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Exercise 1.5.9.

For each V' C K" linear subspace, define My the set of all matrices whose rows (as
elements of K") lie in V.

1. Prove that My is an invariant subspace of the left regular M, (K) module of di-
mension n dimg (V).

We can consider elements B € My as B = [by, - ,b,]T. We clearly have that
this is a subspace of M, (K) since 0,x, € M,(K) because 0 € V, if C € My as
C = e, ,cy)T then B4+ C = [by +c1,...,b, +¢y] € My and if o € K then

aB = |aby,...,ab,] € My, all three true because V is a linear subspace.
To see that it is invariant, given any A € M, (K) with entries a;; for i,j =1,...,n,
notice how: .
2 im1 @1ibi
LAYB) =AB=|
> i1 Gnibi

and since V is a linear subspace of K, we have that Y ;"  ajb; € V for all j =
1,...,n and thus L(A)(B) € My and My is invariant.

To compute the dimension, let V' = (v1,...,v,,) be a basis, so m < n is the
dimension of V. Consider F;(vj) the matrix with the vector v; in the i-th row
fori=1,...,nand j =1,...,n, notice that there are nm = ndimg (V) of them.

We now prove that they generate: let B € My as above, then b, = Z;n:l Qv
for some a;; e Kfori=1,...,nand j =1,...,m,s0 B=>1", Z;”Zl a;i E;(v))
and hence these matrices indeed generate. We now prove that they are linearly
independent: if we have Oy xp = > 1y Z;n:l @;; Ei(vj) for some coefficients o;; € K
fori=1,...,nand j = 1,...,m. If we look at this equality row by row, this
means that as elements of V' we have: 0 = Z;n:l ajv; for i =1,...,n and j =
1,...,m, and since this is a linear combination of the elements of the basis that
adds up to zero, we must have that a;; = 0 for i = 1,...,nand j = 1,...,m,
thus the considered matrices are indeed linearly independent. This proves that
{E;i(vy) Z:llm is a basis of My, thus dimg(My ) = ndimg (V) as desired.

,n

2. Prove that every invariant subspace of the left regular M, (K) module is of the
form My for some V C K" linear subspace.

Let I € M, (K) be an invariant subspace, we define:
V ={be K" :3B € I having b as a row},

we first notice that if an element b € V, we can assume that it appears as the
first row of a matrix B and the rest are 0: suppose b = B; the i-th element
in B = [by,...,b,]T, consider Ey; the matrix with a 1 in the position (1,7) and
0 elsewhere, then since I is an invariant subspace we have that [b;,0...,0]7 =
E\,B = L(Ey;)(B) € I, so we may take this matrix.



We clearly have that My = I by definition, so we just need to prove that V C K"
is a linear subspace. For this, we clearly have that 0 € V since we can multiply
by Opxn € M,(K), let o € K and b € V appearing in B = [b,0...,0]7, then
[ab,0,...,0]" = aF;1B = L(aF1)(B) € I so ab € V, let ¢ € V appearing in
C = 1[c,0...,0]”, then [b+¢,0,...,0] = B+C € Isob+cecV. Then V is
indeed a linear subspace.

. Prove that My is simple if and only if V is one dimensional.

=) If My is simple, suppose dimg (V) = 2, say V = (vi,v2) is a basis. Then
M,y € My is invariant by the first section above and proper since it is not zero
since 0 # [v1,0...,0]T € M,y and it is not everything since [v2,0, . .. 0T ¢ My
since they are linearly independent. If dimg (V') > 2, it always has a linear subspace
of dimension 2 (take any two elements of the basis) and thus the above finds a
proper invariant subspace, contradicting simplicity.

<) If dimg (V) = 1 we set V = (v), then every matrix B € My is of the form
B = [a1v,...,a,v]T for some aq,...,q, € K. Suppose I C My is an invariant
subspace, by the section above we can assume I = My for some W C K" linear
subspace, that in fact W C V by the definition of My, and My, and that B € My,
is not zero. Now [v,0...,0] = a;'E11B = L(a; 'E11)(B) € My meaning that
veE W and thus V C W.

. Prove that My is isomorphic to My as an M, (K) module if and only if V and W
have the same dimension.

