
Introduction to Commutative and Homological Algebra -

Homework 4

Pablo Sánchez Ocal

November 17th, 2017



Exercise 1

Let A be a ring with ideals I1, . . . , In with I1 ∩ · · · In = (0). Prove that if A/Ij is
noetherian for each 1 ≤ j ≤ n, then A is noetherian.

Consider the map:

f : A −→ A/I1 ⊕ · · · ⊕A/In
a 7−→ (a, · · · , a)

which is clearly a ring homomorphism since it is product of projections. Moreover, it
is injective since if f(a) = (a, . . . , a) = (0, . . . , 0) then a = 0 when seen in Ij for every
1 ≤ j ≤ n, this means a ∈ Ij for every 1 ≤ j ≤ n. Hence a ∈ I1 ∩ · · · In = (0) so a = 0.

The above is seeing them as rings. However, given I an ideal of A we can see A/I as
an A module by the induced multiplication am = am for all a ∈ A, m ∈ A/I (the module
properties hold because of the subring structure of A/I). Suppose further that A/I is
noetherian as a ring. This means that if J ⊆ A/I is an ideal, it is finitely generated
over A/I, say J ∼= A/Ig1⊕ · · · ⊕A/Igk with g1, . . . , gk ∈ A. Notice that A/I ∼= A1 as A
modules, hence we obtain that J ∼= A1g1 ⊕ · · · ⊕A1gk ∼= Ag1 ⊕ · · · ⊕Agk as A modules,
and thus J is finitely generated. Thus A/I is noetherian as A-module.

Since we are in the situation above, and the ring homomorphism f preserves the
natural A module structure on A/I1 ⊕ · · · ⊕ A/In given by point-wise multiplication
(again, using the induced ring structure), we obtain the short exact sequence of A
modules:

0 −→ A −→ A/I1 ⊕ · · · ⊕A/In −→ Coker(f) −→ 0

where the middle one is noetherian. This means that the side ones are also noetherian
as A modules. In particular, A is then noetherian as a ring, as desired.
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Exercise 2

Let A, B, C be rings, let φ : A −→ C, ψ : B −→ C ring homomorphisms. Prove that if
A, B are noetherian and φ, ψ are surjective then the fiber product A×CB is noetherian.

Consider the diagram:

A×C B
πA //

πB
��

A

φ
��

B
ψ

// C

where πA : A×C B −→ A and πB : A×C B −→ B are the projections into the first and
second component respectively. We have that Ker(πA) and Ker(πB) are ideals of A×CB,
and Ker(πA) ∩Ker(πB) = {(a, b) ∈ A×C : a = πA(a, b) = 0 = πB(a, b) = b} = {(0, 0)}.

Let a ∈ A, then φ(a) ∈ C, and since ψ is surjective we have that there exists b ∈ B
with ψ(b) = φ(a), meaning that (a, b) ∈ A×C B and πA(a, b) = a. Thus πA is surjective,
meaning that by the First Isomorphism Theorem A ×C B/Ker(πA) ∼= Im(πA) = A is
noetherian as a ring. Analogously, we obtain that πB is surjective and A×CB/Ker(πB) ∼=
Im(πB) = B is noetherian as a ring.

We are now satisfying the hypothesis of Exercise 1 above. Applying it, we obtain
that A×C B is noetherian, as desired.
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Exercise 3

Let A, B be rings, S = {(1, 1), (1, 0)} a multiplicative subset of A × B. We show that
(A×B)S ∼= A.

To prove this, let C be another ring and f : A×B −→ C be any ring homomorphism
with f(s) invertible in C for every s ∈ S, we consider the diagram:

A×B φ //

f
��

A

h{{
C

where we want to fix a ring homomorphism φ : A×B −→ A and given f , find an unique
ring homomorphism h : A −→ C making the diagram commute.

Fixing f : A × B −→ C as in the diagram, we first notice that (1, 0)(a, b) −
(1, 1)(a, 0) = 0 for every b ∈ B, meaning that f(a, 0) = f((1, 1)(a, 0)) = f((1, 0)(a, b)) =
f(1, 0)f(a, b) for every b ∈ B. Thus for every b, b′ ∈ B we have f(1, 0)f(a, b) = f(a, 0) =
f(1, 0)f(a, b′). Since (1, 0) ∈ S we have f(1, 0) invertible in C, so we multiply to
the left by its inverse and obtain f(a, b) = f(a, b′) for every b, b′ ∈ B. In particular,
f(1, 1) = f(1, 0). This allows us to define φ = πA : A×B −→ A the natural projection,
that is, φA(a, b) = a for every (a, b) ∈ A×B, which is clearly a ring homomorphism:

A×B πA //

f
��

A

h{{
C

Define:
h : A −→ C

a −→ f(a, 0)

which is a ring homomorphism since f is a ring homomorphism. Notice how this makes
the diagram commute since f(a, b) = f(a, 0) = h(a) = h(πA(a, b)) for every (a, b) ∈
A × B. Moreover such an h is unique, since if we have g : A −→ C such that f = gπA
then g(a) = g(πA(a, 0)) = f(a, 0) = h(a) for every a ∈ A, meaning that g = h. Hence
A equipped with πA : A × B −→ A satisfies the Universal Property of the localization,
meaning that (A×B)S ∼= A, as desired.
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Exercise 4

Let A a ring, S a multiplicative subset.

