Representations of Finite Groups - Homework 2

Pablo Sánchez Ocal
February 7th, 2018

Exercise 1.3.10.

Let R a \mathbb{K} algebra for an algebraically closed field. Show that a completely reducible R module V is simple if and only if $\operatorname{dim} \operatorname{End}_{R}(V)=1$. Since V is completely reducible, we may write $V \cong V_{1}^{\oplus m_{1}} \oplus \cdots \oplus V_{r}^{\oplus m_{r}}$ for $m_{i} \in \mathbb{N}, V_{i}$ simple R modules for all $i=1, \ldots, r$, pairwise not isomorphic.
\Rightarrow) If V is simple, we have $r=1$ and $m=1$ (otherwise we have a contradiction with the definition of simple), thus by [1, Theorem 1.3.8. (p. 10)] we have $\operatorname{dim} \operatorname{End}_{R}(V)=1$.
\Leftrightarrow If $1=\operatorname{dim} \operatorname{End}_{R}(V)=\sum_{i=1}^{r} m_{i}^{2}$, a sum of positive (or zero) integers, we must have that all but one summand is zero, thus $r=1$ and since $m_{1} \in \mathbb{N}$ we have $m_{1}=1$. Hence $V \cong V_{1}$, which is simple.

Exercise 1.3.11.

Let \mathbb{K} algebraically closed, V simple and W completely reducible. Prove that $\operatorname{dim} \operatorname{Hom}_{R}(V, W)$ is the multiplicity of V in W.

By hypothesis both V and W are completely reducible, so in the notation above we may say that their decomposition into simple modules is $V \cong V_{1}$ and $W \cong V_{1}^{\oplus n_{1}} \oplus \cdots \oplus$ $V_{r}^{\oplus n_{r}}$ with $n_{i} \in \mathbb{N}$ for all $i=1, \ldots, r$. Then by [1, Theorem 1.3.5. (p. 9)] we have $\operatorname{dim} \operatorname{Hom}_{R}(V, W)=n_{1}$ which is the multiplicity of V in W.

Exercise 1.3.12.

Let \mathbb{K} algebraically closed, prove that a completely reducible R module V has a multiplicity free decomposition if and only if $\operatorname{End}_{R}(V)$ is commutative. We will use the notation above, say $V \cong V_{1}^{\oplus m_{1}} \oplus \cdots \oplus V_{r}^{\oplus m_{r}}$ for $m_{i} \in \mathbb{N}, V_{i}$ simple R modules for all $i=1, \ldots, r$, pairwise not isomorphic.
$\Rightarrow)$ If V has a multiplicity free decomposition, then $m_{i}=1$ for all $i=1, \ldots, r$. By [1. Theorem 1.3.6. (p. 9)] we have $\operatorname{End}_{R}(V) \cong \oplus_{i=1}^{r} M_{1}(\mathbb{K}) \cong \oplus_{i=1}^{r} \mathbb{K}$. Since the algebra multiplication is componentwise and \mathbb{K} is a field, this is a commutative algebra.
\Leftarrow In the general form for V, by [1, Theorem 1.3.6. (p. 9)] we have $\operatorname{End}_{R}(V) \cong$ $\oplus_{i=1}^{r} M_{m_{i}}(\mathbb{K})$. Since this algebra is commutative by hypothesis, we have $m_{i}=1$ for all $i=1, \ldots, r$; if $m_{i} \geq 2$ for some $i=1, \ldots, r$, then $M_{m_{i}}(\mathbb{K})$ is a matrix algebra, which is not commutative:

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right] \neq\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

which is in $M_{2}(\mathbb{K})$, and appending 0 to fill up the remaining dimensions (if any) we obtain two non commuting elements in $M_{m_{i}}(\mathbb{K})$ and thus in $\operatorname{End}_{R}(V)$, a contradiction. Hence V has a multiplicity free decomposition.

Exercise 1.3.13.

Let \mathbb{K} algebraically closed and V, W completely reducible finite dimensional R modules with $\operatorname{dim} \operatorname{End}_{R}(V)=\operatorname{dim} \operatorname{Hom}_{R}(V, W)=\operatorname{dim} \operatorname{End}_{R}(W)$. Prove that $V \cong W$.

