Representations of Finite Groups - Homework 3

Pablo Sánchez Ocal
February 16th, 2018

Exercise 1.5.9.

For each $V \subseteq \mathbb{K}^{n}$ linear subspace, define M_{V} the set of all matrices whose rows (as elements of \mathbb{K}^{n}) lie in V.

1. Prove that M_{V} is an invariant subspace of the left regular $M_{n}(\mathbb{K})$ module of dimension $n \operatorname{dim}_{\mathbb{K}}(V)$.
We can consider elements $B \in M_{V}$ as $B=\left[b_{1}, \cdots, b_{n}\right]^{T}$. We clearly have that this is a subspace of $M_{n}(\mathbb{K})$ since $0_{n \times n} \in M_{n}(\mathbb{K})$ because $0 \in V$, if $C \in M_{V}$ as $C=\left[c_{1}, \cdots, c_{n}\right]^{T}$ then $B+C=\left[b_{1}+c_{1}, \ldots, b_{n}+c_{n}\right] \in M_{V}$ and if $\alpha \in \mathbb{K}$ then $\alpha B=\left[\alpha b_{1}, \ldots, \alpha b_{n}\right] \in M_{V}$, all three true because V is a linear subspace.
To see that it is invariant, given any $A \in M_{n}(\mathbb{K})$ with entries $a_{i j}$ for $i, j=1, \ldots, n$, notice how:

$$
L(A)(B)=A B=\left[\begin{array}{c}
\sum_{i=1}^{n} a_{1 i} b_{i} \\
\vdots \\
\sum_{i=1}^{n} a_{n i} b_{i}
\end{array}\right]
$$

and since V is a linear subspace of \mathbb{K}, we have that $\sum_{i=1}^{n} a_{j i} b_{i} \in V$ for all $j=$ $1, \ldots, n$ and thus $L(A)(B) \in M_{V}$ and M_{V} is invariant.
To compute the dimension, let $V=\left\langle v_{1}, \ldots, v_{m}\right\rangle$ be a basis, so $m \leq n$ is the dimension of V. Consider $E_{i}\left(v_{j}\right)$ the matrix with the vector v_{j} in the i-th row for $i=1, \ldots, n$ and $j=1, \ldots, n$, notice that there are $n m=n \operatorname{dim}_{\mathbb{K}}(V)$ of them. We now prove that they generate: let $B \in M_{V}$ as above, then $b_{i}=\sum_{j=1}^{m} \alpha_{i j} v_{j}$ for some $\alpha_{i j} \in \mathbb{K}$ for $i=1, \ldots, n$ and $j=1, \ldots, m$, so $B=\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i j} E_{i}\left(v_{j}\right)$ and hence these matrices indeed generate. We now prove that they are linearly independent: if we have $0_{n \times n}=\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i j} E_{i}\left(v_{j}\right)$ for some coefficients $\alpha_{i j} \in \mathbb{K}$ for $i=1, \ldots, n$ and $j=1, \ldots, m$. If we look at this equality row by row, this means that as elements of V we have: $0=\sum_{j=1}^{m} \alpha_{i j} v_{j}$ for $i=1, \ldots, n$ and $j=$ $1, \ldots, m$, and since this is a linear combination of the elements of the basis that adds up to zero, we must have that $\alpha_{i j}=0$ for $i=1, \ldots, n$ and $j=1, \ldots, m$, thus the considered matrices are indeed linearly independent. This proves that $\left\{E_{i}\left(v_{j}\right)\right\}_{i=1, \ldots, n}^{j=1, \ldots, m}$ is a basis of M_{V}, thus $\operatorname{dim}_{\mathbb{K}}\left(M_{V}\right)=n \operatorname{dim}_{\mathbb{K}}(V)$ as desired.
2. Prove that every invariant subspace of the left regular $M_{n}(\mathbb{K})$ module is of the form M_{V} for some $V \subseteq \mathbb{K}^{n}$ linear subspace.

