rs
√
b, meaning that we must have rs = 0. Since K

is a field, this means that either r = 0 or s = 0. Now s = 0 implies
√
a = r ∈ K,

contradicting that x2− a is irreducible in K[x]. Now r = 0 implies that
√
a = s

√
b

and thus (sb)2 = s2bb = ab, meaning that ab is a square in K, a contradiction.
Hence x2 − a is indeed irreducible and monic, so [K(

√
a,
√
b) : K(

√
b)] = 2 and

[K(
√
a,
√
b) : K] = 2 · 2 = 4.

2. Let c, d ∈ K with d not a square in K. Fix
√
b ∈ L a square root of d in L. Let

α =
√
c+
√
d be a choice of square root of c+

√
d in L. We prove that there are

a, b ∈ K with α =
√
a+
√
b if and only if c2 − d is a square in K.

⇒) Using α =
√
c+
√
d we have that α2 = c +

√
d and α4 = c2 + d + 2c

√
d,

so f = x4 − 2cx2 + (c2 − d) ∈ K[x] annihilates α. Using α =
√
a +
√
b we

have that α2 = a + b + 2
√
ab and α4 = 6ab + a2 + b2 + 4a

√
ab + 4b

√
ab, so

f = x4 − 2(a + b)x2 + (a − b)2 ∈ K[x] annihilates α. Now, we have that [K(α) :
K] = [K(α) : K(

√
d)][K(

√
d) : K] and we know that [K(

√
d) : K] = 2 because

d is not a square in K. Moreover, h = x2 − c −
√
d ∈ K(

√
d) annihilates α, so

[K(α) : K(
√
d)] must be 1 or 2.

If [K(α) : K(
√
d)] = 2 we have that [K(α) : K] = 2 · 2 = 4, meaning that f = g

by uniqueness of the monic polynomial of minimal degree annihilating α. Hence
comparing coefficients we find that c2 − d = (a− b)2 is a square in K.
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If [K(α) : K(
√
d)] = 1 we have that K(α) = K(

√
d) and thus α ∈ K(

√
d). By the

noted above, this means that we can find r, s ∈ K with α = r+s
√
d. Squaring both

sides we obtain that c+
√
d = r2 + s2d+ 2rs

√
d, so comparing coefficients we must

have that r2 +s2d = c and 2rs = 1. Hence c2−d = s4d2 +(rs−1)d+r4, otherwise
said the polynomial h = s4x2 + (rs− 1)x+ r4 ∈ K[x] satisfies h(d) = c2 − d. The
discriminant of h is:

(rs− 1)2 − 4r4s4 = (2r2s2 − 1)2 − 4r4s4 = 4r4s4 + 1− 4r2s2 − 4r4s4 = 0,

where we used multiple times that 2rs = 1. Thus the root of h is (1− rs)/2s4 and
we can write h = s4(x − (1 − rs)/2s4)2 = (s2(x − (1 − rs)/2s4))2, meaning that
c2 − d = h(d) = (s2(d− (1− rs)/2s4))2 with s2(d− (1− rs)/2s4) ∈ K, thus c2 − d
is again a square in K.

⇐) Suppose we can write c2− d = t2 for certain t ∈ K, in particular d = c2− t2 =

(c+t)(c−t). We want a, b ∈ K with
√
a+
√
b =

√
c+
√
d =

√
c+

√
(c+ t)(c− t),

so squaring we must have a+ b+ 2
√
ab = c+

√
(c+ t)(c− t). For this, one would

expect to have a+b = c and 2
√
ab =

√
(c+ t)(c− t), so it looks natural to propose

a = (c+ t)/2 and b = (c− t)/2. They indeed satisfy:

(
√
a+
√
b)2 =

c+ t

2
+
c− t

2
+ 2

√
c+ t

2

√
c− t

2
= c+

√
d.

Since we have a, b ∈ K, we obtained the desired elements.

3. Show that Q(
√

3 +
√

5)/Q is a biquadratic extension and find a, b ∈ Q with√
3 +
√

5 =
√
a+
√
b.

We rename α =
√

3 +
√

5. In this particular case we have c = 3 and d = 5, and
since c2 − d = 9 − 5 = 4 = 22 is a square in K, by the above we are guaranteed

that a = 5/2, b = 1/2 ∈ Q satisfy
√

3 +
√

5 =
√

5/2 +
√

1/2 =
√
a+
√
b.

Moreover f = x4 − 2cx2 + (c2 − d) = x4 − 6x2 + 4 ∈ Q[x] annihilates α. Since the

solutions of f are s2 = 3 ±
√

5, that is, s = ±
√

3±
√

5, we have that s, s2 /∈ Q.
Hence as reasoned above, f cannot decompose in polynomials of degree 1 or 2,
meaning that in fact it cannot decompose in polynomials of degree 3 (because
the other factor would have degree 1), which implies that f is irreducible in Q.
Since f is already monic, we have that f = Irr(α,Q, x) and that [Q(α) : Q] =
deg(Irr(α,Q, x)) = 4. Moreover, since (x2 − 5/2)(x2 − 1/2) ∈ Q[x] is monic of
degree 4 and annihilates both

√
5/2,

√
1/2, we have that [Q(

√
5/2,

√
1/2) : Q] ≤ 4.

Considering Q(α) ⊂ Q(
√
a+
√
b) ⊂ Q(

√
a,
√
b), the first element having dimension

4 over Q and the last having at most dimension 4 over Q means that in fact
[Q(
√

5/2,
√

1/2) : Q] = 4, all the above inclusions are equalities and Q(α) =
Q(
√
a,
√
b). Hence the extension Q(

√
5/2),

√
1/2)/Q is biquadratic, as desired.
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