
Introduction to Commutative and Homological Algebra -

Homework 3

Pablo Sánchez Ocal

November 3rd, 2017



Exercise 1

Let I, J ⊆ A ideals of a ring. We prove that
√
IJ =

√
I ∩ J =

√
I ∩
√
J . For this, it is

enough to prove three inclusions:√
IJ ⊆

√
I ∩ J : Let a ∈

√
IJ , then an ∈ IJ for some n ∈ N, meaning that we can

write an =
∑k

i=1 bici for some bi ∈ I, ci ∈ J , 1 ≤ i ≤ k. Notice that since both I and J
are ideals, then bici ∈ I and bici ∈ J for every 1 ≤ i ≤ k, meaning that bici ∈ I ∩ J for
1 ≤ i ≤ k, and since the intersection of ideals is an ideal, an =

∑k
i=1 bici ∈ I ∩ J . This

means a ∈
√
I ∩ J .√

I ∩ J ⊆
√
I∩
√
J : Let a ∈

√
I ∩ J , then an ∈ I∩J for some n ∈ N, meaning an ∈ I

and an ∈ J . Thus a ∈
√
I and a ∈

√
J , so a ∈

√
I ∩
√
J .√

I ∩
√
J ⊆
√
IJ : Let a ∈

√
I ∩
√
J , then a ∈

√
I and a ∈

√
J , so an ∈ I and am ∈ J .

for some n,m ∈ N. Then an+m = anam ∈ IJ , thus a ∈
√
IJ .

So we have
√
IJ ⊆

√
I ∩ J ⊆

√
I ∩
√
J ⊆

√
IJ , meaning that these inclusions must

be equalities, as desired.
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Exercise 2

Let φ : A −→ B be a ring homomorphism, I ⊆ B and ideal. Then:

φ−1
(√

I
)
⊆
√
φ−1(I): Let a ∈ φ−1

(√
I
)

, then φ(a) ∈
√
I. This means that

φ(a)n ∈ I for some n ∈ N, and thus:

φ(an) = φ(a
n· · · a) = φ(a)

n· · · φ(a) = φ(a)n ∈ I

using that φ is a ring homomorphism. Then an ∈ φ−1(I), so a ∈
√
φ−1(I).√

φ−1(I) ⊆ φ−1
(√

I
)

: Let a ∈
√
φ−1(I), meaning that an ∈ φ−1(I) for some n ∈ N.

Thus φ(an) ∈ I, and now:

φ(a)n = φ(a)
n· · · φ(a) = φ(a

n· · · a) = φ(an) ∈ I

using that φ is a ring homomorphism. Then φ(a) ∈
√
I, so a ∈ φ−1

(√
I
)

.

So we have the desired equality φ−1
(√

I
)

=
√
φ−1(I).
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Exercise 3

Let n ∈ N, n ≥ 2. We find nil(Zn). For this, we will use the known fact that the prime
ideals of Z are the ones of the form Zp for p ∈ Z prime. To translate this information to
Zn, we use several standard facts: given R is a commutative ring and I ⊆ R an ideal,
then there is a one to one correspondence between the set of ideals of R containing I
and the set of ideals of R/I (and this correspondence is given by taking quotient by
I) [1, Theorem 2.13 (p. 126)], and an ideal P ⊆ R is prime if and only if R/P is an
integral domain. Using these two facts and the Third Isomorphism Theorem for rings, it
is immediate to see that all the prime ideals of R/I are of the form J/I for some prime
ideal J ⊆ R with I ⊆ J .

We know that a prime ideal Zp contains Zn if and only if p divides n, and applying
the above, we obtain that all the prime ideals of Zn are of the form Zp/Zn for p|n. Thus:

nil(Zn) =
⋂

p∈Z prime
p|n

Zp/Zn

is the desired result.
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Exercise 4

Let φ : A −→ B be a surjective ring homomorphism.

1. Prove that φ(rad(A)) ⊆ rad(B). For this, we use that the Jacobson radical of a
ring is the intersection of all maximal ideals of that ring. Notice:

a ∈
⋂

M⊆A ideal
M maximal

M =⇒ a ∈M ∀M ⊆ A ideal, M maximal

=⇒ φ(a) ∈ φ(M) ∀M ⊆ A ideal, M maximal

=⇒ φ(a) ∈
⋂

M⊆A ideal
M maximal

φ(M)

so:

φ

 ⋂
M⊆A ideal
M maximal

M

 ⊆ ⋂
M⊆A ideal
M maximal

φ(M) ⊆
⋂

N⊆B ideal
N maximal

N

where for the last inclusion we use that the surjective homomorphic image of an
ideal is an ideal, meaning that it is contained in a maximal one. Since every maxi-
mal ideal N ⊆ B has as preimage φ−1(N) a maximal ideal again by surjectivity of
φ, this guarantees that every maximal ideal of B is present in the last intersection.
Thus φ(rad(A)) ⊆ rad(B).

