Representations of Finite Groups - Homework 1
Pablo Sánchez Ocal
January 31st, 2018

Exercise 1.1.4.

Show that each multiplicative character of G contains the commutator subgroup $[G, G]$ in its kernel.

Since $[G, G]$ is generated by elements of the for $x y x^{-1} y^{-1}$ for $x, y \in G$, given ρ : $G \longrightarrow K^{*}$ a multiplicative character of G, it is enough to check that $\rho\left(x y x^{-1} y^{-1}\right)=1$ for every $x, y \in G$. This is clear because:

$$
\rho\left(x y x^{-1} y^{-1}\right)=\rho(x) \rho(y) \rho\left(x^{-1}\right) \rho\left(y^{-1}\right)=\rho(x) \rho\left(x^{-1}\right) \rho(y) \rho\left(y^{-1}\right)=\rho(1)=1
$$

since K being a field ensures commutativity and ρ being a homomorphism ensures the rest of equalities. This proves the desired result.

Exercise 1.1.9.

Show that $\mathrm{M}_{n}(\mathbb{K})$ has no two sided ideals except for the two obvious ones, namely $\{0\}$ and $\mathrm{M}_{n}(\mathbb{K})$.

It is a standard algebra fact (see [1, Chapter III, Section 2, Exercise 8]) that for any commutative ring with identity R the two sided ideals of $\mathrm{M}_{n}(R)$ are of the form $\mathrm{M}_{n}(I)$ with I being and ideal of R. Applying this, since \mathbb{K} is a field it only has ideals $\{0\}$ and \mathbb{K} it means that $\mathrm{M}_{n}(\mathbb{K})$ has only as two sided ideals $\{0\}$ and $\mathrm{M}_{n}(\mathbb{K})$ respectively, as we desired.

Exercise 1.1.15.

Identify 1_{g} with the function whose value at g is 1 and which vanishes everywhere else. Under this identification, show that the two definitions of the group algebra given are equivalent: the first is that $K[G]$ has as K vector space the basis $\left\{1_{g}: g \in G\right\}$ and multiplication $1_{g} 1_{h}=1_{g h}$ (we will denote this as $K[G]_{1}$), the second is that $K[G]=$ $\{f: G \longrightarrow K\}$ as K vector space with multiplication the convolution $f_{1} * f_{2}(g)=$ $\sum_{x, y \in G \mid x y=g} f_{1}(x) f_{2}(y)$ (we will denote this as $K[G]_{2}$).

We define:

$$
\varphi: \begin{array}{clc}
K[G]_{1} & \longrightarrow & \longrightarrow[G]_{2} \\
1_{g} & \longrightarrow & f_{g}
\end{array} \quad \text { with } \quad f_{g}(x)=\left\{\begin{array}{l}
1 \text { if } x=g \\
0 \text { if } x \neq g
\end{array}\right.
$$

and then extend by linearity, which is well defined since we are in a K vector space. Now φ is a K algebra homomorphism since by definition $\varphi\left(1_{g}+1_{h}\right)=\varphi\left(1_{g}\right)+\varphi\left(1_{h}\right)$ for all $g, h \in G$ and $\varphi\left(k 1_{g}\right)=k \varphi\left(1_{g}\right)$ for all $k \in K$ and $g \in G$, and moreover for every $g, h \in G$ we have:

$$
\varphi\left(1_{g} 1_{h}\right)=\varphi\left(1_{g h}\right)=f_{g h}=f_{g} * f_{h}=\varphi\left(1_{g}\right) * \varphi\left(1_{h}\right)
$$

where the only equality that needs additional justification is the third, which holds because for every $x \in G$:

$$
f_{g} * f_{h}(x)=\sum_{\substack{y, z \in G \\
y z=x}} f_{g}(y) f_{h}(z)=\left\{\begin{array}{l}
1 \text { if } y=g \text { and } z=h, \\
0 \text { if } y \neq g \text { or } z \neq h,
\end{array} \quad=\left\{\begin{array}{l}
1 \text { if } x=g h, \\
0 \text { if } x \neq g h
\end{array}=f_{g h}(x)\right.\right.
$$