In the notation above, write their decomposition into simple modules as $V \cong \cong$ $V_{1}^{\oplus m_{1}} \oplus \cdots \oplus V_{r}^{\oplus m_{r}}$ and $W \cong V_{1}^{\oplus n_{1}} \oplus \cdots \oplus V_{r}^{\oplus n_{r}}$ with $m_{i}, n_{i} \in \mathbb{N}$ for all $i=1, \ldots, r$. Then by [1, Theorem 1.3.5. (p. 9)] and [1, Theorem 1.3.8. (p. 10)] we have:

$$
\begin{aligned}
\left\{\begin{array}{l}
\operatorname{dim} \operatorname{End}_{R}(V)=\operatorname{dim} \operatorname{Hom}_{R}(V, W) \\
\operatorname{dim} \operatorname{Hom}_{R}(V, W)=\operatorname{dim} \operatorname{End}_{R}(W)
\end{array}\right. & \Longrightarrow\left\{\begin{array}{l}
\sum_{i=1}^{r} m_{i}^{2}=\sum_{i=1}^{r} m_{i} n_{i} \\
\sum_{i=1}^{r} m_{i} n_{i}=\sum_{i=1}^{r} n_{i}^{2}
\end{array}\right. \\
& \Longrightarrow\left\{\begin{array}{l}
\sum_{i=1}^{r} m_{i}\left(m_{i}-n_{i}\right)=0 \\
\sum_{i=1}^{r} n_{i}\left(m_{i}-n_{i}\right)=0
\end{array}\right. \\
& \Longrightarrow \sum_{i=1}^{r}\left(m_{i}-n_{i}\right)^{2}=\sum_{i=1}^{r}\left(m_{i}-n_{i}\right)\left(m_{i}-n_{i}\right)=0
\end{aligned}
$$

and since $\left(m_{i}-n_{i}\right)^{2} \in \mathbb{N}$, we must have $m_{i}-n_{i}=0$ for the sum to add up to 0 , and thus $m_{i}=n_{i}$ so that $V \cong V_{1}^{\oplus m_{1}} \oplus \cdots \oplus V_{r}^{\oplus m_{r}}=V_{1}^{\oplus n_{1}} \oplus \cdots \oplus V_{r}^{\oplus n_{r}}=W$.

Exercise 1.3.14.

Let $V \cong \cong V_{1}^{\oplus m_{1}} \oplus \cdots \oplus V_{r}^{\oplus m_{r}}$ and $W \cong V_{1}^{\oplus n_{1}} \oplus \cdots \oplus V_{r}^{\oplus n_{r}}$ with $m_{i}, n_{i} \in \mathbb{N}$ and V_{i} simple R module for all $i=1, \ldots, r$ pairwise non isomorphic. Prove that $V \cong W$ if and only if $m_{i}=n_{i}$ for all $i=1, \ldots, r$.
$\Rightarrow)$ If $V \cong W$, then using Exercise 1.3.11. we see that:

$$
m_{i}=\operatorname{dim} \operatorname{Hom}_{R}\left(V_{i}, V\right)=\operatorname{dim} \operatorname{Hom}_{R}\left(V_{i}, W\right)=n_{i}
$$

for all $i=1, \ldots, r$ as desired.
$\Leftarrow)$ By [1, Theorem 1.3.5. (p. 9)] and [1, Theorem 1.3.8. (p. 10)] we have:

$$
\operatorname{dim} \operatorname{End}_{R}(V)=\sum_{i=1}^{r} m_{i}^{2}, \quad \operatorname{dim} \operatorname{Hom}_{R}(V, W)=\sum_{i=1}^{r} m_{i} n_{i}, \quad \operatorname{dim} \operatorname{End}_{R}(W)=\sum_{i=1}^{r} n_{i}^{2}
$$

so if $m_{i}=n_{i}$ for all $i=1, \ldots, r$, these are all equal. Thus by Exercise 1.3.13. we have $V \cong W$.

Exercise 1.3.15.

Let \mathbb{K} algebraically closed, V_{i} pairwise non isomorphic simple R modules for $i=1, \ldots, r$. Show that every invariant subspace of $V=V_{1} \oplus \cdots \oplus V_{r}$ is of the form $V_{i_{1}} \oplus \cdots \oplus V_{i_{k}}$ for some $1 \leq i_{1}<\cdots<i_{k} \leq r$. Give an example where $V^{\oplus n}$ has infinitely many invariant subspaces when \mathbb{K} is infinite.