Let $I \subseteq M_{n}(\mathbb{K})$ be an invariant subspace, we define:

$$
V=\left\{b \in \mathbb{K}^{n}: \exists B \in I \text { having } b \text { as a row }\right\}
$$

we first notice that if an element $b \in V$, we can assume that it appears as the first row of a matrix B and the rest are 0 : suppose $b=B_{j}$ the i-th element in $B=\left[b_{1}, \ldots, b_{n}\right]^{T}$, consider $E_{1 i}$ the matrix with a 1 in the position $(1, i)$ and 0 elsewhere, then since I is an invariant subspace we have that $\left[b_{i}, 0 \ldots, 0\right]^{T}=$ $E_{1 i} B=L\left(E_{1 i}\right)(B) \in I$, so we may take this matrix.

We clearly have that $M_{V}=I$ by definition, so we just need to prove that $V \subseteq \mathbb{K}^{n}$ is a linear subspace. For this, we clearly have that $0 \in V$ since we can multiply by $0_{n \times n} \in M_{n}(\mathbb{K})$, let $\alpha \in \mathbb{K}$ and $b \in V$ appearing in $B=[b, 0 \ldots, 0]^{T}$, then $[\alpha b, 0, \ldots, 0]^{T}=\alpha E_{11} B=L\left(\alpha E_{11}\right)(B) \in I$ so $\alpha b \in V$, let $c \in V$ appearing in $C=[c, 0 \ldots, 0]^{T}$, then $[b+c, 0, \ldots, 0]^{T}=B+C \in I$ so $b+c \in V$. Then V is indeed a linear subspace.
3. Prove that M_{V} is simple if and only if V is one dimensional.
$\Rightarrow)$ If M_{V} is simple, suppose $\operatorname{dim}_{\mathbb{K}}(V)=2$, say $V=\left\langle v_{1}, v_{2}\right\rangle$ is a basis. Then $M_{\left\langle v_{1}\right\rangle} \subseteq M_{V}$ is invariant by the first section above and proper since it is not zero since $0 \neq\left[v_{1}, 0 \ldots, 0\right]^{T} \in M_{\left\langle v_{1}\right\rangle}$ and it is not everything since $\left[v_{2}, 0, \ldots, 0\right]^{T} \notin M_{\left\langle v_{1}\right\rangle}$ since they are linearly independent. If $\operatorname{dim}_{\mathbb{K}}(V) \geq 2$, it always has a linear subspace of dimension 2 (take any two elements of the basis) and thus the above finds a proper invariant subspace, contradicting simplicity.
$\Leftarrow)$ If $\operatorname{dim}_{\mathbb{K}}(V)=1$ we set $V=\langle v\rangle$, then every matrix $B \in M_{V}$ is of the form $B=\left[\alpha_{1} v, \ldots, \alpha_{n} v\right]^{T}$ for some $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{K}$. Suppose $I \subset M_{V}$ is an invariant subspace, by the section above we can assume $I=M_{W}$ for some $W \subset \mathbb{K}^{n}$ linear subspace, that in fact $W \subseteq V$ by the definition of M_{W} and M_{V}, and that $B \in M_{W}$ is not zero. Now $[v, 0 \ldots, 0]=\alpha_{1}^{-1} E_{11} B=L\left(\alpha_{1}^{-1} E_{11}\right)(B) \in M_{W}$ meaning that $v \in W$ and thus $V \subseteq W$.
4. Prove that M_{V} is isomorphic to M_{W} as an $M_{n}(\mathbb{K})$ module if and only if V and W have the same dimension.
\Rightarrow) If $M_{V} \cong M_{W}$, we have $T: M_{V} \longrightarrow M_{W}$ an intertwiner that is an isomorphism, in particular a bijective linear map, so it preserves dimensions and thus $n \operatorname{dim}_{\mathbb{K}}(V)=\operatorname{dim}_{\mathbb{K}}\left(M_{V}\right)=\operatorname{dim}_{\mathbb{K}}\left(M_{W}\right)=n \operatorname{dim}_{\mathbb{K}}(W)$ so $\operatorname{dim}_{\mathbb{K}}(V)=\operatorname{dim}_{\mathbb{K}}(W)$.
$\Leftarrow)$ If $\operatorname{dim}_{\mathbb{K}}(V)=\operatorname{dim}_{\mathbb{K}}(W)$ we set $V=\left\langle v_{1}, \ldots, v_{m}\right\rangle$ and $W=\left\langle w_{1}, \ldots, w_{m}\right\rangle$ as basis, with $m \leq n$. Then we define:

$$
\begin{aligned}
T: & M_{V} \\
E_{i}\left(v_{j}\right) & \longmapsto
\end{aligned} M_{W}
$$

and extend by linearity (they are vector spaces). This sends a basis of M_{V} to a basis of M_{W} in a bijective way, and is a linear transformation by construction. We now prove that it is an intertwiner, noticing that we only need to prove it on the elements of the basis, that is, check that for every $A \in M_{n}(\mathbb{K})$ we have that $A E_{i}\left(w_{j}\right)=L(A) T\left(E_{i}\left(v_{j}\right)\right)=T\left(L(A)\left(E_{i}\left(v_{j}\right)\right)=T\left(A E_{i}\left(v_{j}\right)\right)\right.$ for every $i=1, \ldots, n$ and $j=1, \ldots, m$. For this:

$$
\begin{aligned}
T\left(A E_{i}\left(v_{j}\right)\right) & =T(A[0, \ldots, 0, \stackrel{i}{v} \\
& \left.=T\left(a_{1 i} E_{1}\left(v_{j}\right)+\cdots, 0\right]^{T}\right)=T\left(\left[a_{1 i} v_{j}, \ldots, a_{n i} v_{j}\right]^{T}\right) \\
& \left.=\left[a_{1 i} w_{j}, \ldots, a_{n i} w_{j}\right]^{T}\left(v_{j}\right)\right)=A\left[0, \ldots, 0, a_{1 i} E_{1}\left(w_{j}\right)+\cdots, \ldots, 0\right]^{T}=A E_{n i} E_{n}\left(w_{j}\right)
\end{aligned}
$$

Thus T is indeed an isomorphism of representations, as desired.

Exercise 1.6.2.

Let X, Y be two finite sets, construct an isomorphism $K[X] \otimes K[Y] \cong K[X \times Y]$.
We define:

and notice that it is bilinear since for any $f, \tilde{f} \in K[X], g, \tilde{g} \in K[Y], x \in X, y \in Y$ and $\alpha \in \mathbb{K}$ we have:

$$
\begin{aligned}
\bar{\phi}(f+\tilde{f}, g)(x, y) & =(f+\tilde{f})(x) g(y)=f(x) g(y)+\tilde{f}(x) g(y)=\bar{\phi}(f, g)(x, y)+\bar{\phi}(\tilde{f}, g)(x, y) \\
\bar{\phi}(f, g+\tilde{g})(x, y) & =f(x)(g(y)+\tilde{g}(y))=f(x) g(y)+f(x) \tilde{g}(y)=\bar{\phi}(f, g)(x, y)+\bar{\phi}(f, \tilde{g})(x, y) \\
\bar{\phi}(\alpha f, g)(x, y) & =(\alpha f)(x) g(x)=\alpha f(x) g(x) \\
\bar{\phi}(f, \alpha g)(x, y) & =f(x)(\alpha g)(x)=f(x) \alpha g(x)=\alpha f(x) g(x) \\
\alpha \bar{\phi}(f, g)(x, y) & =\alpha f(x) g(y)
\end{aligned}
$$

and thus there exists a linear $\phi: K[X] \otimes K[Y] \longrightarrow K[X \times Y]$ by the Universal Property of the tensor product.

