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Exercise 1.3.10.

Let R a K algebra for an algebraically closed field. Show that a completely reducible R
module V' is simple if and only if dim Endg(V') = 1. Since V' is completely reducible, we
may write V = V1®m1 @@ VI for m; € N, V; simple R modules for all i = 1,...,r,
pairwise not isomorphic.

=) If V is simple, we have r = 1 and m = 1 (otherwise we have a contradiction with
the definition of simple), thus by [I, Theorem 1.3.8. (p. 10)] we have dim Endg(V) = 1.

<) If 1 = dimEndg(V) = Y_I_, m?, a sum of positive (or zero) integers, we must
have that all but one summand is zero, thus » = 1 and since m; € N we have m; = 1.
Hence V 22 Vi, which is simple.



Exercise 1.3.11.

Let K algebraically closed, V simple and W completely reducible. Prove that dim Hompg(V, W)
is the multiplicity of V' in W.

By hypothesis both V' and W are completely reducible, so in the notation above we
may say that their decomposition into simple modules is V = V; and W = Vl@n1 oD
VP with n; € N for all 4 = 1,...,7. Then by [I, Theorem 1.3.5. (p. 9)] we have
dim Homp(V, W) = n; which is the multiplicity of V' in W.



Exercise 1.3.12.

Let K algebraically closed, prove that a completely reducible R module V' has a mul-
tiplicity free decomposition if and only if Endr(V) is commutative. We will use the
notation above, say V = V1®m1 @D VI for m; € N, V; simple R modules for all
1 =1,...,r, pairwise not isomorphic.

=) If V has a multiplicity free decomposition, then m; = 1 for all i = 1,...,7r. By
[1, Theorem 1.3.6. (p. 9)] we have Endr(V) = @]_, M;(K) = ®!_,K. Since the algebra
multiplication is componentwise and K is a field, this is a commutative algebra.

<) In the general form for V, by [I, Theorem 1.3.6. (p. 9)] we have Endg(V) =
®]_, My, (K). Since this algebra is commutative by hypothesis, we have m; = 1 for all
i=1,...,r;if my > 2 for some ¢ = 1,...,r, then M,,,(K) is a matrix algebra, which is

not commutative:
0 1)1 0] _fo o] o 1] _[t 0]fo 1
0 0[|0 O] |0 O 0 0 [0 0|0 O
which is in M3(K), and appending 0 to fill up the remaining dimensions (if any) we

obtain two non commuting elements in M,,,(K) and thus in Endg(V'), a contradiction.
Hence V' has a multiplicity free decomposition.



Exercise 1.3.13.

Let K algebraically closed and V', W completely reducible finite dimensional R modules
with dim Endg (V') = dim Hompg(V, W) = dim Endg(W). Prove that V = W.

In the notation above, write their decomposition into simple modules as V ==
VEM @ o VE and W 2 VEM @ - @ V,E™ with my,n; € Nforall i = 1,...,7.
Then by [1, Theorem 1.3.5. (p. 9)] and [Il, Theorem 1.3.8. (p. 10)] we have:

dim Endg(V) = dim Hompg(V, W) . S mi =Y miny
dim Hompg(V, W) = dim End (W)

and since (m; — ni)2 € N, we must have m; — n; = 0 for the sum to add up to 0, and
thus m; = n; so that V%’I/l@ml @ VIme :Vl@”l S VI =W,



Exercise 1.3.14.

Let VeV @ ..oV and W =2 VP @ ... @ VI with m;,n; € N and V;
simple R module for all i = 1,...,r pairwise non isomorphic. Prove that V = W if and
only if m; =n; foralli=1,...,r.

=) If V= W, then using Exercise 1.3.11. we see that:

m; = dimHompg(V;, V) = dim Hompg(V;, W) = n;

for all i =1,...,r as desired.
<) By [1, Theorem 1.3.5. (p. 9)] and [I, Theorem 1.3.8. (p. 10)] we have:

dim Endg(V) = Zm?, dim Homp(V, W) = mei, dim Endg(W) = Zn?
i=1 i=1 i=1

so if m; = n; for all ¢ = 1,...,r, these are all equal. Thus by Exercise 1.3.13. we have
V=w.



Exercise 1.3.15.

Let K algebraically closed, V; pairwise non isomorphic simple R modules for i =1,...,r.
Show that every invariant subspace of V.=V ®-.- @V, is of the form V;, &--- @V}, for
some 1 < iy < --- < i <r. Give an example where V®" has infinitely many invariant

subspaces when K is infinite.

