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Exercise 1

Let A, B be commutative rings.

1. Show that Spec(A × B) = Spec(A)
∐

Spec(B) as sets. For this, we proceed by
double inclusion:

⊇) Let P ∈ Spec(A), then P × B ∈ Spec(A × B) since being prime lies in the
structure of P . Similarly if we let Q ∈ Spec(B), then A×Q ∈ Spec(A×B). Hence
Spec(A)

∐
Spec(B) ⊆ Spec(A × B) since the two types of prime ideals of A × B

that we found are disjoint.

⊆) Let I ∈ Spec(A×B), say I = I1×I2. Then A×B/I1×I2 is an integral domain,
and:

A×B

I1 × I2
∼=

A

I1
× B

I2

so for the right hand side to be an integral domain we need either I1 = A or
I2 = B. If both of these fail, then there exist a non zero element x ∈ A/I1
and a non zero element y ∈ B/I2, meaning that (x, 0), (0, y) ∈ A/I1 × B/I2 and
(x, 0)(0, y) = (0, 0), a contradiction. Hence we either have I = I1×B or I = A×I2.
Since I is prime, we must have in the first case that I1 and in the second case that I2
is prime, so I ∈ Spec(A) in the first case and I ∈ Spec(B) in the second case. Since
these two cases are clearly disjoint, we have Spec(A×B) ⊆ Spec(A)

∐
Spec(B).

Thus Spec(A×B) = Spec(A)
∐

Spec(B) as desired.

2. Show that dim(A×B) = max{dim(A),dim(B)}.
Consider a strictly decreasing chain of prime ideals of A × B, say P0 ) · · · ) Pr.
By the discussed above, P0 = PA

0 ×B or P0 = A× PB
0 , so all the elements in the

sequence are of the form PA
i × B, i = 1, . . . , r in the first case and of the form

A×PB
i , i = 1, . . . , r in the second case. Hence they define PA

0 ) · · · ) PA
r a strictly

decreasing chain of prime ideals of A or PB
0 ) · · · ) PB

r a strictly decreasing chain
of prime ideals of B. Thus by definition dim(A×B) ≤ max{dim(A), dim(B)}.
Similarly, given a strictly decreasing chain of prime ideals of A, say PA

0 ) · · · ) PA
r ,

by the discussed above they define PA
0 × B ) · · · ) PA

r × B a strictly decreas-
ing chain of prime ideals of A × B. Thus by definition dim(A) ≤ dim(A ×
B). A completely analogous reasoning for B yields dim(B) ≤ dim(A × B), so
max{dim(A), dim(B)} ≤ dim(A×B).

Thus dim(A×B) = max{dim(A),dim(B)} as desired.
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Exercise 2

Let f : A −→ B be a ring homomorphism and af : Spec(B) −→ Spec(A) the induced
map. Show that if I is an ideal of A, then (af)−1(V (I)) = V (f(I)B).

Notice that as sets we have:

(af)−1(V (I)) = {Q ∈ Spec(B) :a f(Q) ∈ V (I)} = {Q ∈ Spec(B) : f−1(Q) ∈ V (I)}
= {Q ∈ Spec(B) : I ⊆ f−1(Q)} = {Q ∈ Spec(B) : f(I) ⊆ Q}
= {Q ∈ Spec(B) : f(I)B ⊆ Q} = V (f(I)B)

where we have used that f(I) ⊆ Q if and only if I ⊆ f−1(Q), that since Q is an ideal
then f(I) ⊆ Q implies f(I)B ⊆ QB = Q, and conversely since 1 ∈ B having f(I)B ⊆ Q
implies f(I) ⊆ Q.
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Exercise 3