We define:

$$
\begin{array}{rllc}
\phi: \quad K[G]_{2} & \longrightarrow & K[G]_{1} \\
f_{g} & \longrightarrow & \sum_{g \in G} f(g) 1_{g}
\end{array}
$$

and then extend by linearity. This extension is well defined since we are in a K vector space, and ϕ is indeed defined over $K[G]_{2}$ since given $x \in G$ we have $f(x)=$ $\sum_{g \in G} f(g) f_{g}(x)$ a decomposition of f in terms of f_{g} for $g \in G$. Now ϕ is a K algebra homomorphism since by definition $\phi\left(f_{g}+f_{h}\right)=\phi\left(f_{g}\right)+\phi\left(f_{h}\right)$ for all $g, h \in G$ and $\phi\left(k f_{g}\right)=k \phi\left(f_{g}\right)$ for all $k \in K$ and $g \in G$, and moreover for every $g, h \in G$ we have:

$$
\begin{aligned}
\phi\left(f_{g} * f_{h}\right) & =\sum_{l \in G} f_{g} * f_{h}(l) 1_{l}=\sum_{l \in G} \sum_{\substack{x, y \in G \\
x y=l}} f_{g}(x) f_{h}(y) 1_{l} \\
& =f_{g}(g) f_{h}(h) 1_{g h}=1_{g h}=1_{g} 1_{h}=\phi\left(f_{g}\right) \phi\left(f_{h}\right)
\end{aligned}
$$

where the only equality that may need additional justification is the third, which results noticing that by definition of f_{g} and f_{h} we have that $f_{g}(x) f_{h}(y)$ is always zero except when $x=g$ and $y=h$.

Notice that φ and ϕ are inverses from each other:

$$
\varphi\left(\phi\left(f_{g}\right)\right)=\varphi\left(1_{g}\right)=f_{g}, \quad \phi\left(\varphi\left(1_{g}\right)\right)=\phi\left(f_{g}\right)=1_{g}
$$

and thus they are bijective and hence the definitions are isomorphic, hence equivalent, as desired.

Exercise 1.1.16.

Let $n>1$ be an integer. Show that $K\left[\mathbb{Z}_{n}\right]$ is isomorphic to $K[t] /\left(t^{n}-1\right)$ as an algebra.
We define:

$$
\left.\begin{array}{rl}
\phi: K[t] /\left(t^{n}-1\right) & \longrightarrow \\
t^{m} & \longrightarrow
\end{array} 1_{m}\right]
$$

and then extend by linearity. This extension is well defined since we are in a K vector space. Thus notice that by definition we have $\phi\left(t^{m}+t^{l}\right)=\phi\left(t^{m}\right)+\phi\left(t^{l}\right)$ for all $m, l \in \mathbb{N}$ and $\phi\left(k t^{m}\right)=k \varphi\left(t^{m}\right)$ for all $k \in K$ and $m \in \mathbb{Z}$, meaning that $\phi\left(t^{n}-1\right)=\phi\left(t^{n}\right)-$ $\phi(1)=1_{n}-1_{0}=1_{0}-1_{0}=0$ since $n \equiv 0$ in \mathbb{Z}_{n}. Thus ϕ is indeed defined over $K[t] /\left(t^{n}-1\right)$ since given $p, q \in K[t]$ such that $p=q+r\left(t^{n}-1\right)$ for some $r \in K$ we have $\phi(p)=\phi\left(q+r\left(t^{n}-1\right)\right)=\phi(q)+r \phi\left(t^{n}-1\right)=\phi(q)$. Moreover ϕ is a K algebra homomorphism since for every $m, l \in \mathbb{N}$ we have:

$$
\phi\left(t^{m} t^{l}\right)=\phi\left(t^{m+l}\right)=1_{m+l}=1_{m} 1_{l}=\phi\left(t^{m}\right) \phi\left(t^{l}\right)
$$

