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Exercise 1

Let A be a ring with ideals Iy,...,I, with Iy N ---1, = (0). Prove that if A/I; is
noetherian for each 1 < j < n, then A is noetherian.
Consider the map:

f A — ALe---®All,
a — (@,---,a)

which is clearly a ring homomorphism since it is product of projections. Moreover, it
is injective since if f(a) = (@,...,a) = (0,...,0) then @ = 0 when seen in I; for every
1 < j <n, this means a € I; for every 1 < j <mn. Hencea € I1N---I, = (0) so a =0.

The above is seeing them as rings. However, given I an ideal of A we can see A/I as
an A module by the induced multiplication am = am for alla € A, m € A/I (the module
properties hold because of the subring structure of A/I). Suppose further that A/T is
noetherian as a ring. This means that if J C A/I is an ideal, it is finitely generated
over A/I, say J= A/Igi @ ---® A/Igg with g1,...,gx € A. Notice that A/T = AT as A
modules, hence we obtain that J = Algy & --- @ Algy & Agi & --- @ Agg as A modules,
and thus J is finitely generated. Thus A/ is noetherian as A-module.

Since we are in the situation above, and the ring homomorphism f preserves the
natural A module structure on A/I; @ --- @ A/, given by point-wise multiplication
(again, using the induced ring structure), we obtain the short exact sequence of A
modules:

0—A—A/L&---dA/I, — Coker(f) — 0

where the middle one is noetherian. This means that the side ones are also noetherian
as A modules. In particular, A is then noetherian as a ring, as desired.



Exercise 2

Let A, B, C' be rings, let ¢ : A — C, ¢ : B — C ring homomorphisms. Prove that if
A, B are noetherian and ¢, ¢ are surjective then the fiber product A x¢ B is noetherian.
Consider the diagram:

AxcB™ = A

A

B C

where m4 : AXc B — A and g : A Xx¢ B — B are the projections into the first and
second component respectively. We have that Ker(m4) and Ker(np) are ideals of A x ¢ B,
and Ker(m4) NKer(mp) = {(a,b) € Ax¢c :a=ma(a,b) =0=7g(a,b) =b} ={(0,0)}.

Let a € A, then ¢(a) € C, and since 1 is surjective we have that there exists b € B
with 1(b) = ¢(a), meaning that (a,b) € A x¢c B and m4(a,b) = a. Thus w4 is surjective,
meaning that by the First Isomorphism Theorem A x¢ B/Ker(my) = Im(my) = A is
noetherian as a ring. Analogously, we obtain that 7 is surjective and Ax ¢ B/Ker(rp) =
Im(7wp) = B is noetherian as a ring.

We are now satisfying the hypothesis of Exercise 1 above. Applying it, we obtain
that A x¢ B is noetherian, as desired.



Exercise 3

Let A, B be rings, S = {(1,1),(1,0)} a multiplicative subset of A x B. We show that
(A X B)S =

To prove this, let C be another ring and f : A x B — C be any ring homomorphism
with f(s) invertible in C for every s € S, we consider the diagram:

AxBL/A

l .
f e
~

C

where we want to fix a ring homomorphism ¢ : A x B — A and given f, find an unique
ring homomorphism h : A — C making the diagram commute.

Fixing f : A x B — C as in the diagram, we first notice that (1,0)(a,b) —
(1,1)(a,0) = 0 for every b € B, meaning that f(a,0) = f((1,1)(a,0)) = f((1,0)(a,b)) =
f(1,0)f(a,b) for every b € B. Thus for every b,/ € B we have f(1,0)f(a,b) = f(a,0) =
f(1,0)f(a,b’). Since (1,0) € S we have f(1,0) invertible in C, so we multiply to
the left by its inverse and obtain f(a,b) = f(a,b’) for every b,b' € B. In particular,
f(1,1) = f(1,0). This allows us to define ¢ = w4 : A x B — A the natural projection,
that is, ¢a(a,b) = a for every (a,b) € A x B, which is clearly a ring homomorphism:

AxB™ o A

Define:
h : A — C

a — f(a,0)

which is a ring homomorphism since f is a ring homomorphism. Notice how this makes
the diagram commute since f(a,b) = f(a,0) = h(a) = h(mwa(a,b)) for every (a,b) €
A x B. Moreover such an h is unique, since if we have g : A — C such that f = gma
then g(a) = g(ma(a,0)) = f(a,0) = h(a) for every a € A, meaning that g = h. Hence
A equipped with m4 : A x B — A satisfies the Universal Property of the localization,
meaning that (A x B)g = A, as desired.