Let W be an invariant subspace of V. Since V_{i} is simple, we either have $V_{i} \subset W$ or $V_{i} \cap W=\{0\}$ for every $i=1 \ldots, r$. If $V_{i} \subset W$, since it has multiplicity 1 in V by Exercise 1.3.11. we have $\operatorname{dim} \operatorname{Hom}_{R}\left(V_{i}, V\right)=1$ and thus $\operatorname{Hom}_{R}\left(V_{i}, V\right) \cong \mathbb{K} \iota_{i}$ as vector space (and algebra with convolution as multiplication) for some non-zero intertwiner $\iota_{i}: V_{i} \longrightarrow V$. In particular just having V_{i} in W does not alter being invariant, without the need of adding anything else, and $\operatorname{Im}\left(\iota_{i}\right) \cong V_{i}$ since it is simple. Thus let $1 \leq i_{1}<\cdots<i_{k} \leq r$ be such that $V_{i_{j}} \subset W$ for $j=1, \ldots, k$, then since $V_{i_{j}} \cap V_{i_{l}}=\{0\}$ for $j \neq l$ because they are pairwise not isomorphic, and $W \subset V_{1} \oplus \cdots \oplus V_{r}$ so $W=V_{i_{1}}+\cdots+V_{i_{k}}$, we must have $W \cong V_{i_{1}} \oplus \cdots \oplus V_{i_{k}}$ as desired.

Consider now $\mathbb{K}=\mathbb{C}$ and $R=\mathbb{C}[x] /\left(x^{2}-1\right)$ acting on \mathbb{C}^{2} via:

$$
\begin{aligned}
\rho: R & \longrightarrow \operatorname{End}_{R} \mathbb{C}^{2} \\
x & \longmapsto\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
\end{aligned}
$$

and extending by linearity. This obviously defines an R module structure on \mathbb{C}^{2}, and by appending the identity to fill up as many dimensions as we need it is readily generalized to define an R module structure on \mathbb{C}^{n} for $n \geq 2$; we will work with $n=2$ and by this the result will follow. Now given any $v \in \mathbb{C}^{2}$, it defines $\langle v\rangle_{\mathbb{C}} \subset \mathbb{C}^{2}$ an invariant subspace with respect to this action, since the action just changes its sign. Hence \mathbb{C}^{2} has as many invariant subspaces as vectors, and since \mathbb{C} is infinite the number of vectors and invariant subspaces is infinite.

Exercise 1.4.4.

Let A be a $m \times m$ matrix with entries in \mathbb{K} an algebraically closed field. Suppose that $A^{n}=1$ with n not divisible by the characteristic of \mathbb{K}. Show that A is diagonalizable.

Consider $G=\left\{A^{k}: k \in \mathbb{N}\right\}$ the finite abelian group generated by iterations of A. Now:

$$
\begin{array}{rccc}
\rho: & : & \longrightarrow & \operatorname{End}_{\mathbb{K}}\left(\mathbb{K}^{m}\right) \\
A & \longrightarrow & A
\end{array}
$$

is the canonical inclusion and thus clearly a representation of G. Since $|G|=n$ is not divisible by the characteristic of \mathbb{K}, by [1, Theorem 1.4.3. (p. 11)] we have that \mathbb{K}^{m} is completely reducible. Moreover, by Exercise 1.2 .9 . we have that every simple representation of G is of dimension 1 . This means that $\mathbb{K}^{m} \cong V_{1} \oplus \cdots \oplus V_{m}$ with V_{i} simple of dimension 1 for all $i=1, \ldots, m$. Thus taking one $v_{i} \in V_{i}$ for each $i=1, \ldots, r$ we obtain a basis of \mathbb{K}^{m}, and since these are simple, with respect to this base A is diagonal, as desired.

Exercise 1.5.5.

Prove that the $\operatorname{map} \phi: M_{n}(\mathbb{K}) \longrightarrow M_{n}(\mathbb{K})^{\text {op }}$ given by $\phi(A)=A^{T}$ for every $A \in M_{n}(\mathbb{K})$ is an isomorphism of \mathbb{K} algebras.