where the notation of \mathbb{Z}_{n} being additive explains the sums instead of products.
Considering the above, notice that $K[t] /\left(t^{n}-1\right)$ has as basis the ordered set $\left\{1, t, \ldots, t^{n-1}\right\}$ and $K\left[\mathbb{Z}_{n}\right]$ has as basis the ordered set $\left\{1_{0}, 1_{1}, \ldots, 1_{n-1}\right\}$. Moreover, ϕ establishes a one to one correspondence between them (preserving the order), hence it is injective and surjective, and thus it is a K algebra isomorphism. This proves the desired result.

Exercise 1.1.18.

If $K[G]$ is viewed as the space of K valued functions on G, we prove that $(L(h) f)(x)=$ $f\left(h^{-1} x\right)$ and $(R(h) f)(x)=f(x h)$ for all $f \in K[G]$ and $h, x \in G$.

Notice:

$$
\begin{aligned}
(L(h) f)(x) & =L(h)\left(\sum_{g \in G} f(g) f_{g}\right)(x)=\left(\sum_{g \in G} f(g) f_{h g}\right)(x) \\
& =\left(\sum_{g \in G} f\left(h^{-1} g\right) f_{g}\right)(x)=f\left(h^{-1} x\right), \\
(R(h) f)(x) & =R(h)\left(\sum_{g \in G} f(g) f_{g}\right)(x)=\left(\sum_{g \in G} f(g) f_{g h^{-1}}\right)(x) \\
& =\left(\sum_{g \in G} f(g h) f_{g}\right)(x)=f(x h),
\end{aligned}
$$

proving what we desired.

Exercise 1.2.4.

Let $G=\mathbb{Z}_{2}$ and K a field of characteristic 2 . Show that the subspace of $K[G]$ spanned by $1_{0}+1_{1}$ is the only non trivial proper invariant subspace for the left regular representation of G.

As we proved in class, $K[G]_{0}$ has an invariant complement in $K[G]$ with the left regular representation if and only if the characteristic of the field does not divide the order of the group. Since 2 is both the order of G and the characteristic of K, we have that $K[G]_{0}$ does not have an invariant complement and it is 1 dimensional. Since $K[G]$ has dimension 2, any other 1 dimensional invariant subspace of $K[G]$ not intersecting $K[G]_{0}$ will be an invariant complement of the latter, and thus there are no such spaces. Moreover $w=1_{0}+1_{1} \in K[G]_{0}$ since $\sum_{g \in G} w(g)=w(0)+w(1)=1+1=0$ since K has characteristic 2, and since $\langle w\rangle_{K}$ is 1 dimensional we must have that $\langle w\rangle_{K}=K[G]_{0}$ and thus by the above it is the only proper invariant subspace that is not trivial.

Exercise 1.2.5.

Show that if every representation of a group is a sum of 1 dimensional invariant subspaces, then the group is abelian.

We will use the left regular representation and the fact that each multiplicative character of G contains $[G, G]$ in its kernel. If $K[G]$ is a sum of 1 dimensional invariant subspaces, this means that $K[G] \equiv V_{1} \oplus \stackrel{n}{\bullet} \oplus V_{n} \equiv K \oplus \stackrel{n}{\bullet} \oplus K$ as K vector spaces ($V_{i} \equiv K$ as K vector spaces for $i=1, \ldots, n$), and thus $L: G \longrightarrow \mathrm{GL}(K[G])$ can be decomposed into $\left.L\right|_{V_{i}}: G \longrightarrow \mathrm{GL}\left(V_{i}\right) \cong K^{*}$ because V_{i} is 1 dimensional for $i=1, \ldots, n$. Each of this restrictions is a multiplicative character, and thus its kernel contains $[G, G]$. In particular by this decomposition $[G, G]$ is contained in the kernel of L. Thus fixing $g, h \in G$ we have for all $x \in G$:

$$
1_{g^{-1} h^{-1} g h x}=L\left(g^{-1} h^{-1} g h\right)\left(1_{x}\right)=\operatorname{id}_{K[G]}\left(1_{x}\right)=1_{x}
$$

meaning that multiplying by $1_{h g}$ on both sides we obtain $1_{g h} 1_{x}=1_{h g} 1_{x}$ for all $x \in G$, so in particular using the neutral element of G we have that $1_{g h}=1_{h g}$. Since this is an equality as indicators, they both take value 1 in the same value, and since the left is $g h$ and the right is $h g$, we obtain that $g h=h g$ for any two $g, h \in G$, meaning that G is commutative, as desired.

Exercise 1.2.8.

Every simple module of a finite dimensional K algebra is finite dimensional.
Let (ρ, V) be a simple module of R a finite dimensional K algebra with $\rho: R \longrightarrow$ $\operatorname{End}_{K}(V)$. Since R is finite dimensional, we can find $\left\{v_{i}\right\}_{i=1}^{n}$ a K basis as vector space. We wish to find a generating set of V using this basis: our only option is to use ρ and apply the resulting endomorphisms to a non zero vector of V. Let $v \in V$ be a non zero vector, which exists can because V is simple (and thus not zero), consider $\left\langle\left\{\rho\left(v_{i}\right) v\right\}_{i=1}^{n}\right\rangle_{K}$. Notice that this is invariant since for any $i, j=1, \ldots, n$ we have:

$$
\rho\left(v_{j}\right)\left(\rho\left(v_{i}\right) v\right)=\rho\left(v_{j} v_{i}\right) v=\sum_{l=1}^{n} k_{l} \rho\left(v_{l}\right) v \in\left\langle\left\{\rho\left(v_{i}\right) v\right\}_{i=1}^{n}\right\rangle_{K}
$$

where we have used that since $\left\{v_{i}\right\}_{i=1}^{n}$ is a K basis of R, we may write $v_{j} v_{i}=\sum_{l=1}^{n} k_{l} v_{l}$ with $k_{l} \in K$ for all $l=1, \ldots, n$, and indeed it is enough to check only the basis of R since the rest follows by linearity. Thus $\left\langle\left\{\rho\left(v_{i}\right) v\right\}_{i=1}^{n}\right\rangle_{K}$ is an invariant subspace and it is not zero since $\rho\left(1_{R}\right) v=v$ which is not zero. Since V is simple, we must have that $\left\langle\left\{\rho\left(v_{i}\right) v\right\}_{i=1}^{n}\right\rangle_{K}=V$ and thus we found a generating set for V of size n, meaning that V has dimension n or less, in particular it is finite dimensional.

Exercise 1.2.12.

The kernel of an intertwiner is an invariant subspace of its domain, and the image is an invariant subspace of its codomain.

Denote $\left(\rho_{1}, V_{1}\right),\left(\rho_{2}, V_{2}\right)$ and $T: V_{1} \longrightarrow V_{2}$ the representations of a group G and the intertwiner. We have $\operatorname{Ker}(T) \subset V_{1}$, and given $v \in \operatorname{Ker}(T)$ then for every $g \in G$ we have $T\left(\rho_{1}(g) v\right)=\rho_{2}(g) T v=\rho_{2}(0)=0$ and thus $\rho_{1}(g) v \in \operatorname{Ker}(T)$, so it is indeed an invariant subspace. We have $\operatorname{Im}(T) \subset V_{2}$, and given $v \in \operatorname{Im}(T)$ then there is $w \in V_{1}$ with $T(w)=v$ and then for every $g \in G$ we have $\rho_{2}(g) v=\rho_{2}(g) T w=T\left(\rho_{1}(g) w\right)$ with $\rho_{1}(g) w \in V_{1}$ and thus $\rho_{2}(g) v \in \operatorname{Im}(T)$, so it is indeed an invariant subspace.

References

[1] T. W. Hungerford, Algebra, Springer-Verlag, 1974.

