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Exercise 1

Let R a ring, A, B submodules of M a left R module and C a left R module. We notice
that the natural projection:

π : A⊕B −→ A+B
(a, b) 7−→ a+ b

is clearly surjective and induces a short exact sequence:

0 −→ ker(π) −→ A⊕B −→ A+B −→ 0.

Moreover:

ker(π) = {(a, b) ∈ A⊕B : 0 = π(a, b) = a+ b} = {a ∈ A, b ∈ B : b = −a}
= {a ∈ A : −a ∈ B} = {a ∈ A : a ∈ B} = A ∩B,

and in fact this is not only an equality of sets but an isomorphism of left R modules via:

φ : ker(π) −→ A ∩B
(a,−a) 7−→ a

and
ψ : A ∩B −→ ker(π)

a 7−→ (a,−a)

since both φ and ψ are R homomorphisms and inverses of each other; for every a, a′ ∈ A
and r ∈ R we have:

φ((a,−a) + (a′ − a′)) = φ(a+ a′,−a− a′) = a+ a′ = φ(a,−a) + φ(a′,−a′)
φ(r(a,−a)) = φ(ra,−ra) = ra = rφ(a,−a)

ψ(a+ a′) = (a+ a′,−a− a′) = (a,−a) + (a′ − a′) = ψ(a) + ψ(a′)

ψ(ra) = (ra,−ra) = r(a,−a) = rψ(a)

ψ ◦ φ(a,−a) = ψ(a) = (a,−a)

φ ◦ ψ(a) = φ(a,−a) = a.

Thus the short exact sequence can be rewritten as:

0 −→ A ∩B −→ A⊕B −→ A+B −→ 0,

and applying the Second Long Exact Sequence for Ext we obtain:

0 −→ HomR(A+B,C) −→ HomR(A,C)⊕HomR(B,C) −→ HomR(A ∩B,C) −→
Ext1R(A+B,C) −→ Ext1R(A,C)⊕ Ext1R(B,C) −→ Ext1R(A ∩B,C) −→ · · ·

where we used that ExtnR(A⊕B,C) ∼= ExtnR(A,C)⊕ExtnR(B,C) for all n ≥ 0 as proven
in Homework 1. This is what we wanted to prove.
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Exercise 2

Let S ⊂ R rings, B and S module and A an R module, also denoting A its restriction
as S module, and R⊗S B the induction of B to an R module.

1. Consider the map:

ψ : HomS(B,A) −→ HomR(R⊗S B,A)
f 7−→ ψ(f)

,
ψ(f) : R⊗S B −→ A

r ⊗ b 7−→ rf(b)

where ψ(f) is induced by the map:

f̃ : R×B −→ A
(r, b) 7−→ rf(b)

which is indeed S-balanced since for every r, r′ ∈ R, b, b′ ∈ B, s ∈ S we have:

f̃(r, a+ a′) = r(a+ a′) = ra+ ra′ = f̃(r, a) + f̃(r, a′)

f̃(r + r′, a) = (r + r′)a = ra+ r′a = f̃(r, a) + f̃(r′, a)

f̃(rs, a) = (rs)a = r(sa) = f̃(r, sa)

where we for the last equation we used that since S ⊂ R their action on B is
associative. Moreover, ψ(f) is indeed an R homomorphism since for every r, r′ ∈ R,
b, b′ ∈ B we have:

ψ(f)(r ⊗ b+ r′ ⊗ b′) = ψ(f)(r ⊗ b) + ψ(f)(r′ ⊗ b′)
ψ(f)(r′(r ⊗ b)) = ψ(f)((r′r)⊗ b) = (r′r)f(b) = r′(rf(b)) = r′ψ(f)(r ⊗ b)

again using that the action is associative, and thus ψ is well defined. Clearly ψ is
a group homomorphism; for every f, g ∈ HomS(B,A), r ∈ R, b ∈ B we have:

ψ(f + g)(r ⊗ b) = r(f + g)(b) = rf(b) + rg(b) = ψ(f)(r ⊗ b) + ψ(g)(r ⊗ b).

