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Exercise 1.5.9.

For each V ⊆ Kn linear subspace, define MV the set of all matrices whose rows (as
elements of Kn) lie in V .

1. Prove that MV is an invariant subspace of the left regular Mn(K) module of di-
mension n dimK(V ).

We can consider elements B ∈ MV as B = [b1, · · · , bn]T . We clearly have that
this is a subspace of Mn(K) since 0n×n ∈ Mn(K) because 0 ∈ V , if C ∈ MV as
C = [c1, · · · , cn]T then B + C = [b1 + c1, . . . , bn + cn] ∈ MV and if α ∈ K then
αB = [αb1, . . . , αbn] ∈MV , all three true because V is a linear subspace.

To see that it is invariant, given any A ∈Mn(K) with entries aij for i, j = 1, . . . , n,
notice how:

L(A)(B) = AB =


∑n

i=1 a1ibi
...∑n

i=1 anibi


and since V is a linear subspace of K, we have that

∑n
i=1 ajibi ∈ V for all j =

1, . . . , n and thus L(A)(B) ∈MV and MV is invariant.

To compute the dimension, let V = 〈v1, . . . , vm〉 be a basis, so m ≤ n is the
dimension of V . Consider Ei(vj) the matrix with the vector vj in the i-th row
for i = 1, . . . , n and j = 1, . . . , n, notice that there are nm = n dimK(V ) of them.
We now prove that they generate: let B ∈ MV as above, then bi =

∑m
j=1 αijvj

for some αij ∈ K for i = 1, . . . , n and j = 1, . . . ,m, so B =
∑n

i=1

∑m
j=1 αijEi(vj)

and hence these matrices indeed generate. We now prove that they are linearly
independent: if we have 0n×n =

∑n
i=1

∑m
j=1 αijEi(vj) for some coefficients αij ∈ K

for i = 1, . . . , n and j = 1, . . . ,m. If we look at this equality row by row, this
means that as elements of V we have: 0 =

∑m
j=1 αijvj for i = 1, . . . , n and j =

1, . . . ,m, and since this is a linear combination of the elements of the basis that
adds up to zero, we must have that αij = 0 for i = 1, . . . , n and j = 1, . . . ,m,
thus the considered matrices are indeed linearly independent. This proves that
{Ei(vj)}j=1,...,m

i=1,...,n is a basis of MV , thus dimK(MV ) = n dimK(V ) as desired.

2. Prove that every invariant subspace of the left regular Mn(K) module is of the
form MV for some V ⊆ Kn linear subspace.

Let I ⊆Mn(K) be an invariant subspace, we define:

V = {b ∈ Kn : ∃B ∈ I having b as a row},

we first notice that if an element b ∈ V , we can assume that it appears as the
first row of a matrix B and the rest are 0: suppose b = Bj the i-th element
in B = [b1, . . . , bn]T , consider E1i the matrix with a 1 in the position (1, i) and
0 elsewhere, then since I is an invariant subspace we have that [bi, 0 . . . , 0]T =
E1iB = L(E1i)(B) ∈ I, so we may take this matrix.
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We clearly have that MV = I by definition, so we just need to prove that V ⊆ Kn

is a linear subspace. For this, we clearly have that 0 ∈ V since we can multiply
by 0n×n ∈ Mn(K), let α ∈ K and b ∈ V appearing in B = [b, 0 . . . , 0]T , then
[αb, 0, . . . , 0]T = αE11B = L(αE11)(B) ∈ I so αb ∈ V , let c ∈ V appearing in
C = [c, 0 . . . , 0]T , then [b + c, 0, . . . , 0]T = B + C ∈ I so b + c ∈ V . Then V is
indeed a linear subspace.

3. Prove that MV is simple if and only if V is one dimensional.

⇒) If MV is simple, suppose dimK(V ) = 2, say V = 〈v1, v2〉 is a basis. Then
M〈v1〉 ⊆ MV is invariant by the first section above and proper since it is not zero

since 0 6= [v1, 0 . . . , 0]T ∈M〈v1〉 and it is not everything since [v2, 0, . . . , 0]T /∈M〈v1〉
since they are linearly independent. If dimK(V ) ≥ 2, it always has a linear subspace
of dimension 2 (take any two elements of the basis) and thus the above finds a
proper invariant subspace, contradicting simplicity.

⇐) If dimK(V ) = 1 we set V = 〈v〉, then every matrix B ∈ MV is of the form
B = [α1v, . . . , αnv]T for some α1, . . . , αn ∈ K. Suppose I ⊂ MV is an invariant
subspace, by the section above we can assume I = MW for some W ⊂ Kn linear
subspace, that in fact W ⊆ V by the definition of MW and MV , and that B ∈MW

is not zero. Now [v, 0 . . . , 0] = α−11 E11B = L(α−11 E11)(B) ∈ MW meaning that
v ∈W and thus V ⊆W .