1. Let I an ideal of A, we show
√
IS =

(√
I
)
S

.

The equality as sets is easily seen. Given an element in
(√

I
)
S

, it is of the form a/s

with a ∈
√
I and s ∈ S, that is, an ∈ I for some n ∈ N, so (a/s)n = an/sn ∈ IS ,

meaning that a/s ∈
√
IS . This proves

(√
I
)
S
⊆
√
IS . Given an element in

√
IS ,

it is of the form a/s with an/sn = (a/s)n ∈ IS for some n ∈ N, a ∈ A and s ∈ S.
This means that an ∈ I and an/sn = b/t for some b ∈ A, t ∈ S and hence there is
r ∈ S with r(ant − bsn) = 0. In particular (rat)n ∈ I so rat ∈

√
I, meaning that

a/s = rat/rst ∈
(√

I
)
S

. This proves
√
IS ⊆

(√
I
)
S

.

Since the ring structure is the one inherited from AS , they indeed are also equal
when considered as rings.

2. We show nil(AS) = nil(A)AS .

The equality as sets is easily seen. Given an element in nil(AS), it is of the
form a/s with a ∈ A and s ∈ S with an/sn = (a/s)n = 0/1 for some n ∈ N.
This means that there is t ∈ S with tan = 0, in particular (ta)n = 0. Hence
a/s = at/st = (at)(1/st) ∈ nil(A)AS . This proves nil(AS) ⊆ nil(A)AS . Given an
element in nil(A)AS , it is of the form b(a/s) with b, a ∈ A and s ∈ S with bn = 0
for some n ∈ N. Then ((ba)/s)n = (bnan)/sn = 0 so b(a/s) = (ba)/s ∈ nil(AS).
This proves nil(A)AS ⊆ nil(AS).

As before, the ring structure is the one inherited from AS so they indeed are also
equal when considered as rings.
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Exercise 5

Let A be a ring and S a multiplicative subset. Let M be a projective A module. Show
that MS is a projective AS module.

Consider the diagram of AS modules and AS homomorphisms:

MS

h

}}
f
��

C g
// D // 0

where we are given g : C −→ D surjective, f : MS −→ D any morphism, we want
to find h : MS −→ D a morphism making the diagram commute. For this, we first
restrict all the modules to the induced action as A modules and all the given maps to
the induced action as A homomorphisms. This yields the diagram of A modules and A
homomorphisms:

M
h̃

~~
f̃
��

C
g̃
// D // 0

where we identify M as the elements m/1 ∈MS , that is, f̃(m) = f(m/1) for every m ∈
M . Since M is a projective A module, we obtain that there exists an A homomorphism
h̃ : M −→ C making the diagram of A modules and A homomorphisms commute. We
define now:

h : MS −→ C

h(m/s) 7−→ s−1h̃(m)

which is well defined since h̃(m) ∈ C, we can multiply by s−1 in the structure of AS
module and if m/s = n/t for some m,n ∈ M , s, t ∈ S, then there exists r ∈ S with
r(mt − sn) = 0. Applying h̃ we obtain r(th̃(m) − sh̃(n)) = 0, meaning that h̃(m)/s =
h̃(n)/t. This is an AS homomorphism since:

h

(
m

s
+
m′

s′

)
= h

(
ms′ + sm′

ss′

)
= (ss′)−1h̃(ms′ + sm′) = (ss′)−1h̃(ms′)

+ (ss′)−1h̃(sm′) = s−1h̃(m) + s′−1h̃(m′) = h
(m
s

)
+ h

(
m′

s′

)
h

(
a

s

m′

s′

)
= h

(
am′

ss′

)
= (ss′)−1h̃(am′) = as−1s′−1h̃(m′) =

a

s
h

(
m′

s′

)
for every m,m′ ∈ M , s, s′ ∈ S, a ∈ A. We have abused that h̃ is an A module homo-
morphism. Moreover, h also makes the diagram of AS modules and AS homomorphisms
commute:

gh
(m
s

)
= g(s−1h̃(m)) = s−1gh̃(m) = s−1f(m) = f

(m
s

)
for every m ∈ M , s ∈ S. Here we have used that g and f are AS homomorphisms and
that gh̃ = f when restricted to M . Thus MS is a projective AS module, as desired.
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