Considering now the map:

φ : HomR(R⊗S B,A) −→ HomS(B,A)
f 7−→ φ(f)

,
φ(f) : B −→ A

b 7−→ f(1⊗ b)

where φ(f) is a S homomorphism since for every b, b′ ∈ B, s ∈ S we have:

φ(f)(b+ b′) = f(1⊗ (b+ b′)) = f(1⊗ b+ 1⊗ b′) = f(1⊗ b) + f(1⊗ b′)
= φ(f)(b) + φ(f)(b′)

φ(f)(sb) = f(1⊗ (sb)) = f(s⊗ b) = f(s(1⊗ b)) = sf(1⊗ b) = sφ(f)(b)

where for the last equation we used the module structure of R ⊗S B and that f
is an R module homomorphism. Clearly φ is a group homomorphism; for every
f, g ∈ HomR(R⊗S B,A), b ∈ B we have:

φ(f + g)(b) = (f + g)(1⊗ b) = f(1⊗ b) + g(1⊗ b) = φ(f)(b) + φ(g)(b).
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Finally, ψ and φ are inverses of each other; for every f ∈ HomS(B,A), g ∈
HomR(R⊗S B,A), r ∈ R, b ∈ B we have:

φ ◦ ψ(f)(b) = φ(ψ(f))(b) = ψ(f)(1⊗ b) = f(b)

ψ ◦ φ(g)(r ⊗ b) = ψ(φ(g))(r ⊗ b) = rφ(g)(b) = rg(1⊗ b) = g(r(1⊗ b)) = g(r ⊗ b),

and thus HomS(B,A) ∼= HomR(R⊗S B,A) as desired.

2. Consider R a projective right S module under multiplication. Given P· a projective
resolution of B over S, we have an exact sequence:

· · · −→ P1 −→ P0
ε−→ B −→ 0,

inducing an exact sequence:

· · · −→ R⊗S P1 −→ R⊗S P0
idR⊗ε−→ B −→ 0,

because the functor R⊗S− is right exact. Notice that this is a projective resolution
of R ⊗S B over R: for every n ≥ 0 we have that Pn is projective over S, meaning
that it is a direct summand of a free S module, say FS = Pn ⊕ Qn. Now R ∼=
R ⊗S FS ∼= (R ⊗S Pn) ⊕ (R ⊗S Qn) and thus R ⊗S Pn is a direct summand of a
free R module, hence it is projective as R module.

Applying now HomS(−, A) to the first resolution and HomR(−, A) to the second
resolution we obtain the truncated complexes:

0 −→ HomS(P0, A) −→ HomS(P1, A) −→ · · ·
0 −→ HomR(R⊗S P0, A) −→ HomR(R⊗S P1, A) −→ · · ·

which are isomorphic in virtue of what we proven in the previous section, so in
particular they give the same homology. The homology of the first complex is
ExtnS(B,A), and the homology of the second complex is ExtnR(R⊗SB,A), meaning
that for every n ≥ 0 we have ExtnS(B,A) ∼= ExtnR(R⊗S B,A), as desired.
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Exercise 3

Consider R = Z4, M = Z2 as an R module via M ∼= R/(2), that is, if R = {0, 1, 2, 3}
then M = {0, 1} with 0 = {0, 2} and 1 = {1, 3} and π : R −→ M has π(1) = 1. We
consider the R resolution of M :

· · · −→ Z4
(2·)−→ Z4

(2·)−→ Z4
π−→ Z2 −→ 0

which is clearly R projective. Since π is injective by construction, we have ker(π) = {0, 2}
and since:

2· : Z4 −→ Z4

0 −→ 0
1 −→ 2
2 −→ 0
3 −→ 2

we clearly have ker(2·) = {0, 2} = Im(2·) and thus the resolution is exact. Applying now
HomR(−,M) we obtain the truncated complex:

0 −→ HomR(R,M)
(2·)∗−→ HomR(R,M)

(2·)∗−→ HomR(R,M)
(2·)∗−→ · · ·

and since for every r ∈ R and f ∈ HomR(R,M) we have:

(2·)∗(f)(r) = f(2 · r) = f(0) = 0

this means that (2·)∗ ≡ 0 as maps. Hence:

ExtnR(M,M) = ker(0)/Im(0) = ker(0) = HomR(R,M) ∼= Z2 for n ≥ 1

since a function f ∈ HomR(M,M) is determined by the image of 1, and we have two
choices. Similarly, we know that Ext0R(M,M) ∼= HomR(M,M) ∼= Z2. This means that
we have non zero Ext in every degree.

