Introduction to Commutative and Homological Algebra Homework 2

Pablo Sánchez Ocal
October 13th, 2017

Exercise 1

Let R a ring, A, B submodules of M a left R module and C a left R module. We notice that the natural projection:

$$
\begin{array}{rlll}
\pi: A \oplus B & \longrightarrow & & \longrightarrow+B \\
& (a, b) & \longmapsto & a+b
\end{array}
$$

is clearly surjective and induces a short exact sequence:

$$
0 \longrightarrow \operatorname{ker}(\pi) \longrightarrow A \oplus B \longrightarrow A+B \longrightarrow 0
$$

Moreover:

$$
\begin{aligned}
\operatorname{ker}(\pi) & =\{(a, b) \in A \oplus B: 0=\pi(a, b)=a+b\}=\{a \in A, b \in B: b=-a\} \\
& =\{a \in A:-a \in B\}=\{a \in A: a \in B\}=A \cap B
\end{aligned}
$$

and in fact this is not only an equality of sets but an isomorphism of left R modules via:

$$
\begin{aligned}
& \phi: \operatorname{ker}(\pi) \longrightarrow A \cap B \quad \text { and } \quad \psi: A \cap B \quad \longrightarrow \quad \operatorname{ker}(\pi) \\
& (a,-a) \longmapsto a \quad \text { and } \quad a \quad \longmapsto(a,-a)
\end{aligned}
$$

since both ϕ and ψ are R homomorphisms and inverses of each other; for every $a, a^{\prime} \in A$ and $r \in R$ we have:

$$
\begin{aligned}
\phi\left((a,-a)+\left(a^{\prime}-a^{\prime}\right)\right) & =\phi\left(a+a^{\prime},-a-a^{\prime}\right)=a+a^{\prime}=\phi(a,-a)+\phi\left(a^{\prime},-a^{\prime}\right) \\
\phi(r(a,-a)) & =\phi(r a,-r a)=r a=r \phi(a,-a) \\
\psi\left(a+a^{\prime}\right) & =\left(a+a^{\prime},-a-a^{\prime}\right)=(a,-a)+\left(a^{\prime}-a^{\prime}\right)=\psi(a)+\psi\left(a^{\prime}\right) \\
\psi(r a) & =(r a,-r a)=r(a,-a)=r \psi(a) \\
\psi \circ \phi(a,-a) & =\psi(a)=(a,-a) \\
\phi \circ \psi(a) & =\phi(a,-a)=a .
\end{aligned}
$$

Thus the short exact sequence can be rewritten as:

$$
0 \longrightarrow A \cap B \longrightarrow A \oplus B \longrightarrow A+B \longrightarrow 0
$$

and applying the Second Long Exact Sequence for Ext we obtain:

$$
\begin{gathered}
0 \longrightarrow \operatorname{Hom}_{R}(A+B, C) \longrightarrow \operatorname{Hom}_{R}(A, C) \oplus \operatorname{Hom}_{R}(B, C) \longrightarrow \operatorname{Hom}_{R}(A \cap B, C) \longrightarrow \\
\operatorname{Ext}_{R}^{1}(A+B, C) \longrightarrow \operatorname{Ext}_{R}^{1}(A, C) \oplus \operatorname{Ext}_{R}^{1}(B, C) \longrightarrow \operatorname{Ext}_{R}^{1}(A \cap B, C) \longrightarrow \cdots
\end{gathered}
$$

where we used that $\operatorname{Ext}_{R}^{n}(A \oplus B, C) \cong \operatorname{Ext}_{R}^{n}(A, C) \oplus \operatorname{Ext}_{R}^{n}(B, C)$ for all $n \geq 0$ as proven in Homework 1. This is what we wanted to prove.

Exercise 2

Let $S \subset R$ rings, B and S module and A an R module, also denoting A its restriction as S module, and $R \otimes_{S} B$ the induction of B to an R module.