The above was my first approach to the problem. I believe it to be correct, but
I noticed that the very last idea of why all maximal ideals have to be contained
in the intersection of the images can be used to much greater effect, as displayed
below. Let N ⊆ B be a maximal ideal. Then φ−1(N) ⊆ A is a maximal ideal
by surjectivity of φ (this is a standard fact, it is easily proved using the First Iso-
morphism Theorem for rings), meaning that rad(A) ⊆ φ−1(N) since the Jacobson
radical is the intersection of all maximal ideals. This implies φ(rad(A)) ⊆ N for
every maximal ideal N ⊆ B, so indeed φ(rad(A)) ⊆ rad(B).

2. Give an example where the inclusion is strict. Consider the natural projection
π : Z −→ Z4 (which is surjective), since both are principal ideal domains, being a
maximal ideal is the same thing as being a prime ideal. We know that rad(Z) = (0)
since there are infinite odd prime numbers, and by the previous Exercise we know
that the only prime ideal of Z4 is Z2/Z4. Since 2 ∈ Z2/Z4 but 2 /∈ (0) we have
rad(Z) = (0) ( Z2/Z4 = rad(Z4), as desired.
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Exercise 5

Let A be a local ring, we prove that A has no idempotent elements other than 1 and 0.
Let M be the unique maximal ideal of A. Given a ∈ A with a2 = a, we have a ∈ M or
a /∈M .

If a /∈ M , since M is the ideal of all non-units of A, then a is a unit. This means
that there is an element b ∈ A with ba = 1. Hence a = 1a = baa = ba2 = ba = 1.

If a ∈M , then 1− a is a unit since M = rad(A) and the elements x of the Jacobson
radical are such that 1 + yx is a unit for every y ∈ A. This means that there is an
element c ∈ A with (1− a)c = 1. Hence a = a1 = a(1− a)c = (a− a2)c = 0c = 0.

Hence if a2 = a, then either a = 1 or a = 0, what we wanted to prove.
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Exercise 6

Let A be a local ring with maximal ideal I, let M , N be finitely generated A modules.
We prove that if M ⊗A N = 0 then M = 0 or N = 0.

For this, we first notice that the result is true if A is a field: let k a field, M , N
finitely generated k modules, say M ∼= km and N ∼= kn, with M 6= 0 6= N , which is
equivalent to m 6= 0 6= n. Then M ⊗k N ∼= km ⊗k k

n ∼= k � 0. Hence by contrapositive,
if M ⊗k N = 0, then either m = 0, implying M = 0, or n = 0, implying N = 0.

Now in the general case, assume M ⊗A N = 0, now:

0 = M ⊗A N =⇒
0 = (A/I)⊗A M ⊗A N ∼= ((A/I)⊗A M)⊗A N ∼= (M/IM)⊗A N

where we have used [2, Proposition 2.7 (p. 612)] for the last isomorphism. Notice how
M/IM has a structure of A/I modules, and the isomorphism (A/I)⊗A M ∼= M/IM is
in fact both an isomorphism of A modules and of A/I modules. Now:

0 = (M/IM)⊗A N =⇒
0 = (M/IM ⊗A/I A/I)⊗A N ∼= M/IM ⊗A/I (A/I ⊗A N) ∼= M/IM ⊗A/I N/IN

where for the first isomorphism we have used [3, Ejercicio 2.15 (p. 31)]1 since A/I is both
and A/I module and a A module, and both structures are compatible since the first is
induced by the second, and for the last isomorphism we have again used [2, Proposition
2.7 (p. 612)] so N/IN is indeed an A/I module.

Since A/I is a field, this implies that either M/IM = 0 or N/IN = 0, so either
M = IM or N = IN . Since A is local, the maximal ring I is exactly the Jacobson
radical (in particular it is contained in it), so by Nakayama’s Lemma[3, Proposición 2.15
(p. 24)]2 we have that either M = 0 or N = 0, as desired.

1I apologize for referencing a non-English version of the book and an exercise instead of a Theorem
or Proposition.

2I again apologize for referencing a non-English version of the book.
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Exercise 7

Let A a ring. We want to prove that if Am ∼= An for some non-zero m,n ∈ N, then
m = n. The name of this concept is the invariant basis number, where we say that a
ring has the invariant basis number property if all its finitely generated free modules
have a well defined rank.

We first prove that if I ⊆ A is an ideal such that A/I has the invariant basis number
property, then A also has the invariant basis number property. For this, suppose we
have Am ∼= An for some non-zero m,n ∈ N, then:

(A/I)m ∼= (A/I)⊗A A
m ∼= Am/IAm ∼= An/IAn ∼= (A/I)⊗A A

n ∼= (A/I)n

where we use [2, Proposition 2.7 (p. 612)] in the second and fourth isomorphisms and
the hypothesis in the third isomorphism. Since this is an isomorphism of A/I modules
(having the invariant basis number property), then m = n, so A also has the invariant
basis number property.

Notice now that since a finite dimensional vector space has unique dimension, a field
always has the invariant basis number property. Taking now I to be a maximal ideal
of A, which we know that always exist, then A/I is a field since A is commutative.
Thus A/I has the invariant basis number property, so A has the invariant basis number
property, which is what we wanted to prove.
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