Let f : A −→ B be a homomorphism of noetherian rings and af : Spec(B) −→ Spec(A)
the induced map. Let M be a finitely generated B-module, considered to be an A-module
via f . Show that af(AssB(M)) = AssA(M). We first notice that since A and B are
noetherian we have AssA(M) 6= ∅ 6= AssB(M), and then proceed by double inclusion.
⊆) Let P ∈ AssB(M), so it is prime and P = annB(x) for certain x ∈ M . Thus

f−1(P ) is prime, we see that f−1(P ) = annA(x) by double inclusion. Let s ∈ f−1(P ),
then there is t ∈ P with f(t) = s, so s · x = f(t)x = sx = 0, so s ∈ annA(x). Let
t ∈ annA(x), this means that 0 = t ·x = f(t)x hence f(t) ∈ annB(x) = P so t ∈ f−1(P ).
This means that af(P ) = f−1(P ) = f−1(annB(x)) = annA(x) ∈ AssA(M) since it is
prime.
⊇) There are a few possible approaches to this inclusion. Let Q ∈ AssA(M), so it is

prime and Q = annA(x) for certain x ∈M .
The first two naive candidates for ideals in B are f(Q) and annB(x). However, the

first one fails to be prime since f does not need to be surjective, and the second one
fails since we cannot guarantee that it is prime (we know that it can be contained in
a maximal element of {annB(z) : z ∈ M, z 6= 0} and that this maximal one is prime).
If we try fixing this last argument by setting annB(x) ⊆ annB(y) with annB(y) the
maximal ideal mentioned above, hence prime, then by a similar argument as in the
inclusion above we can see that f−1(annB(y)) ⊇ annA(x), but we cannot guarantee
that f−1(annB(y)) ⊆ annA(x). We may also take a more categorical approach, allowing
enough tools from Algebraic Geometry: the functor a : Ab −→ AffSch from the category
of commutative rings to the category of affine schemes is an equivalence of categories[3,
Tag 01HX]. Moreover, both are small categories having all its elements being sets. This
immediately yields that a preserves the set theoretical properties, and it should mean
that af(AssB(M)) ⊂ AssA(M). Using the inverse functor, it would seem that the other
inclusion would follow. However, these approaches do not use all the hypothesis and
thus it is not a surprise that I could not make them work.

A more elaborate approach is to consider S = A \ Q, a multiplicative set since Q
is prime, and since x is not zero (otherwise Q wouldn’t be proper) we can consider
x/1 ∈ MS which is not zero. Hence annBS

(x/1) is an ideal, and as we reasoned in the
previous paragraph, it is contained in some associated prime T ∈ AssBS

(MS). Since we
know that prime ideals of BS are in a one to one correspondence with prime ideals of B
that do not contain S, we can write T = PS with P a prime ideal of B not containing
S. Since B is noetherian and M is finitely generated, we know that AssBS

(MS) =
AssB(M) ∩ Spec(BS), and the proof of this equality of sets relies on the one to one
correspondence PS ↔ P , meaning that P ∈ AssB(M). Once we are here, writing
P = annB(y), knowing that annBS

(x/1) ⊆ PS and using the one to one correspondence
we have af(P ) = f−1(P ) ⊇ Q by an analogous argument to one done above. However, I
could not rigorously see why af(P ) = f−1(P ) ⊆ Q; it seems reasonable because we are
using all the hypothesis on Q to find P , and we would like to say that the one to one
correspondence PS ↔ P tells us that y = x, but this doesn’t seem rigorous.
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Exercise 4

Let k be a field and A = k[x, y].

1. Show that the ideal (x2, y) of A is primary and conclude that (x2, xy) = (x)∩(x2, y)
is a primary decomposition of (x2, y).

Note that A/(x2, y) ∼= k ⊕ kx as vector spaces, which only has x as zero divisors.
Since x2 = 0, x is nilpotent and hence (x2, y) is primary. For a similar reason,
A/(x) ∼= k[y] as vector spaces, and this has no zero divisors (and hence all its zero
divisors are nilpotent since it is an empty condition), so (x) is primary.

Moreover, the double inclusion in (x2, xy) = (x)∩(x2, y) is clear; p ∈ (x2, xy) means
p = x2px2 +xypxy ∈ (x)∩(x2, y) for some px2 , pxy ∈ k[x, y], while p ∈ (x2, y) means
p = x2px2 + ypy for some px2 , py ∈ k[x, y], so also having p ∈ (x) means that we
need py to have x as common factor in all its terms, so p = x2px2 +yxp̃y ∈ (x2, xy)
where py = xp̃y for some p̃y ∈ k[x, y].

Hence (x2, xy) = (x) ∩ (x2, y) is a decomposition into primary ideals, so by defini-
tion a primary decomposition.