Notice that on the indicators $1_{x} \in K[X]$ for $x \in X$ and $1_{y} \in K[Y]$ for $y \in Y$ we have that $\bar{\phi}\left(1_{x}, 1_{y}\right)=1_{x} 1_{y}=1_{(x, y)}$ the indicator for $(x, y) \in X \times Y$. Thus $\phi\left(1_{x} \otimes 1_{y}\right)=1_{(x, y)}$ for any $x \in X$ and $y \in Y$. This yields that ϕ is surjective since it is linear and has in the image all the indicators $1_{(x, y)} \in K[X \times Y]$ for $(x, y) \in X \times Y$. To check injectivity, notice that we may write $f \in K[X]$ as $f=\sum_{x \in X} f(x) 1_{x}$ and $g \in K[Y]$ as $g=\sum_{y \in Y} f(y) 1_{y}$, meaning that if $f \otimes g \in \operatorname{ker}(\phi)$ then:

$$
0=\phi(f \otimes g)=\left(\sum_{x \in X} f(x) 1_{x}\right)\left(\sum_{y \in Y} f(y) 1_{y}\right)=\sum_{(x, y) \in X \times Y} f(x) g(y) 1_{(x, y)}
$$

which means that $f(x) g(y)=0$ for all $(x, y) \in X \times Y$ since $1_{(x, y)}$ ranging $(x, y) \in X \times Y$ form a basis of $K[X \times Y]$. This means that either $f(x)=0$ for all $x \in X$ or $g(y)=0$ for all $y \in Y$, as if we suppose that there exists $\tilde{x} \in X$ with $f(\tilde{x}) \neq 0$ then $f(\tilde{x}) g(y)=0$ for all $y \in Y$ implies $g(y)=0$ for all $y \in Y$ since \mathbb{K} is a field. Thus $f 0$ or $g=0$ respectively, and in either case $f \otimes g=0$, obtaining injectivity.

Thus ϕ is a linear bijection, thus an isomorphism, as desired.

Exercise 1.6.3.

Show that if $S: V_{1} \longrightarrow V_{2}$ and $T: W_{1} \longrightarrow W_{2}$ are linear maps (and $V_{1}, V_{2}, W_{1}, W_{2}$ finite dimensional) then $\bar{\phi}: \operatorname{Hom}_{\mathbb{K}}\left(V_{1}, V_{2}\right) \times \operatorname{Hom}_{\mathbb{K}}\left(W_{1}, W_{2}\right) \longrightarrow \operatorname{Hom}_{\mathbb{K}}\left(V_{1} \otimes W_{1}, V_{2} \otimes W_{2}\right)$ given by $\bar{\phi}(S, T)=S \otimes T$ induces an isomorphism $\phi: \operatorname{Hom}_{\mathbb{K}}\left(V_{1}, V_{2}\right) \otimes \operatorname{Hom}_{\mathbb{K}}\left(W_{1}, W_{2}\right) \longrightarrow$ $\operatorname{Hom}_{\mathbb{K}}\left(V_{1} \otimes W_{1}, V_{2} \otimes W_{2}\right)$.

Notice that $\bar{\phi}$ is bilinear since for any $S, \tilde{S} \in \operatorname{Hom}_{\mathbb{K}}\left(V_{1}, V_{2}\right), T, \tilde{T} \in \operatorname{Hom}_{\mathbb{K}}\left(W_{1}, W_{2}\right)$ and $\alpha \in \mathbb{K}$ we have:

$$
\begin{aligned}
\bar{\phi}(S+\tilde{S}, T) & =(S+\tilde{S}) \otimes T=S \otimes T+\tilde{S} \otimes T=\bar{\phi}(S, T)+\bar{\phi}(\tilde{S}, T) \\
\bar{\phi}(S, T+\tilde{T}) & =S \otimes(T+\tilde{T})=S \otimes T+S \otimes \tilde{T}=\bar{\phi}(S, T)+\bar{\phi}(S, \tilde{T}) \\
\bar{\phi}(\alpha S, T) & =(\alpha S) \otimes T=\alpha(S \otimes T) \\
\bar{\phi}(S, \alpha T) & =S \otimes(\alpha T)=\alpha(S \otimes T) \\
\alpha \bar{\phi}(S, T) & =\alpha(S \otimes T)
\end{aligned}
$$