1. Consider the map:

$$
\begin{aligned}
\psi: \operatorname{Hom}_{S}(B, A) & \longrightarrow \operatorname{Hom}_{R}\left(R \otimes_{S} B, A\right) \\
f & \longmapsto
\end{aligned} \quad \psi(f) \quad \psi(f): \begin{aligned}
R \otimes_{S} B & \longrightarrow \\
r \otimes b & \longmapsto r f(b)
\end{aligned}
$$

where $\psi(f)$ is induced by the map:

$$
\begin{array}{rllc}
\tilde{f}: & R \times B & \longrightarrow & A \\
(r, b) & \longmapsto & r f(b)
\end{array}
$$

which is indeed S-balanced since for every $r, r^{\prime} \in R, b, b^{\prime} \in B, s \in S$ we have:

$$
\begin{aligned}
\tilde{f}\left(r, a+a^{\prime}\right) & =r\left(a+a^{\prime}\right)=r a+r a^{\prime}=\tilde{f}(r, a)+\tilde{f}\left(r, a^{\prime}\right) \\
\tilde{f}\left(r+r^{\prime}, a\right) & =\left(r+r^{\prime}\right) a=r a+r^{\prime} a=\tilde{f}(r, a)+\tilde{f}\left(r^{\prime}, a\right) \\
\tilde{f}(r s, a) & =(r s) a=r(s a)=\tilde{f}(r, s a)
\end{aligned}
$$

where we for the last equation we used that since $S \subset R$ their action on B is associative. Moreover, $\psi(f)$ is indeed an R homomorphism since for every $r, r^{\prime} \in R$, $b, b^{\prime} \in B$ we have:

$$
\begin{aligned}
\psi(f)\left(r \otimes b+r^{\prime} \otimes b^{\prime}\right) & =\psi(f)(r \otimes b)+\psi(f)\left(r^{\prime} \otimes b^{\prime}\right) \\
\psi(f)\left(r^{\prime}(r \otimes b)\right) & =\psi(f)\left(\left(r^{\prime} r\right) \otimes b\right)=\left(r^{\prime} r\right) f(b)=r^{\prime}(r f(b))=r^{\prime} \psi(f)(r \otimes b)
\end{aligned}
$$

again using that the action is associative, and thus ψ is well defined. Clearly ψ is a group homomorphism; for every $f, g \in \operatorname{Hom}_{S}(B, A), r \in R, b \in B$ we have:

$$
\psi(f+g)(r \otimes b)=r(f+g)(b)=r f(b)+r g(b)=\psi(f)(r \otimes b)+\psi(g)(r \otimes b) .
$$

Considering now the map:

$$
\left.\begin{array}{rlllllll}
\phi: \operatorname{Hom}_{R}\left(R \otimes_{S} B, A\right) & \longrightarrow & \operatorname{Hom}_{S}(B, A) \\
f & \longmapsto & \phi(f)
\end{array}, \quad \begin{array}{ccccc}
& & & & b
\end{array}\right) \longmapsto f(1 \otimes b)
$$

where $\phi(f)$ is a S homomorphism since for every $b, b^{\prime} \in B, s \in S$ we have:

$$
\begin{aligned}
\phi(f)\left(b+b^{\prime}\right) & =f\left(1 \otimes\left(b+b^{\prime}\right)\right)=f\left(1 \otimes b+1 \otimes b^{\prime}\right)=f(1 \otimes b)+f\left(1 \otimes b^{\prime}\right) \\
& =\phi(f)(b)+\phi(f)\left(b^{\prime}\right) \\
\phi(f)(s b) & =f(1 \otimes(s b))=f(s \otimes b)=f(s(1 \otimes b))=s f(1 \otimes b)=s \phi(f)(b)
\end{aligned}
$$

where for the last equation we used the module structure of $R \otimes_{S} B$ and that f is an R module homomorphism. Clearly ϕ is a group homomorphism; for every $f, g \in \operatorname{Hom}_{R}\left(R \otimes_{S} B, A\right), b \in B$ we have:

$$
\phi(f+g)(b)=(f+g)(1 \otimes b)=f(1 \otimes b)+g(1 \otimes b)=\phi(f)(b)+\phi(g)(b) .
$$