Exercise 4
Let A a ring, S a multiplicative subset.

1. Let I an ideal of A, we show /Ig = (ﬁ)s

The equality as sets is easily seen. Given an element in (\ﬁ ) . it is of the form a/s

with @ € VT and s € S, that is, a” € I for some n € N, so (a/s)" = a"/s" € Ig,
meaning that a/s € y/Ig. This proves (\ﬁ)s C V/1Ig. Given an element in /Ig,

it is of the form a/s with a™/s" = (a/s)" € Ig for some n € N, a € A and s € S.
This means that a™ € I and a™/s™ = b/t for some b € A, t € S and hence there is
r € S with r(a"t — bs") = 0. In particular (rat)” € I so rat € /I, meaning that

a/s =rat/rst € (\/f)s This proves v/Ig C (\/f)s

Since the ring structure is the one inherited from Ag, they indeed are also equal
when considered as rings.

2. We show nil(Ag) = nil(A)Ag.

The equality as sets is easily seen. Given an element in nil(Ag), it is of the
form a/s with a € A and s € S with a"/s" = (a/s)” = 0/1 for some n € N.
This means that there is ¢ € S with ta™ = 0, in particular (ta)” = 0. Hence
a/s = at/st = (at)(1/st) € nil(A)Ag. This proves nil(Ag) C nil(A)Ag. Given an
element in nil(A)Ag, it is of the form b(a/s) with b,a € A and s € S with 0" =0
for some n € N. Then ((ba)/s)™ = (b™a™)/s™ = 0 so b(a/s) = (ba)/s € nil(Ag).
This proves nil(A)Ag C nil(Ag).

As before, the ring structure is the one inherited from Ag so they indeed are also
equal when considered as rings.



Exercise 5

Let A be a ring and S a multiplicative subset. Let M be a projective A module. Show
that Mg is a projective Ag module.
Consider the diagram of Ag modules and As homomorphisms:

C—>D——=0

where we are given g : C' — D surjective, f : Mg — D any morphism, we want
to find h : Mg — D a morphism making the diagram commute. For this, we first
restrict all the modules to the induced action as A modules and all the given maps to
the induced action as A homomorphisms. This yields the diagram of A modules and A
homomorphisms:

M

I~7, Ve
i
#

C——D——0

where we identify M as the elements m/1 € Mg, that is, f(m) = f(m/1) for every m €
M. Since M is a projective A module, we obtain that there exists an A homomorphism
h : M — C making the diagram of A modules and A homomorphisms commute. We

define now:
h Mg — C

h(m/s) +— s 'h(m)

which is well defined since h(m) € C, we can multiply by s~ in the structure of Ag

module and if m/s = n/t for some m,n € M, s,t € S, then there exists r € S with
r(mt — sn) = 0. Applying h we obtain r(th(m) — sh(n)) = 0, meaning that h(m)/s =
h(n)/t. This is an Ag homomorphism since:

h (m + m> = h (”W”> = (s8')"Yh(ms' + sm') = (ss') " h(ms')

s s ss!

n (88/)_1il(5m/) — 3_1B(m) + 5/_1}~z(m/) =h (%) +h <T:’/>

am’ B am’ o n-1% PN B - N m’
h(ss’) = h(SS,)(ss) h(am') = as™ s h(m)fgh -

for every m,m’ € M, s,s' € S, a € A. We have abused that & is an A module homo-
morphism. Moreover, h also makes the diagram of Ag modules and Ag homomorphisms
commute:

m

m 1= 1.7 _
gh () = g(s™ h(m)) = s~ gh(m) = s~ f(m) = f (=)
for every m € M, s € S. Here we have used that g and f are Ag homomorphisms and
that gh = f when restricted to M. Thus Mg is a projective Ag module, as desired.
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