=) If My = My, we have T : My — My an intertwiner that is an isomor-
phism, in particular a bijective linear map, so it preserves dimensions and thus
ndimg (V) = dimg (My) = dimg(Mw) = ndimg (W) so dimg (V') = dimg(W).
<) If dimg (V) = dimg(W) we set V. = (v1,...,0) and W = (wy,...,wy,) as
basis, with m < n. Then we define:
T MV — MW
Ei(vj) — Ei(wj)
and extend by linearity (they are vector spaces). This sends a basis of My to a
basis of My in a bijective way, and is a linear transformation by construction.
We now prove that it is an intertwiner, noticing that we only need to prove it on
the elements of the basis, that is, check that for every A € M, (K) we have that
AE;(wj) = L(A)T (E;(vj)) = T(L(A)(Ei(vj)) = T(AE;(vj)) for every i =1,...,n
and j = 1,...,m. For this:
i)
T(AEZ'(UJ')) = T(A[O, ce ,0, Vs, O, ey O]T) = T([auvj, cee ,am-vj]T)
=T(a1iE1(vj) + -+ + aniEn(v))) = aniEr(w;) + -+ + ani By (w;)
i)

= [aliwj, ey am-wj]T = A[O, ce ,O,w]’, 0, ce ,O]T = AEl(U}j)

Thus T is indeed an isomorphism of representations, as desired.



Exercise 1.6.2.

Let X, Y be two finite sets, construct an isomorphism K[X|® K[Y] = K[X x Y].
We define:

¢+ KIX]®K[Y] — K[XxY]
(f,9) —  o(f,9) = X xY — K
(z,y) > f(x)g(z)

and notice that it is bilinear since for any f, f € K[X],9,g€ K[Y],z€ X,y €Y and
a € K we have:

o(f + F.9) (@) = (f + H@)g(y) = F@)g(y) + f(2)g(y) = (f, 9)(x,y) + 6(f, 9)(x,v)
o(f,9+9)(x,y) = f(x)(9(y) + 3(v) = f(2)g(y) + f(2)a(y) = ([, 9)(z,y) + 6(f,9) (2, y)
olaf, 9)(x,y) = (af)(x)g(z) = af(z)g(x)
o(f,a9)(z,y) = f(z)(ag)(z) = f(z)ag(z) = af(z)g(z)
ad(f,9)(z,y) = af(x)g(y)

and thus there exists a linear ¢ : K[X]® K[Y] — K[X x Y] by the Universal Property
of the tensor product.

Notice that on the indicators 1, € K[X| for x € X and 1, € K[Y] for y € Y we have
that ¢(1,,1,) = 1.1y = 1(;,) the indicator for (z,y) € X x Y. Thus ¢(1, ® 1) = 11,
for any x € X and y € Y. This yields that ¢ is surjective since it is linear and has in the
image all the indicators 1(,,) € K[X x Y] for (z,y) € X xY. To check injectivity, notice
that we may write f € K[X] as f =3 v f(z)lz and g € K[Y] as g = >_ oy f(y)1y
meaning that if f ® g € ker(¢) then:

$(f ©g) = (Zf ) il = Y f@9W)ley

xeX yey (z,y)eX XY

which means that f(z)g(y) = 0 for all (z,y) € X XY since 1(, ) ranging (z,y) € X XY
form a basis of K[X x Y]. This means that either f(z) =0 for all x € X or g(y) = 0 for
all y € Y, as if we suppose that there exists £ € X with f(Z) # 0 then f(Z)g(y) = 0 for
all y € Y implies g(y) = 0 for all y € Y since K is a field. Thus f0 or g = 0 respectively,
and in either case f ® g = 0, obtaining injectivity.

Thus ¢ is a linear bijection, thus an isomorphism, as desired.



Exercise 1.6.3.

Show that if S : Vi — Vo and T : W; — W are linear maps (and Vi, Vo, Wi, Ws finite
dimensional) then ¢ : Homg(Vi,Va) x Homg(Wq, Ws) — Homg (Vi @ Wi, Va @ Wh)
given by ¢(S,T) = S®T induces an isomorphism ¢ : Homg (V1, Vo) @ Homy (W7, Wa) —
HOHI]K(Vl Q@ Wi, Vo ® WQ).

Notice that ¢ is bilinear since for any S, S € Homg (V1, V2), T.T € Homg (W71, Wa)
and a € K we have:

(S+85T)=(S+9)®T=ST+S0T =0¢(S,T)+

) = (5,7)
(S,T+T)=S®(T+T)=SaT+SxT =4(5,T)+ (S

) =

) =

o +¢
2 + (8,7

(S, T)=(a9)@T =a(S®T)

o(S,aT) =S @ (aT) =a(S®T)
ap(S,T) =a(S®T)

and thus there exists a linear ¢ : Homg (V1, Va)®@Homg (W7, Wa) — Homg (V1 @ Wi, Vo ® Wa)
by the Universal Property of the tensor product.
We first notice that the dimensions of the range and target of ¢ are the same:

dimg (Homg (V1, V2) @ Homg (W1, Wa)) = dimg (Homgk (V4 V3)) dimg (Homg (W7, Wa))
= dimg (V1) dimg (V2) dimg (W1) dimg (W2)
= dimg (V1) dimg (W1) dimg (V2) dimg (W2)
= dimg (V7 ® W1) dimg (Va @ W)
= dimg (Homg (V; @ W1, Vo @ W3))