Finally, ψ and ϕ are inverses of each other; for every $f \in \operatorname{Hom}_{S}(B, A), g \in$ $\operatorname{Hom}_{R}\left(R \otimes_{S} B, A\right), r \in R, b \in B$ we have:

$$
\begin{aligned}
\phi \circ \psi(f)(b) & =\phi(\psi(f))(b)=\psi(f)(1 \otimes b)=f(b) \\
\psi \circ \phi(g)(r \otimes b) & =\psi(\phi(g))(r \otimes b)=r \phi(g)(b)=r g(1 \otimes b)=g(r(1 \otimes b))=g(r \otimes b),
\end{aligned}
$$

and thus $\operatorname{Hom}_{S}(B, A) \cong \operatorname{Hom}_{R}\left(R \otimes_{S} B, A\right)$ as desired.
2. Consider R a projective right S module under multiplication. Given P. a projective resolution of B over S, we have an exact sequence:

$$
\cdots \longrightarrow P_{1} \longrightarrow P_{0} \xrightarrow{\epsilon} B \longrightarrow 0
$$

inducing an exact sequence:

$$
\cdots \longrightarrow R \otimes_{S} P_{1} \longrightarrow R \otimes_{S} P_{0} \xrightarrow{\mathrm{id} d_{R} \epsilon} B \longrightarrow 0,
$$

because the functor $R \otimes_{S}$ - is right exact. Notice that this is a projective resolution of $R \otimes_{S} B$ over R : for every $n \geq 0$ we have that P_{n} is projective over S, meaning that it is a direct summand of a free S module, say $F_{S}=P_{n} \oplus Q_{n}$. Now $R \cong$ $R \otimes_{S} F_{S} \cong\left(R \otimes_{S} P_{n}\right) \oplus\left(R \otimes_{S} Q_{n}\right)$ and thus $R \otimes_{S} P_{n}$ is a direct summand of a free R module, hence it is projective as R module.
Applying now $\operatorname{Hom}_{S}(-, A)$ to the first resolution and $\operatorname{Hom}_{R}(-, A)$ to the second resolution we obtain the truncated complexes:

$$
\begin{aligned}
0 & \longrightarrow \operatorname{Hom}_{S}\left(P_{0}, A\right) \longrightarrow \operatorname{Hom}_{S}\left(P_{1}, A\right) \longrightarrow \cdots \\
0 & \longrightarrow \operatorname{Hom}_{R}\left(R \otimes_{S} P_{0}, A\right) \longrightarrow \operatorname{Hom}_{R}\left(R \otimes_{S} P_{1}, A\right) \longrightarrow \cdots
\end{aligned}
$$

which are isomorphic in virtue of what we proven in the previous section, so in particular they give the same homology. The homology of the first complex is $\operatorname{Ext}_{S}^{n}(B, A)$, and the homology of the second complex is $\operatorname{Ext}_{R}^{n}\left(R \otimes_{S} B, A\right)$, meaning that for every $n \geq 0$ we have $\operatorname{Ext}_{S}^{n}(B, A) \cong \operatorname{Ext}_{R}^{n}\left(R \otimes_{S} B, A\right)$, as desired.

Exercise 3

Consider $R=\mathbb{Z}_{4}, M=\mathbb{Z}_{2}$ as an R module via $M \cong R /(2)$, that is, if $R=\{0,1,2,3\}$ then $M=\{\overline{0}, \overline{1}\}$ with $\overline{0}=\{0,2\}$ and $\overline{1}=\{1,3\}$ and $\pi: R \longrightarrow M$ has $\pi(1)=\overline{1}$. We consider the R resolution of M :

$$
\cdots \longrightarrow \mathbb{Z}_{4} \xrightarrow{(2 \cdot)} \mathbb{Z}_{4} \xrightarrow{(2 \cdot)} \mathbb{Z}_{4} \xrightarrow{\pi} \mathbb{Z}_{2} \longrightarrow 0
$$

which is clearly R projective. Since π is injective by construction, we have $\operatorname{ker}(\pi)=\{0,2\}$ and since:

$$
\begin{aligned}
2 \cdot: \mathbb{Z}_{4} & \longrightarrow \mathbb{Z}_{4} \\
0 & \longrightarrow \\
1 & \longrightarrow \\
2 & \longrightarrow \\
3 & \longrightarrow
\end{aligned}
$$

we clearly have $\operatorname{ker}(2 \cdot)=\{0,2\}=\operatorname{Im}(2 \cdot)$ and thus the resolution is exact. Applying now $\operatorname{Hom}_{R}(-, M)$ we obtain the truncated complex:

$$
0 \longrightarrow \operatorname{Hom}_{R}(R, M) \xrightarrow{(2 \cdot)^{*}} \operatorname{Hom}_{R}(R, M) \xrightarrow{(2 \cdot)^{*}} \operatorname{Hom}_{R}(R, M) \xrightarrow{(2 \cdot)^{*}} \cdots
$$

and since for every $r \in R$ and $f \in \operatorname{Hom}_{R}(R, M)$ we have:

$$
(2 \cdot)^{*}(f)(r)=f(2 \cdot r)=f(0)=0
$$

this means that $(2 \cdot)^{*} \equiv 0$ as maps. Hence:

$$
\operatorname{Ext}_{R}^{n}(M, M)=\operatorname{ker}(0) / \operatorname{Im}(0)=\operatorname{ker}(0)=\operatorname{Hom}_{R}(R, M) \cong \mathbb{Z}_{2} \text { for } n \geq 1
$$

since a function $f \in \operatorname{Hom}_{R}(M, M)$ is determined by the image of 1 , and we have two choices. Similarly, we know that $\operatorname{Ext}_{R}^{0}(M, M) \cong \operatorname{Hom}_{R}(M, M) \cong \mathbb{Z}_{2}$. This means that we have non zero Ext in every degree.

Knowing this, suppose that $\operatorname{pd}_{R}(M)=k<\infty$, then there is a R projective resolution of M of the form:

$$
0 \longrightarrow Q_{k} \longrightarrow \cdots \longrightarrow Q_{0} \longrightarrow M \longrightarrow 0
$$

which applying $\operatorname{Hom}_{R}(-, M)$ induces a truncated complex:

$$
0 \longrightarrow \operatorname{Hom}_{R}\left(Q_{0}, M\right) \longrightarrow \cdots \longrightarrow \operatorname{Hom}_{R}\left(Q_{k}, M\right) \longrightarrow 0
$$

meaning that for $n \geq k+1$ we have $\operatorname{Ext}_{R}^{n}(M, M)=0$, a contradiction. Thus we must have $\operatorname{pd}_{R}(M)=\infty$, as desired.

Exercise 4

1. Let A a right R module and B a left R module. Suppose that $\operatorname{pd}_{R}(A)=m$, then there is a R projective resolution of A :

$$
0 \longrightarrow P_{m} \longrightarrow \cdots \longrightarrow P_{0} \longrightarrow A \longrightarrow 0
$$

which applying $-\otimes_{R} B$ induces the truncated complex:

$$
0 \longrightarrow P_{m} \otimes_{R} B \longrightarrow \cdots \longrightarrow P_{0} \otimes_{R} B \longrightarrow 0
$$

and thus taking homology this means that $\operatorname{Tor}_{n}^{R}(A, B)=0$ for $n \geq m+1$.
For the following reasoning, we consider the equivalent definition of Tor that allows us to take a projective resolution of the right component, tensor with the left and take homology. Suppose now that $\operatorname{pd}_{R}(B)=m$, then there is a R projective resolution of B :

$$
0 \longrightarrow Q_{m} \longrightarrow \cdots \longrightarrow Q_{0} \longrightarrow B \longrightarrow 0
$$

which applying $A \otimes_{R}$ - induces the truncated complex:

$$
0 \longrightarrow A \otimes_{R} Q_{m} \longrightarrow \cdots \longrightarrow A \otimes_{R} Q_{0} \longrightarrow 0
$$