and thus there exists a linear $\phi: \operatorname{Hom}_{\mathbb{K}}\left(V_{1}, V_{2}\right) \otimes \operatorname{Hom}_{\mathbb{K}}\left(W_{1}, W_{2}\right) \longrightarrow \operatorname{Hom}_{\mathbb{K}}\left(V_{1} \otimes W_{1}, V_{2} \otimes W_{2}\right)$ by the Universal Property of the tensor product.

We first notice that the dimensions of the range and target of ϕ are the same:

$$
\begin{aligned}
\operatorname{dim}_{\mathbb{K}}\left(\operatorname{Hom}_{\mathbb{K}}\left(V_{1}, V_{2}\right) \otimes \operatorname{Hom}_{\mathbb{K}}\left(W_{1}, W_{2}\right)\right) & =\operatorname{dim}_{\mathbb{K}}\left(\operatorname{Hom}_{\mathbb{K}}\left(V_{1}, V_{2}\right)\right) \operatorname{dim}_{\mathbb{K}}\left(\operatorname{Hom}_{\mathbb{K}}\left(W_{1}, W_{2}\right)\right) \\
& =\operatorname{dim}_{\mathbb{K}}\left(V_{1}\right) \operatorname{dim}_{\mathbb{K}}\left(V_{2}\right) \operatorname{dim}_{\mathbb{K}}\left(W_{1}\right) \operatorname{dim}_{\mathbb{K}}\left(W_{2}\right) \\
& =\operatorname{dim}_{\mathbb{K}}\left(V_{1}\right) \operatorname{dim}_{\mathbb{K}}\left(W_{1}\right) \operatorname{dim}_{\mathbb{K}}\left(V_{2}\right) \operatorname{dim}_{\mathbb{K}}\left(W_{2}\right) \\
& =\operatorname{dim}_{\mathbb{K}}\left(V_{1} \otimes W_{1}\right) \operatorname{dim}_{\mathbb{K}}\left(V_{2} \otimes W_{2}\right) \\
& =\operatorname{dim}_{\mathbb{K}}\left(\operatorname{Hom}_{\mathbb{K}}\left(V_{1} \otimes W_{1}, V_{2} \otimes W_{2}\right)\right)
\end{aligned}
$$

and thus to prove that it is bijective it suffices to check that it establishes a bijection between the elements of the basis of $\operatorname{Hom}_{\mathbb{K}}\left(V_{1}, V_{2}\right) \otimes \operatorname{Hom}_{\mathbb{K}}\left(W_{1}, W_{2}\right)$ and $\operatorname{Hom}_{\mathbb{K}}\left(V_{1} \otimes W_{1}, V_{2} \otimes W_{2}\right)$. For this, we set $V_{1}=\left\langle v_{1}^{1}, \ldots, v_{n_{1}}^{1}\right\rangle, V_{2}=\left\langle v_{1}^{2}, \ldots, v_{n_{2}}^{2}\right\rangle, W_{1}=\left\langle w_{1}^{1}, \ldots, w_{m_{1}}^{1}\right\rangle, W_{2}=$ $\left\langle w_{1}^{2}, \ldots, w_{m_{2}}^{2}\right\rangle$ be the basis of the respective spaces. Then $\operatorname{Hom}_{\mathbb{K}}\left(V_{1}, V_{2}\right)$ has basis $A_{i j}$ the matrix having 1 in the position (i, j) and 0 elsewhere, for $1 \leq i \leq n_{2}$ and $1 \leq j \leq n_{1}$, $\operatorname{Hom}_{\mathbb{K}}\left(W_{1}, W_{2}\right)$ has basis $B_{k l}$ the matrix having 1 in the position (k, l) and 0 elsewhere, for $1 \leq k \leq m_{2}$ and $1 \leq l \leq m_{1}$. Thus $\operatorname{Hom}_{\mathbb{K}}\left(V_{1}, V_{2}\right) \otimes \operatorname{Hom}_{\mathbb{K}}\left(W_{1}, W_{2}\right)$ has the usual basis in terms of these two and $\operatorname{Hom}_{\mathbb{K}}\left(V_{1} \otimes W_{1}, V_{2} \otimes W_{2}\right)$ has basis $C_{s t}$ the matrix having 1 in the position (s, t) and 0 elsewhere, for $1 \leq s \leq n_{2} m_{2}$ and $1 \leq t \leq n_{1} m_{1}$, where in both cases the order of the basis elements is the usual one corresponding to the tensor product.

