Introduction to Commutative and Homological Algebra Homework 4

Pablo Sánchez Ocal
November 17th, 2017

Exercise 1

Let A be a ring with ideals I_{1}, \ldots, I_{n} with $I_{1} \cap \cdots I_{n}=(0)$. Prove that if A / I_{j} is noetherian for each $1 \leq j \leq n$, then A is noetherian.

Consider the map:

$$
\begin{array}{cccc}
f: A & \longrightarrow & A / I_{1} \oplus \cdots \oplus A / I_{n} \\
a & \longmapsto & (\bar{a}, \cdots, \bar{a})
\end{array}
$$

which is clearly a ring homomorphism since it is product of projections. Moreover, it is injective since if $f(a)=(\bar{a}, \ldots, \bar{a})=(\overline{0}, \ldots, \overline{0})$ then $\bar{a}=\overline{0}$ when seen in I_{j} for every $1 \leq j \leq n$, this means $a \in I_{j}$ for every $1 \leq j \leq n$. Hence $a \in I_{1} \cap \cdots I_{n}=(0)$ so $a=0$.

The above is seeing them as rings. However, given I an ideal of A we can see A / I as an A module by the induced multiplication $a \bar{m}=\overline{a m}$ for all $a \in A, m \in A / I$ (the module properties hold because of the subring structure of $A / I)$. Suppose further that A / I is noetherian as a ring. This means that if $J \subseteq A / I$ is an ideal, it is finitely generated over A / I, say $J \cong A / I \overline{g_{1}} \oplus \cdots \oplus A / I \overline{g_{k}}$ with $g_{1}, \ldots, g_{k} \in A$. Notice that $A / I \cong A \overline{1}$ as A modules, hence we obtain that $J \cong A \overline{1} \overline{g_{1}} \oplus \cdots \oplus A \overline{1} \overline{g_{k}} \cong A \overline{g_{1}} \oplus \cdots \oplus A \overline{g_{k}}$ as A modules, and thus J is finitely generated. Thus A / I is noetherian as A-module.

Since we are in the situation above, and the ring homomorphism f preserves the natural A module structure on $A / I_{1} \oplus \cdots \oplus A / I_{n}$ given by point-wise multiplication (again, using the induced ring structure), we obtain the short exact sequence of A modules:

$$
0 \longrightarrow A \longrightarrow A / I_{1} \oplus \cdots \oplus A / I_{n} \longrightarrow \operatorname{Coker}(f) \longrightarrow 0
$$

where the middle one is noetherian. This means that the side ones are also noetherian as A modules. In particular, A is then noetherian as a ring, as desired.

Exercise 2

Let A, B, C be rings, let $\phi: A \longrightarrow C, \psi: B \longrightarrow C$ ring homomorphisms. Prove that if A, B are noetherian and ϕ, ψ are surjective then the fiber product $A \times_{C} B$ is noetherian. Consider the diagram:

where $\pi_{A}: A \times_{C} B \longrightarrow A$ and $\pi_{B}: A \times_{C} B \longrightarrow B$ are the projections into the first and second component respectively. We have that $\operatorname{Ker}\left(\pi_{A}\right)$ and $\operatorname{Ker}\left(\pi_{B}\right)$ are ideals of $A \times{ }_{C} B$, and $\operatorname{Ker}\left(\pi_{A}\right) \cap \operatorname{Ker}\left(\pi_{B}\right)=\left\{(a, b) \in A \times_{C}: a=\pi_{A}(a, b)=0=\pi_{B}(a, b)=b\right\}=\{(0,0)\}$.

Let $a \in A$, then $\phi(a) \in C$, and since ψ is surjective we have that there exists $b \in B$ with $\psi(b)=\phi(a)$, meaning that $(a, b) \in A \times_{C} B$ and $\pi_{A}(a, b)=a$. Thus π_{A} is surjective, meaning that by the First Isomorphism Theorem $A \times_{C} B / \operatorname{Ker}\left(\pi_{A}\right) \cong \operatorname{Im}\left(\pi_{A}\right)=A$ is noetherian as a ring. Analogously, we obtain that π_{B} is surjective and $A \times_{C} B / \operatorname{Ker}\left(\pi_{B}\right) \cong$ $\operatorname{Im}\left(\pi_{B}\right)=B$ is noetherian as a ring.

We are now satisfying the hypothesis of Exercise 1 above. Applying it, we obtain that $A \times{ }_{C} B$ is noetherian, as desired.