and thus taking homology this means that $\operatorname{Tor}_{n}^{R}(A, B)=0$ for $n \geq m+1$.
2. Suppose that $\operatorname{gldim}(R)=\infty$, then clearly $\operatorname{Tordim}(R) \leq \infty=\operatorname{gldim}(R)$ always holds. Suppose that $\operatorname{gldim}(R)=n<\infty$, that is, there exists a left R module V with $\operatorname{pd}_{R}(V)=n$ and there are no other left R modules with projective dimension greater than n. Thus for every couple of left R modules A, B we have that $\operatorname{pd}_{R}(A), \operatorname{pd}_{R}(B) \leq n$, meaning that $\operatorname{Tor}_{k}^{R}(A, B)=0$ for $k \geq n+1$ as proven in the previous section, and thus to have $\operatorname{Tor}_{k}^{R}(A, B) \neq 0$ we need $k \leq n$. Since this is true for every pair of left R modules A, B, we obtain that $\operatorname{Tordim}(R) \leq n=\operatorname{gldim}(R)$.

Exercise 5

Let R a ring and A, B be R modules. Suppose first that $\operatorname{pd}_{R}(A)=n<\infty$. Consider the two exact sequences:

$$
\begin{aligned}
& 0 \longrightarrow A \longrightarrow A \oplus B \longrightarrow B \longrightarrow 0 \\
& 0 \longrightarrow B \longrightarrow A \oplus B \longrightarrow A \longrightarrow 0
\end{aligned}
$$

where the maps are the natural component-wise inclusions and projections making the sequences exact. We proved in class that under the circumstances of the first short exact sequence we have $\operatorname{pd}_{R}(A \oplus B) \leq \max \left\{\operatorname{pd}_{R}(A), \operatorname{pd}_{R}(B)\right\}$. If $\operatorname{pd}_{R}(A \oplus$ $B)<\max \left\{\operatorname{pd}_{R}(A), \operatorname{pd}_{R}(B)\right\}$, then in virtue of what we proved in class we must have $\operatorname{pd}_{R}(B)=\operatorname{pd}_{R}(A)+1$. Using this same result for the second short exact sequence, we still have a strict inequality $\operatorname{pd}_{R}(A \oplus B)<\max \left\{\operatorname{pd}_{R}(A), \operatorname{pd}_{R}(B)\right\}$ meaning that $\operatorname{pd}_{R}(A)=\operatorname{pd}_{R}(B)+1$. Thus $n=\operatorname{pd}_{R}(A)=\operatorname{pd}_{R}(B)+1=\operatorname{pd}_{R}(A)+2=n+2$, a contradiction (this is regardless of $\operatorname{pd}_{R}(B)$), so we indeed must have $\operatorname{pd}_{R}(A \oplus B)=$ $\max \left\{\operatorname{pd}_{R}(A), \operatorname{pd}_{R}(B)\right\}$. This exact same argument proves that if $\operatorname{pd}_{R}(B)=n<\infty$ then $\operatorname{pd}_{R}(A \oplus B)=\max \left\{\operatorname{pd}_{R}(A), \operatorname{pd}_{R}(B)\right\}$.

Suppose now that $\operatorname{pd}_{R}(A)=\infty=\operatorname{pd}_{R}(B)$. Suppose that $\operatorname{pd}_{R}(A \oplus B)=n \leq \infty$. We proved in class that this happens if and only if $\operatorname{Ext}_{R}^{k}(A \oplus B, C)=0$ for all $k>n$. By the Homework 1, we have:

$$
\operatorname{Ext}_{R}^{k}(A, C) \oplus \operatorname{Ext}_{R}^{k}(B, C) \cong \operatorname{Ext}_{R}^{k}(A \oplus B, C)=0 \text { for all } k>n
$$

that is $\operatorname{Ext}_{R}^{k}(A, C)=0=\operatorname{Ext}_{R}^{k}(B, C)$. Again, this happens if and only if $\operatorname{pd}_{R}(A), \operatorname{pd}_{R}(B) \leq$ $n<\infty$, a contradiction. We thus have $\operatorname{pd}_{R}(A \oplus B)=\infty=\max \left\{\operatorname{pd}_{R}(A), \operatorname{pd}_{R}(B)\right\}$, as desired.

References

[1] T. W. Hungerford, Algebra, Springer-Verlag, 2000.