and thus to prove that it is bijective it suffices to check that it establishes a bijection be-
tween the elements of the basis of Hom]K(Vl7 Va)®@Homg (W7, Wa) and Homg (V; @ Wi, Vo @ Wh).
For this, we set Vi = (vi,...,v5), Vo = (vi,...,02), Wi = (wi,...,w},), Wa =
(wi,...,w3,) be the basis of the respectlve spaces. Then Homg (V1, V2) has basis A;j
the matrix having 1 in the position (7, j) and 0 elsewhere, for 1 < i < ng and 1 < j < ngq,
Homg (W7, W3) has basis By the matrix having 1 in the position (k,7) and 0 elsewhere,
for 1 <k <mgand 1 <[ < mj. Thus Homg(V7, V2) ® Homg (W7, W5) has the usual
basis in terms of these two and Homg (V1 ® W7, Vo ® Wy) has basis C; the matrix having
1 in the position (s,t) and 0 elsewhere, for 1 < s < namg and 1 <t < nym;, where in
both cases the order of the basis elements is the usual one corresponding to the tensor
product.

We will now fix 1 <i<mo, 1 <j<mny, 1<k<my 1 <I<mpand compute the
map ¢(A;; ® By) = Aij ® By applied to the elements of the basis of V; ® Wi: notice by
the above that A;; (v;) = §;pv? and Bkl(w;) = Jjw3, so:

(Aij ® Bi)(vy ® wy) = Ajij(v)) ® Br(wg) = (6;507) ® (6qw7)

and for this to be non zero we need j = p and [ = ¢, and in that case A;; ® By is
the matrix with a 1 in the position (mo(i — 1) + k,mi(j — 1) +1). The way to notice



this is that in matrix form, the row (that is the first component) is determined by the
position of the basis element in the target space, while the column (that is the second
component) is determined by the position of the basis element in the range space. Thus
going to the element basis v} ® wi, which is in the position mj(i — 1) + k, from the
element basis 1)]1» ® wll, which is in the position m;(j — 1) 4 [, requires the matrix with a
1 in the position (mo(i — 1) + k,mi(j — 1) +1).

Thus the map ¢ is clearly a bijective one since we indeed have in its image all
the elements of the basis of Homg (V) ® Wi, Vo ® Wy). Thus ¢ is a bijective linear
transformation so indeed an isomorphism. Moreover, notice that the computation above
establishes that Im(¢) is indeed the usual definition of tensor product among matrices,
otherwise known as Kronecker product. This will be extremely useful for the following
exercise.



Exercise 1.6.4.

Show that if S : Vj — V5 and T : W1 — Ws are linear maps (and Vy, Vo, Wy, Wh
finite dimensional) then Tr(S ® T') = Tr(S)Tr(T).

Fixing the basis above (we must have ny = ns = n and m; = ms = m to compute
the trace) and considering both S and T as matrices, say S = (8ij)ij=1,..n and T =
(tki)k,i=1,...m, then using that S ® T" is the Kronecker product, we find that:

811T tee SlnT
Tr(ST)=Tr| : : =snTre(T) + - + spn Tr(7T)
San ce STmT

_ (Z s> Te(T) = Tr(S)Tx(T)

as desired.



Exercise 1.6.8.

Let (p,V) and (o, W) be representations of groups G and H respectively, then (p’ X
o, V'@ W) is a representation of G x H. Also, Homg (V, W) is a representation of G x H
via 7 : G x H — GL(Homg (V, W)) given by 7(g,h)(T) = o(h) o T o p(g)~*. Show that
the isomorphism T : V' @ W —s Homg (V, W) induced by T : V! x W — Homg (V, W)
given by T'(¢,y)(z) = £(x)y is an intertwiner of the representations of G x H, and thus
V' @ W = Homg (V, W) as representations of G x H.

For T to be an intertwiner we must have for every (g,h) € G x H that 7(g,h) o T =
To(pXo)(g,h), so given any E @y € V' ® W and = € V, it is enough to prove that

7(g,h) o T(E®@y)(x) =T o (p Ko)(g,h)(§ ®y)(x). This is true:

7(g,h) o T( @ y)(x) = (a(h) o T(E @ y) 0 plg) ") (x) = o (h)(T(E 0y
a(h)(&(p(g) " (z))y) = &(p
T((¢'(9) @ o (h)) )
p'(9)(€)(x)a(h)(y

which are indeed equal since by definition p’ is given by p'(9)(€)(z) = &(p(g)~*(z)) for
all g € G, £ € V' and z € V. Thus we obtain the desired commutativity and thus T is
an intertwiner.
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o (p'Ma)(g,h)(€@y)(x)
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