Exercise 3

Let A, B be rings, $S=\{(1,1),(1,0)\}$ a multiplicative subset of $A \times B$. We show that $(A \times B)_{S} \cong A$.

To prove this, let C be another ring and $f: A \times B \longrightarrow C$ be any ring homomorphism with $f(s)$ invertible in C for every $s \in S$, we consider the diagram:

where we want to fix a ring homomorphism $\phi: A \times B \longrightarrow A$ and given f, find an unique ring homomorphism $h: A \longrightarrow C$ making the diagram commute.

Fixing $f: A \times B \longrightarrow C$ as in the diagram, we first notice that $(1,0)(a, b)-$ $(1,1)(a, 0)=0$ for every $b \in B$, meaning that $f(a, 0)=f((1,1)(a, 0))=f((1,0)(a, b))=$ $f(1,0) f(a, b)$ for every $b \in B$. Thus for every $b, b^{\prime} \in B$ we have $f(1,0) f(a, b)=f(a, 0)=$ $f(1,0) f\left(a, b^{\prime}\right)$. Since $(1,0) \in S$ we have $f(1,0)$ invertible in C, so we multiply to the left by its inverse and obtain $f(a, b)=f\left(a, b^{\prime}\right)$ for every $b, b^{\prime} \in B$. In particular, $f(1,1)=f(1,0)$. This allows us to define $\phi=\pi_{A}: A \times B \longrightarrow A$ the natural projection, that is, $\phi_{A}(a, b)=a$ for every $(a, b) \in A \times B$, which is clearly a ring homomorphism:

Define:

$$
\begin{array}{rccc}
h: A & \longrightarrow & C \\
a & \longrightarrow & f(a, 0)
\end{array}
$$

which is a ring homomorphism since f is a ring homomorphism. Notice how this makes the diagram commute since $f(a, b)=f(a, 0)=h(a)=h\left(\pi_{A}(a, b)\right)$ for every $(a, b) \in$ $A \times B$. Moreover such an h is unique, since if we have $g: A \longrightarrow C$ such that $f=g \pi_{A}$ then $g(a)=g\left(\pi_{A}(a, 0)\right)=f(a, 0)=h(a)$ for every $a \in A$, meaning that $g=h$. Hence A equipped with $\pi_{A}: A \times B \longrightarrow A$ satisfies the Universal Property of the localization, meaning that $(A \times B)_{S} \cong A$, as desired.

Exercise 4

Let A a ring, S a multiplicative subset.

1. Let I an ideal of A, we show $\sqrt{I_{S}}=(\sqrt{I})_{S}$.

The equality as sets is easily seen. Given an element in $(\sqrt{I})_{S}$, it is of the form a / s with $a \in \sqrt{I}$ and $s \in S$, that is, $a^{n} \in I$ for some $n \in \mathbb{N}$, so $(a / s)^{n}=a^{n} / s^{n} \in I_{S}$, meaning that $a / s \in \sqrt{I_{S}}$. This proves $(\sqrt{I})_{S} \subseteq \sqrt{I_{S}}$. Given an element in $\sqrt{I_{S}}$, it is of the form a / s with $a^{n} / s^{n}=(a / s)^{n} \in I_{S}$ for some $n \in \mathbb{N}, a \in A$ and $s \in S$. This means that $a^{n} \in I$ and $a^{n} / s^{n}=b / t$ for some $b \in A, t \in S$ and hence there is $r \in S$ with $r\left(a^{n} t-b s^{n}\right)=0$. In particular $(r a t)^{n} \in I$ so rat $\in \sqrt{I}$, meaning that $a / s=r a t / r s t \in(\sqrt{I})_{S}$. This proves $\sqrt{I_{S}} \subseteq(\sqrt{I})_{S}$.
Since the ring structure is the one inherited from A_{S}, they indeed are also equal when considered as rings.
2. We show $\operatorname{nil}\left(A_{S}\right)=\operatorname{nil}(A) A_{S}$.

The equality as sets is easily seen. Given an element in $\operatorname{nil}\left(A_{S}\right)$, it is of the form a / s with $a \in A$ and $s \in S$ with $a^{n} / s^{n}=(a / s)^{n}=0 / 1$ for some $n \in \mathbb{N}$. This means that there is $t \in S$ with $t a^{n}=0$, in particular $(t a)^{n}=0$. Hence $a / s=a t / s t=(a t)(1 / s t) \in \operatorname{nil}(A) A_{S}$. This proves $\operatorname{nil}\left(A_{S}\right) \subseteq \operatorname{nil}(A) A_{S}$. Given an element in $\operatorname{nil}(A) A_{S}$, it is of the form $b(a / s)$ with $b, a \in A$ and $s \in S$ with $b^{n}=0$ for some $n \in \mathbb{N}$. Then $((b a) / s)^{n}=\left(b^{n} a^{n}\right) / s^{n}=0$ so $b(a / s)=(b a) / s \in \operatorname{nil}\left(A_{S}\right)$. This proves $\operatorname{nil}(A) A_{S} \subseteq \operatorname{nil}\left(A_{S}\right)$.