We will now fix $1 \leq i \leq n_{2}, 1 \leq j \leq n_{1}, 1 \leq k \leq m_{2}, 1 \leq l \leq m_{1}$ and compute the $\operatorname{map} \phi\left(A_{i j} \otimes B_{k l}\right)=A_{i j} \otimes B_{k l}$ applied to the elements of the basis of $V_{1} \otimes W_{1}$: notice by the above that $A_{i j}\left(v_{p}^{1}\right)=\delta_{j p} v_{i}^{2}$ and $B_{k l}\left(w_{q}^{1}\right)=\delta_{l q} w_{k}^{2}$, so:

$$
\left(A_{i j} \otimes B_{k l}\right)\left(v_{p}^{1} \otimes w_{q}^{1}\right)=A_{i j}\left(v_{p}^{1}\right) \otimes B_{k l}\left(w_{q}^{1}\right)=\left(\delta_{j p} v_{i}^{2}\right) \otimes\left(\delta_{l q} w_{k}^{2}\right)
$$

and for this to be non zero we need $j=p$ and $l=q$, and in that case $A_{i j} \otimes B_{k l}$ is the matrix with a 1 in the position $\left(m_{2}(i-1)+k, m_{1}(j-1)+l\right)$. The way to notice
this is that in matrix form, the row (that is the first component) is determined by the position of the basis element in the target space, while the column (that is the second component) is determined by the position of the basis element in the range space. Thus going to the element basis $v_{i}^{1} \otimes w_{k}^{1}$, which is in the position $m_{1}(i-1)+k$, from the element basis $v_{j}^{1} \otimes w_{l}^{1}$, which is in the position $m_{1}(j-1)+l$, requires the matrix with a 1 in the position $\left(m_{2}(i-1)+k, m_{1}(j-1)+l\right)$.

Thus the map ϕ is clearly a bijective one since we indeed have in its image all the elements of the basis of $\operatorname{Hom}_{\mathbb{K}}\left(V_{1} \otimes W_{1}, V_{2} \otimes W_{2}\right)$. Thus ϕ is a bijective linear transformation so indeed an isomorphism. Moreover, notice that the computation above establishes that $\operatorname{Im}(\phi)$ is indeed the usual definition of tensor product among matrices, otherwise known as Kronecker product. This will be extremely useful for the following exercise.

Exercise 1.6.4.

Show that if $S: V_{1} \longrightarrow V_{2}$ and $T: W_{1} \longrightarrow W_{2}$ are linear maps (and $V_{1}, V_{2}, W_{1}, W_{2}$ finite dimensional) then $\operatorname{Tr}(S \otimes T)=\operatorname{Tr}(S) \operatorname{Tr}(T)$.

