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Exercise 1.3.10.

Let R a K algebra for an algebraically closed field. Show that a completely reducible R
module V is simple if and only if dim EndR(V ) = 1. Since V is completely reducible, we
may write V ∼= V ⊕m1

1 ⊕ · · · ⊕ V ⊕mr
r for mi ∈ N, Vi simple R modules for all i = 1, . . . , r,

pairwise not isomorphic.
⇒) If V is simple, we have r = 1 and m = 1 (otherwise we have a contradiction with

the definition of simple), thus by [1, Theorem 1.3.8. (p. 10)] we have dim EndR(V ) = 1.
⇐) If 1 = dim EndR(V ) =

∑r
i=1m

2
i , a sum of positive (or zero) integers, we must

have that all but one summand is zero, thus r = 1 and since m1 ∈ N we have m1 = 1.
Hence V ∼= V1, which is simple.
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Exercise 1.3.11.

Let K algebraically closed, V simple andW completely reducible. Prove that dim HomR(V,W )
is the multiplicity of V in W .

By hypothesis both V and W are completely reducible, so in the notation above we
may say that their decomposition into simple modules is V ∼= V1 and W ∼= V ⊕n1

1 ⊕ · · · ⊕
V ⊕nr
r with ni ∈ N for all i = 1, . . . , r. Then by [1, Theorem 1.3.5. (p. 9)] we have

dim HomR(V,W ) = n1 which is the multiplicity of V in W .
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Exercise 1.3.12.

Let K algebraically closed, prove that a completely reducible R module V has a mul-
tiplicity free decomposition if and only if EndR(V ) is commutative. We will use the
notation above, say V ∼= V ⊕m1

1 ⊕ · · · ⊕ V ⊕mr
r for mi ∈ N, Vi simple R modules for all

i = 1, . . . , r, pairwise not isomorphic.
⇒) If V has a multiplicity free decomposition, then mi = 1 for all i = 1, . . . , r. By

[1, Theorem 1.3.6. (p. 9)] we have EndR(V ) ∼= ⊕r
i=1M1(K) ∼= ⊕r

i=1K. Since the algebra
multiplication is componentwise and K is a field, this is a commutative algebra.
⇐) In the general form for V , by [1, Theorem 1.3.6. (p. 9)] we have EndR(V ) ∼=

⊕r
i=1Mmi(K). Since this algebra is commutative by hypothesis, we have mi = 1 for all

i = 1, . . . , r; if mi ≥ 2 for some i = 1, . . . , r, then Mmi(K) is a matrix algebra, which is
not commutative: [

0 1
0 0

] [
1 0
0 0

]
=

[
0 0
0 0

]
6=
[
0 1
0 0

]
=

[
1 0
0 0

] [
0 1
0 0

]
which is in M2(K), and appending 0 to fill up the remaining dimensions (if any) we
obtain two non commuting elements in Mmi(K) and thus in EndR(V ), a contradiction.
Hence V has a multiplicity free decomposition.
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Exercise 1.3.13.

Let K algebraically closed and V , W completely reducible finite dimensional R modules
with dim EndR(V ) = dim HomR(V,W ) = dim EndR(W ). Prove that V ∼= W .

In the notation above, write their decomposition into simple modules as V ∼=∼=
V ⊕m1
1 ⊕ · · · ⊕ V ⊕mr

r and W ∼= V ⊕n1
1 ⊕ · · · ⊕ V ⊕nr

r with mi, ni ∈ N for all i = 1, . . . , r.
Then by [1, Theorem 1.3.5. (p. 9)] and [1, Theorem 1.3.8. (p. 10)] we have:{

dim EndR(V ) = dim HomR(V,W )

dim HomR(V,W ) = dim EndR(W )
=⇒

{∑r
i=1m

2
i =

∑r
i=1mini∑r

i=1mini =
∑r

i=1 n
2
i

=⇒

{∑r
i=1mi(mi − ni) = 0∑r
i=1 ni(mi − ni) = 0

=⇒
r∑

i=1

(mi − ni)2 =
r∑

i=1

(mi − ni)(mi − ni) = 0

and since (mi − ni)2 ∈ N, we must have mi − ni = 0 for the sum to add up to 0, and
thus mi = ni so that V ∼= V ⊕m1

1 ⊕ · · · ⊕ V ⊕mr
r = V ⊕n1

1 ⊕ · · · ⊕ V ⊕nr
r = W .
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Exercise 1.3.14.

Let V ∼=∼= V ⊕m1
1 ⊕ · · · ⊕ V ⊕mr

r and W ∼= V ⊕n1
1 ⊕ · · · ⊕ V ⊕nr

r with mi, ni ∈ N and Vi
simple R module for all i = 1, . . . , r pairwise non isomorphic. Prove that V ∼= W if and
only if mi = ni for all i = 1, . . . , r.
⇒) If V ∼= W , then using Exercise 1.3.11. we see that:

mi = dim HomR(Vi, V ) = dim HomR(Vi,W ) = ni

for all i = 1, . . . , r as desired.
⇐) By [1, Theorem 1.3.5. (p. 9)] and [1, Theorem 1.3.8. (p. 10)] we have:

dim EndR(V ) =
r∑

i=1

m2
i , dim HomR(V,W ) =

r∑
i=1

mini, dim EndR(W ) =
r∑

i=1

n2i

so if mi = ni for all i = 1, . . . , r, these are all equal. Thus by Exercise 1.3.13. we have
V ∼= W .
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Exercise 1.3.15.