As before, the ring structure is the one inherited from A_{S} so they indeed are also equal when considered as rings.

Exercise 5

Let A be a ring and S a multiplicative subset. Let M be a projective A module. Show that M_{S} is a projective A_{S} module.

Consider the diagram of A_{S} modules and A_{S} homomorphisms:

where we are given $g: C \longrightarrow D$ surjective, $f: M_{S} \longrightarrow D$ any morphism, we want to find $h: M_{S} \longrightarrow D$ a morphism making the diagram commute. For this, we first restrict all the modules to the induced action as A modules and all the given maps to the induced action as A homomorphisms. This yields the diagram of A modules and A homomorphisms:

where we identify M as the elements $m / 1 \in M_{S}$, that is, $\tilde{f}(m)=f(m / 1)$ for every $m \in$ $\underset{\sim}{M}$. Since M is a projective A module, we obtain that there exists an A homomorphism $\tilde{h}: M \longrightarrow C$ making the diagram of A modules and A homomorphisms commute. We define now:

$$
\begin{array}{cccc}
h: & M_{S} & \longrightarrow & C \\
& h(m / s) & \longmapsto & s^{-1} \tilde{h}(m)
\end{array}
$$

which is well defined since $\tilde{h}(m) \in C$, we can multiply by s^{-1} in the structure of A_{S} module and if $m / s=n / t$ for some $m, n \in M, s, t \in S$, then there exists $r \in S$ with $\underset{\sim}{r}(m t-s n)=0$. Applying \tilde{h} we obtain $r(t \tilde{h}(m)-s \tilde{h}(n))=0$, meaning that $\tilde{h}(m) / s=$ $\tilde{h}(n) / t$. This is an A_{S} homomorphism since:

$$
\begin{aligned}
h\left(\frac{m}{s}+\frac{m^{\prime}}{s^{\prime}}\right) & =h\left(\frac{m s^{\prime}+s m^{\prime}}{s s^{\prime}}\right)=\left(s s^{\prime}\right)^{-1} \tilde{h}\left(m s^{\prime}+s m^{\prime}\right)=\left(s s^{\prime}\right)^{-1} \tilde{h}\left(m s^{\prime}\right) \\
& +\left(s s^{\prime}\right)^{-1} \tilde{h}\left(s m^{\prime}\right)=s^{-1} \tilde{h}(m)+s^{\prime-1} \tilde{h}\left(m^{\prime}\right)=h\left(\frac{m}{s}\right)+h\left(\frac{m^{\prime}}{s^{\prime}}\right) \\
h\left(\frac{a}{s} \frac{m^{\prime}}{s^{\prime}}\right) & =h\left(\frac{a m^{\prime}}{s s^{\prime}}\right)=\left(s s^{\prime}\right)^{-1} \tilde{h}\left(a m^{\prime}\right)=a s^{-1} s^{\prime-1} \tilde{h}\left(m^{\prime}\right)=\frac{a}{s} h\left(\frac{m^{\prime}}{s^{\prime}}\right)
\end{aligned}
$$

for every $m, m^{\prime} \in M, s, s^{\prime} \in S, a \in A$. We have abused that \tilde{h} is an A module homomorphism. Moreover, h also makes the diagram of A_{S} modules and A_{S} homomorphisms commute:

$$
g h\left(\frac{m}{s}\right)=g\left(s^{-1} \tilde{h}(m)\right)=s^{-1} g \tilde{h}(m)=s^{-1} f(m)=f\left(\frac{m}{s}\right)
$$

for every $m \in M, s \in S$. Here we have used that g and f are A_{S} homomorphisms and that $g \tilde{h}=f$ when restricted to M. Thus M_{S} is a projective A_{S} module, as desired.

References

[1] T. W. Hungerford, Algebra, Springer-Verlag, 2000.
[2] S. Lang, Algebra (Revised 3rd Edition), Springer-Verlag, 2002.
[3] M. F. Atiyah, I. G. Macdonald Introducción al Álgebra Conmutativa, Reverté, 1978 (2015 reprint).