Fixing the basis above (we must have $n_{1}=n_{2}=n$ and $m_{1}=m_{2}=m$ to compute the trace) and considering both S and T as matrices, say $S=\left(s_{i j}\right)_{i, j=1, \ldots, n}$ and $T=$ $\left(t_{k l}\right)_{k, l=1, \ldots, m}$, then using that $S \otimes T$ is the Kronecker product, we find that:

$$
\begin{aligned}
\operatorname{Tr}(S \otimes T) & =\operatorname{Tr}\left[\begin{array}{ccc}
s_{11} T & \cdots & s_{1 n} T \\
\vdots & & \vdots \\
s_{n 1} T & \cdots & s_{n n} T
\end{array}\right]=s_{11} \operatorname{Tr}(T)+\cdots+s_{n n} \operatorname{Tr}(T) \\
& =\left(\sum_{i=1}^{n} s_{i i}\right) \operatorname{Tr}(T)=\operatorname{Tr}(S) \operatorname{Tr}(T)
\end{aligned}
$$

as desired.

Exercise 1.6.8.

Let (ρ, V) and (σ, W) be representations of groups G and H respectively, then $\left(\rho^{\prime} \boxtimes\right.$ $\left.\sigma, V^{\prime} \otimes W\right)$ is a representation of $G \times H$. Also, $\operatorname{Hom}_{\mathbb{K}}(V, W)$ is a representation of $G \times H$ via $\tau: G \times H \longrightarrow \mathrm{GL}\left(\operatorname{Hom}_{\mathbb{K}}(V, W)\right)$ given by $\tau(g, h)(T)=\sigma(h) \circ T \circ \rho(g)^{-1}$. Show that the isomorphism $T: V^{\prime} \otimes W \longrightarrow \operatorname{Hom}_{\mathbb{K}}(V, W)$ induced by $\bar{T}: V^{\prime} \times W \longrightarrow \operatorname{Hom}_{\mathbb{K}}(V, W)$ given by $\bar{T}(\xi, y)(x)=\xi(x) y$ is an intertwiner of the representations of $G \times H$, and thus $V^{\prime} \otimes W \cong \operatorname{Hom}_{\mathbb{K}}(V, W)$ as representations of $G \times H$.

For T to be an intertwiner we must have for every $(g, h) \in G \times H$ that $\tau(g, h) \circ T=$ $T \circ\left(\rho^{\prime} \boxtimes \sigma\right)(g, h)$, so given any $\xi \otimes y \in V^{\prime} \otimes W$ and $x \in V$, it is enough to prove that $\tau(g, h) \circ T(\xi \otimes y)(x)=T \circ\left(\rho^{\prime} \boxtimes \sigma\right)(g, h)(\xi \otimes y)(x)$. This is true:

$$
\begin{aligned}
\tau(g, h) \circ T(\xi \otimes y)(x) & =\left(\sigma(h) \circ T(\xi \otimes y) \circ \rho(g)^{-1}\right)(x)=\sigma(h)\left(T(\xi \circ y)\left(\rho(g)^{-1}(x)\right)\right) \\
& =\sigma(h)\left(\xi\left(\rho(g)^{-1}(x)\right) y\right)=\xi\left(\rho(g)^{-1}(x)\right) \sigma(h)(y) \\
T \circ\left(\rho^{\prime} \boxtimes \sigma\right)(g, h)(\xi \otimes y)(x) & =T\left(\left(\rho^{\prime}(g) \otimes \sigma(h)\right)(\xi \otimes y)\right)(x)=T\left(\rho^{\prime}(g)(\xi) \otimes \sigma(h)(y)\right)(x) \\
& =\rho^{\prime}(g)(\xi)(x) \sigma(h)(y)
\end{aligned}
$$

which are indeed equal since by definition ρ^{\prime} is given by $\rho^{\prime}(g)(\xi)(x)=\xi\left(\rho(g)^{-1}(x)\right)$ for all $g \in G, \xi \in V^{\prime}$ and $x \in V$. Thus we obtain the desired commutativity and thus T is an intertwiner.

References

[1] A. Prasad, Representation Theory: A Combinatorial Viewpoint, Cambridge studies in advanced mathematics, 2015.
[2] T. W. Hungerford, Algebra, Springer-Verlag, 1974.