2. Find
√

(x2, y). Notice that x2 ∈ (x2, y) so x ∈
√

(x2, y) and y ∈ (x2, y) so
y ∈

√
(x2, y). Thus since

√
(x2, y) is an ideal, this guarantees that A \ k =

k[x, y] \ k ∈
√

(x2, y). Since every element in (x2, y) has a variable in all of
its terms, every power of it will have a variable in all of its terms and hence
there are no constant terms in

√
(x2, y) so k ∩

√
(x2, y) = ∅. This means that√

(x2, y) = k[x, y] \ k =
(
⊕∞i=1kx

i
)
⊕
(
⊕∞i=1ky

i
)

are the ring and the vector space
structure respectively.
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Exercise 5

Let k be a field and A = k[x, y, z]/(xy − z2). Let I = (x, z) and J = I2 = (x2, xz, z2)
ideals of A. Show that I is prime,

√
J = I and J is not primary.

To see that I is prime, we consider:

A

I
∼=

A = k[x, y, z]/(xy − z2)

(x, z)
∼=

k[x, y, z]

(x, z)
∼= k[y] ∼= k[y]

since quotient by xy − z2 tells us that we can simplify all terms in z of power two or
greater as terms of a single power of z and powers of xy, but it does not apply restrictions
to x or y. Thus when we quotient further by (x, z) the relation transforms into xy − z2

which is always satisfied since it is identically zero in A/I, meaning that k[y] ∼= k[y]
indeed. Since this is an integral domain, we have that I is prime.

To check that
√
J = I, we proceed by double inclusion. Let p ∈

√
J , this means

pn ∈ J = I2 ⊆ I for some n ∈ N. Since I is prime, we have that p ∈ I. Let p ∈ I, then
p2 ∈ I2 = J so p ∈

√
J .

To see that J is not primary, consider the ring A/J . Notice that x and y are both
non-zero since no relationship cancels them out. Moreover, we have that xy = z2 = 0 in
A/J so both x and y are zero divisors. We have that x2 = 0 so x is nilpotent. However,
there is no relationship expressing anything about powers of y, so we have that it is not
a nilpotent element of A/J , and thus J is not primary.
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Exercise 6

Let k be a field, A = k[x, y, z], P1 = (x, y), P2 = (x, z), P3 = (x, y, z), I = P1P2. Show
that I = P1 ∩ P2 ∩ P 2

3 is a primary decomposition of I.
First, we check the equality. We have I = (x, y)(x, z) = (x2, xz, yx, yz) and P 2

3 =
(x, y, z)(x, y, z) = (x2, xy, xz, y2, yz, z2), meaning that:

P1 ∩ P2 ∩ P 2
3 = (x, y) ∩ (x, z) ∩ (x2, xy, xz, y2, yz, z2)

= (x, y) ∩ (x2, xy, xz, yz, z2) ∩ (x, z) = (x2, xy, xz, yz) ∩ (x, y) ∩ (x, z)

= (x2, xy, xz, yz) = I

since intersecting (x2, xy, xz, yz, z2) with (x, z) removes the possibility of having y2, and
then intersecting with (x, y) removes the possibility of having z2, and what remains is
exactly I.

Second, we check that these are primary. Notice A/P1
∼= k[z] and A/P2

∼= k[y],
which both are integral domains and thus do not have zero divisors, so P1 and P2 are
primary. Moreover:

A

P 2
3

∼=
k[x, y, z]

(x2, xy, xz, y2, yz, z2)
∼=

k ⊕ kx⊕ ky ⊕ kz

(xy, xz, yz)

where the last equality is as vector spaces, remembering the multiplicative structure that
allows us to take quotient. The quotient by the relations xy, xz, yz means that x, y,
z are zero divisors, and they are the “basic” building blocks of zero divisors, that is,
any zero divisor in A/P 2

3 will be multiplications and sums of x, y, z. These three are
nilpotent since x2, y2, z2 ∈ P 2

3 meaning that x2 = y2 = z2 = 0. Since multiplications
and sums preserve being nilpotent (a nilpotent element multiplied by anything is still
nilpotent and a finite sum of nilpotents is nilpotent), knowing that x, y, z are nilpotent
is enough to obtain that all zero divisors in A/P 2

3 are nilpotent. Hence P 2
3 is primary.
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