We will use the standard Linear Algebra facts that for any $A, B \in M_{n}(\mathbb{K})$ and $\alpha \in \mathbb{K}$ it holds $(A+B)^{T}=A^{T}+B^{T},(\alpha A)^{T}=\alpha A^{T},(A B)^{T}=B^{T} A^{T}$ and $\left(A^{T}\right)^{T}=A$. Now clearly:

$$
\begin{aligned}
\phi(\alpha A) & =(\alpha A)^{T}=\alpha A^{T}=\alpha \phi(A) \\
\phi(A+B) & =(A+B)^{T}=A^{T}+B^{T}=\phi(A)+\phi(B) \\
\phi(A B) & =(A B)^{T}=B^{T} A^{T}=\phi(B) \phi(A)=\phi(A) \cdot{ }_{\mathrm{op}} \phi(B)
\end{aligned}
$$

so it is a \mathbb{K} algebra homomorphism. If there is $A \in M_{n}(\mathbb{K})$ with $\phi(A)=0$ this means $A^{T}=0$ and thus all the entries in A^{T} are zero, but these are the same entries that in A, thus $A=0$, so ϕ is injective. If we are given $A \in M_{n}(\mathbb{K})^{\text {op }}$, we have $A \in M_{n}(\mathbb{K})$ since they have the same vector space structure, thus $A^{T} \in M_{n}(\mathbb{K})$ and $\phi\left(A^{T}\right)=\left(A^{T}\right)^{T}=A$, so ϕ is surjective. Thus ϕ is bijective and indeed an isomorphism of \mathbb{K} algebras.

Exercise 1.5.6.

Let G be a group, prove that the map $\phi: \mathbb{K}[G] \longrightarrow \mathbb{K}[G]^{\text {op }}$ given by $\phi\left(1_{g}\right)=1_{g^{-1}}$ for every $g \in G$ is an isomorphism of \mathbb{K} algebras.

We first note that as it is, this is not a well defined map since sums and product by scalars are not defined, hence we assume that the definition is meant to be extended by linearity, which is possible since $\mathbb{K}[G]$ has a vector space structure and we defined ϕ on a basis. Hence we automatically have linearity; given $g, h \in G$ and $\alpha \in \mathbb{K}$ then $\phi\left(\alpha 1_{g}\right)=\alpha \phi\left(1_{g}\right)$ and $\phi\left(1_{g}+1_{h}\right)=\phi\left(1_{g}\right)+\phi\left(1_{h}\right)$. Moreover:

$$
\phi\left(1_{g} 1_{h}\right)=\phi\left(1_{g h}\right)=1_{(g h)^{-1}}=1_{h^{-1} g^{-1}}=1_{h^{-1}} 1_{g^{-1}}=\phi\left(1_{h}\right) \phi\left(1_{g}\right)=\phi\left(1_{g}\right) \cdot \mathrm{op} \phi\left(1_{h}\right)
$$

so it indeed is a \mathbb{K} algebra homomorphism. We define what will be the inverse as the $\operatorname{map} \psi: \mathbb{K}[G]^{\text {op }} \longrightarrow \mathbb{K}[G]$ given by $\phi\left(1_{g}\right)=1_{g^{-1}}$ and extending by linearity, possible since $\mathbb{K}[G]^{\text {op }}$ has a vector space structure. Again, linearity comes by definition; given $g, h \in G$ and $\alpha \in \mathbb{K}$ then $\psi\left(\alpha 1_{g}\right)=\alpha \psi\left(1_{g}\right)$ and $\psi\left(1_{g}+1_{h}\right)=\psi\left(1_{g}\right)+\psi\left(1_{h}\right)$. Moreover:

$$
\psi\left(1_{g} \cdot{ }_{\mathrm{op}} 1_{h}\right)=\psi\left(1_{h} 1_{g}\right)=\psi\left(1_{h g}\right)=1_{(h g)^{-1}}=1_{g^{-1} h^{-1}}=1_{g^{-1}} 1_{h^{-1}}=\psi\left(1_{g}\right) \psi\left(1_{h}\right)
$$

so it indeed is a \mathbb{K} algebra homomorphism. They clearly are inverses from each other since for any $g \in G$:

$$
\begin{aligned}
& \psi \circ \phi\left(1_{g}\right)=\psi\left(1_{g^{-1}}\right)=1_{\left(g^{-1}\right)^{-1}}=1_{g} \\
& \phi \circ \psi\left(1_{g}\right)=\psi\left(1_{g^{-1}}\right)=1_{\left(g^{-1}\right)^{-1}}=1_{g}
\end{aligned}
$$

and thus ϕ is bijective and an isomorphism of \mathbb{K} algebras.

References

[1] A. Prasad, Representation Theory: A Combinatorial Viewpoint, Cambridge studies in advanced mathematics, 2015.
[2] T. W. Hungerford, Algebra, Springer-Verlag, 1974.