Knowing this, suppose that pdR(M) = k <∞, then there is a R projective resolution
of M of the form:

0 −→ Qk −→ · · · −→ Q0 −→M −→ 0,

which applying HomR(−,M) induces a truncated complex:

0 −→ HomR(Q0,M) −→ · · · −→ HomR(Qk,M) −→ 0,

meaning that for n ≥ k + 1 we have ExtnR(M,M) = 0, a contradiction. Thus we must
have pdR(M) =∞, as desired.
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Exercise 4

1. Let A a right R module and B a left R module. Suppose that pdR(A) = m, then
there is a R projective resolution of A:

0 −→ Pm −→ · · · −→ P0 −→ A −→ 0,

which applying −⊗R B induces the truncated complex:

0 −→ Pm ⊗R B −→ · · · −→ P0 ⊗R B −→ 0,

and thus taking homology this means that TorRn (A,B) = 0 for n ≥ m+ 1.

For the following reasoning, we consider the equivalent definition of Tor that allows
us to take a projective resolution of the right component, tensor with the left and
take homology. Suppose now that pdR(B) = m, then there is a R projective
resolution of B:

0 −→ Qm −→ · · · −→ Q0 −→ B −→ 0,

which applying A⊗R − induces the truncated complex:

0 −→ A⊗R Qm −→ · · · −→ A⊗R Q0 −→ 0,

and thus taking homology this means that TorRn (A,B) = 0 for n ≥ m+ 1.

2. Suppose that gldim(R) = ∞, then clearly Tordim(R) ≤ ∞ = gldim(R) always
holds. Suppose that gldim(R) = n < ∞, that is, there exists a left R module V
with pdR(V ) = n and there are no other left R modules with projective dimension
greater than n. Thus for every couple of left R modules A, B we have that
pdR(A),pdR(B) ≤ n, meaning that TorRk (A,B) = 0 for k ≥ n+ 1 as proven in the
previous section, and thus to have TorRk (A,B) 6= 0 we need k ≤ n. Since this is true
for every pair of left R modules A, B, we obtain that Tordim(R) ≤ n = gldim(R).
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Exercise 5

Let R a ring and A, B be R modules. Suppose first that pdR(A) = n < ∞. Consider
the two exact sequences:

0 −→ A −→ A⊕B −→ B −→ 0

0 −→ B −→ A⊕B −→ A −→ 0

where the maps are the natural component-wise inclusions and projections making
the sequences exact. We proved in class that under the circumstances of the first
short exact sequence we have pdR(A ⊕ B) ≤ max{pdR(A),pdR(B)}. If pdR(A ⊕
B) < max{pdR(A),pdR(B)}, then in virtue of what we proved in class we must have
pdR(B) = pdR(A) + 1. Using this same result for the second short exact sequence,
we still have a strict inequality pdR(A ⊕ B) < max{pdR(A), pdR(B)} meaning that
pdR(A) = pdR(B) + 1. Thus n = pdR(A) = pdR(B) + 1 = pdR(A) + 2 = n + 2,
a contradiction (this is regardless of pdR(B)), so we indeed must have pdR(A ⊕ B) =
max{pdR(A), pdR(B)}. This exact same argument proves that if pdR(B) = n <∞ then
pdR(A⊕B) = max{pdR(A), pdR(B)}.

Suppose now that pdR(A) =∞ = pdR(B). Suppose that pdR(A⊕B) = n ≤ ∞. We
proved in class that this happens if and only if ExtkR(A ⊕ B,C) = 0 for all k > n. By
the Homework 1, we have:

ExtkR(A,C)⊕ ExtkR(B,C) ∼= ExtkR(A⊕B,C) = 0 for all k > n,

that is ExtkR(A,C) = 0 = ExtkR(B,C). Again, this happens if and only if pdR(A), pdR(B) ≤
n < ∞, a contradiction. We thus have pdR(A ⊕ B) = ∞ = max{pdR(A),pdR(B)}, as
desired.
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