Let K algebraically closed, Vi pairwise non isomorphic simple R modules for i = 1, . . . , r.
Show that every invariant subspace of V = V1⊕ · · ·⊕Vr is of the form Vi1 ⊕ · · ·⊕Vik for
some 1 ≤ i1 < · · · < ik ≤ r. Give an example where V ⊕n has infinitely many invariant
subspaces when K is infinite.

Let W be an invariant subspace of V . Since Vi is simple, we either have Vi ⊂ W or
Vi∩W = {0} for every i = 1 . . . , r. If Vi ⊂W , since it has multiplicity 1 in V by Exercise
1.3.11. we have dim HomR(Vi, V ) = 1 and thus HomR(Vi, V ) ∼= Kιi as vector space (and
algebra with convolution as multiplication) for some non-zero intertwiner ιi : Vi −→ V .
In particular just having Vi in W does not alter being invariant, without the need of
adding anything else, and Im(ιi) ∼= Vi since it is simple. Thus let 1 ≤ i1 < · · · < ik ≤ r
be such that Vij ⊂ W for j = 1, . . . , k, then since Vij ∩ Vil = {0} for j 6= l because they
are pairwise not isomorphic, and W ⊂ V1 ⊕ · · · ⊕ Vr so W = Vi1 + · · · + Vik , we must
have W ∼= Vi1 ⊕ · · · ⊕ Vik as desired.

Consider now K = C and R = C[x]/(x2 − 1) acting on C2 via:

ρ : R −→ EndRC2

x 7−→
[
−1 0
0 −1

]
and extending by linearity. This obviously defines an R module structure on C2, and by
appending the identity to fill up as many dimensions as we need it is readily generalized
to define an R module structure on Cn for n ≥ 2; we will work with n = 2 and by this
the result will follow. Now given any v ∈ C2, it defines 〈v〉C ⊂ C2 an invariant subspace
with respect to this action, since the action just changes its sign. Hence C2 has as many
invariant subspaces as vectors, and since C is infinite the number of vectors and invariant
subspaces is infinite.
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Exercise 1.4.4.

Let A be a m ×m matrix with entries in K an algebraically closed field. Suppose that
An = 1 with n not divisible by the characteristic of K. Show that A is diagonalizable.

Consider G = {Ak : k ∈ N} the finite abelian group generated by iterations of A.
Now:

ρ : G −→ EndK(Km)
A −→ A

is the canonical inclusion and thus clearly a representation of G. Since |G| = n is
not divisible by the characteristic of K, by [1, Theorem 1.4.3. (p. 11)] we have that
Km is completely reducible. Moreover, by Exercise 1.2.9. we have that every simple
representation of G is of dimension 1. This means that Km ∼= V1 ⊕ · · · ⊕ Vm with Vi
simple of dimension 1 for all i = 1, . . . ,m. Thus taking one vi ∈ Vi for each i = 1, . . . , r
we obtain a basis of Km, and since these are simple, with respect to this base A is
diagonal, as desired.
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Exercise 1.5.5.

Prove that the map φ : Mn(K) −→Mn(K)op given by φ(A) = AT for every A ∈Mn(K)
is an isomorphism of K algebras.

We will use the standard Linear Algebra facts that for any A,B ∈Mn(K) and α ∈ K
it holds (A + B)T = AT + BT , (αA)T = αAT , (AB)T = BTAT and (AT )T = A. Now
clearly:

φ(αA) = (αA)T = αAT = αφ(A)

φ(A+B) = (A+B)T = AT +BT = φ(A) + φ(B)

φ(AB) = (AB)T = BTAT = φ(B)φ(A) = φ(A) ·op φ(B)

so it is a K algebra homomorphism. If there is A ∈ Mn(K) with φ(A) = 0 this means
AT = 0 and thus all the entries in AT are zero, but these are the same entries that in A,
thus A = 0, so φ is injective. If we are given A ∈ Mn(K)op, we have A ∈ Mn(K) since
they have the same vector space structure, thus AT ∈Mn(K) and φ(AT ) = (AT )T = A,
so φ is surjective. Thus φ is bijective and indeed an isomorphism of K algebras.
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Exercise 1.5.6.

Let G be a group, prove that the map φ : K[G] −→ K[G]op given by φ(1g) = 1g−1 for
every g ∈ G is an isomorphism of K algebras.

We first note that as it is, this is not a well defined map since sums and product
by scalars are not defined, hence we assume that the definition is meant to be extended
by linearity, which is possible since K[G] has a vector space structure and we defined
φ on a basis. Hence we automatically have linearity; given g, h ∈ G and α ∈ K then
φ(α1g) = αφ(1g) and φ(1g + 1h) = φ(1g) + φ(1h). Moreover:

φ(1g1h) = φ(1gh) = 1(gh)−1 = 1h−1g−1 = 1h−11g−1 = φ(1h)φ(1g) = φ(1g) ·op φ(1h)

so it indeed is a K algebra homomorphism. We define what will be the inverse as the
map ψ : K[G]op −→ K[G] given by φ(1g) = 1g−1 and extending by linearity, possible
since K[G]op has a vector space structure. Again, linearity comes by definition; given
g, h ∈ G and α ∈ K then ψ(α1g) = αψ(1g) and ψ(1g + 1h) = ψ(1g) + ψ(1h). Moreover:

ψ(1g ·op 1h) = ψ(1h1g) = ψ(1hg) = 1(hg)−1 = 1g−1h−1 = 1g−11h−1 = ψ(1g)ψ(1h)

so it indeed is a K algebra homomorphism. They clearly are inverses from each other
since for any g ∈ G:

ψ ◦ φ(1g) = ψ(1g−1) = 1(g−1)−1 = 1g

φ ◦ ψ(1g) = ψ(1g−1) = 1(g−1)−1 = 1g

and thus φ is bijective and an isomorphism of K algebras.
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