Let W be an invariant subspace of V. Since V; is simple, we either have V; C W or
VinW = {0} forevery i =1...,r. If V; C W, since it has multiplicity 1 in V' by Exercise
1.3.11. we have dim Homp(V;,V) = 1 and thus Hompg(V;, V') = Ky; as vector space (and
algebra with convolution as multiplication) for some non-zero intertwiner ¢; : V; — V.
In particular just having V; in W does not alter being invariant, without the need of
adding anything else, and Im(¢;) = V; since it is simple. Thus let 1 <y < -+ < i <7r
be such that V;; C W for j =1,...,k, then since V;, NV, = {0} for j # I because they
are pairwise not isomorphic, and W C Vi@ ---®V, so W = V;; +---+V;,, we must
have W 2V, @ --- @ V;, as desired.

Consider now K = C and R = C[z]/(z% — 1) acting on C? via:

p : R — EndgC?

[t
v 0 -1

and extending by linearity. This obviously defines an R module structure on C?, and by
appending the identity to fill up as many dimensions as we need it is readily generalized
to define an R module structure on C" for n > 2; we will work with n = 2 and by this
the result will follow. Now given any v € C2, it defines (v)c C C? an invariant subspace
with respect to this action, since the action just changes its sign. Hence C? has as many
invariant subspaces as vectors, and since C is infinite the number of vectors and invariant
subspaces is infinite.



Exercise 1.4.4.

Let A be a m x m matrix with entries in K an algebraically closed field. Suppose that
A™ =1 with n not divisible by the characteristic of K. Show that A is diagonalizable.
Consider G = {A* : k € N} the finite abelian group generated by iterations of A.

Now:
p G — Endg(K™)

A — A

is the canonical inclusion and thus clearly a representation of G. Since |G| = n is
not divisible by the characteristic of K, by [I, Theorem 1.4.3. (p. 11)] we have that
K™ is completely reducible. Moreover, by Exercise 1.2.9. we have that every simple
representation of G is of dimension 1. This means that K™ = V; @& --- & V,, with V;
simple of dimension 1 for all i = 1,...,m. Thus taking one v; € V; for each i =1,...,r
we obtain a basis of K™, and since these are simple, with respect to this base A is
diagonal, as desired.



Exercise 1.5.5.

Prove that the map ¢ : M, (K) — M, (K)°P given by ¢(A) = AT for every A € M, (K)
is an isomorphism of K algebras.

We will use the standard Linear Algebra facts that for any A, B € M,,(K) and a € K
it holds (A + B)T = AT 4+ BT, (aA)T = a AT, (AB)T = BT AT and (AT)T = A. Now
clearly:

p(aA) = (@A)l = aA” = ag(A)
$(A+B) = (A+ B)" = A" + B = ¢(4) + ¢(B)
$(AB) = (AB)" = BT AT = ¢(B)¢(A) = $(A) -op $(B)
so it is a K algebra homomorphism. If there is A € M,,(K) with ¢(A) = 0 this means
AT = 0 and thus all the entries in AT are zero, but these are the same entries that in A,
thus A = 0, so ¢ is injective. If we are given A € M, (K)°P, we have A € M, (K) since

they have the same vector space structure, thus A7 € M, (K) and ¢(AT) = (AT)T = A,
so ¢ is surjective. Thus ¢ is bijective and indeed an isomorphism of K algebras.



Exercise 1.5.6.

Let G be a group, prove that the map ¢ : K[G] — K[G]°P given by ¢(1,) = 1,1 for
every g € (G is an isomorphism of K algebras.

We first note that as it is, this is not a well defined map since sums and product
by scalars are not defined, hence we assume that the definition is meant to be extended
by linearity, which is possible since K[G] has a vector space structure and we defined
¢ on a basis. Hence we automatically have linearity; given g,h € G and a € K then
d(aly) = ap(ly) and ¢(1,+ 1) = ¢(14) + ¢(15). Moreover:

o(Lgln) = d(1gn) = L(gny—1 = Lp-1g1 = 1111 = ¢(14)B(1g) = ¢(1y) -op ¢(11)

so it indeed is a K algebra homomorphism. We define what will be the inverse as the
map 1) : K[G]? — K[G] given by ¢(14) = 1,-1 and extending by linearity, possible
since K[G]°P has a vector space structure. Again, linearity comes by definition; given
g,h € G and a € K then ¢(aly) = ap(ly) and (14 + 1) = 1¥(14) + ¥(15). Moreover:

V(lg op 1n) = v(1nlg) = P(1ng) = Lingy—1 = g1 = Lga 11 = (1) (1n)

so it indeed is a K algebra homomorphism. They clearly are inverses from each other
since for any g € G:

Yod(ly) =v(1g1) =111 =14
_ P

gbozb(lg) = w(lg 1) = 1( )1 = 19

and thus ¢ is bijective and an isomorphism of K algebras.
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