4. Prove that MV is isomorphic to MW as an Mn(K) module if and only if V and W
have the same dimension.

⇒) If MV
∼= MW , we have T : MV −→ MW an intertwiner that is an isomor-

phism, in particular a bijective linear map, so it preserves dimensions and thus
n dimK(V ) = dimK(MV ) = dimK(MW ) = n dimK(W ) so dimK(V ) = dimK(W ).

⇐) If dimK(V ) = dimK(W ) we set V = 〈v1, . . . , vm〉 and W = 〈w1, . . . , wm〉 as
basis, with m ≤ n. Then we define:

T : MV −→ MW

Ei(vj) 7−→ Ei(wj)

and extend by linearity (they are vector spaces). This sends a basis of MV to a
basis of MW in a bijective way, and is a linear transformation by construction.
We now prove that it is an intertwiner, noticing that we only need to prove it on
the elements of the basis, that is, check that for every A ∈ Mn(K) we have that
AEi(wj) = L(A)T (Ei(vj)) = T (L(A)(Ei(vj)) = T (AEi(vj)) for every i = 1, . . . , n
and j = 1, . . . ,m. For this:

T (AEi(vj)) = T (A[0, . . . , 0,
i)
vj , 0, . . . , 0]T ) = T ([a1ivj , . . . , anivj ]

T )

= T (a1iE1(vj) + · · ·+ aniEn(vj)) = a1iE1(wj) + · · ·+ aniEn(wj)

= [a1iwj , . . . , aniwj ]
T = A[0, . . . , 0,

i)
wj , 0, . . . , 0]T = AEi(wj).

Thus T is indeed an isomorphism of representations, as desired.
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Exercise 1.6.2.

Let X, Y be two finite sets, construct an isomorphism K[X]⊗K[Y ] ∼= K[X × Y ].
We define:

φ : K[X]⊗K[Y ] −→ K[X × Y ]

(f, g) −→ φ(f, g) : X × Y −→ K
(x, y) 7−→ f(x)g(x)

and notice that it is bilinear since for any f, f̃ ∈ K[X], g, g̃ ∈ K[Y ], x ∈ X, y ∈ Y and
α ∈ K we have:

φ(f + f̃ , g)(x, y) = (f + f̃)(x)g(y) = f(x)g(y) + f̃(x)g(y) = φ(f, g)(x, y) + φ(f̃ , g)(x, y)

φ(f, g + g̃)(x, y) = f(x)(g(y) + g̃(y)) = f(x)g(y) + f(x)g̃(y) = φ(f, g)(x, y) + φ(f, g̃)(x, y)

φ(αf, g)(x, y) = (αf)(x)g(x) = αf(x)g(x)

φ(f, αg)(x, y) = f(x)(αg)(x) = f(x)αg(x) = αf(x)g(x)

αφ(f, g)(x, y) = αf(x)g(y)

and thus there exists a linear φ : K[X]⊗K[Y ] −→ K[X ×Y ] by the Universal Property
of the tensor product.

Notice that on the indicators 1x ∈ K[X] for x ∈ X and 1y ∈ K[Y ] for y ∈ Y we have
that φ(1x, 1y) = 1x1y = 1(x,y) the indicator for (x, y) ∈ X × Y . Thus φ(1x ⊗ 1y) = 1(x,y)
for any x ∈ X and y ∈ Y . This yields that φ is surjective since it is linear and has in the
image all the indicators 1(x,y) ∈ K[X×Y ] for (x, y) ∈ X×Y . To check injectivity, notice
that we may write f ∈ K[X] as f =

∑
x∈X f(x)1x and g ∈ K[Y ] as g =

∑
y∈Y f(y)1y,

meaning that if f ⊗ g ∈ ker(φ) then:

0 = φ(f ⊗ g) =

(∑
x∈X

f(x)1x

)∑
y∈Y

f(y)1y

 =
∑

(x,y)∈X×Y

f(x)g(y)1(x,y)

which means that f(x)g(y) = 0 for all (x, y) ∈ X×Y since 1(x,y) ranging (x, y) ∈ X×Y
form a basis of K[X ×Y ]. This means that either f(x) = 0 for all x ∈ X or g(y) = 0 for
all y ∈ Y , as if we suppose that there exists x̃ ∈ X with f(x̃) 6= 0 then f(x̃)g(y) = 0 for
all y ∈ Y implies g(y) = 0 for all y ∈ Y since K is a field. Thus f0 or g = 0 respectively,
and in either case f ⊗ g = 0, obtaining injectivity.

Thus φ is a linear bijection, thus an isomorphism, as desired.
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Exercise 1.6.3.

Show that if S : V1 −→ V2 and T : W1 −→W2 are linear maps (and V1, V2, W1, W2 finite
dimensional) then φ : HomK(V1, V2) × HomK(W1,W2) −→ HomK(V1 ⊗W1, V2 ⊗W2)
given by φ(S, T ) = S⊗T induces an isomorphism φ : HomK(V1, V2)⊗HomK(W1,W2) −→
HomK(V1 ⊗W1, V2 ⊗W2).

Notice that φ is bilinear since for any S, S̃ ∈ HomK(V1, V2), T, T̃ ∈ HomK(W1,W2)
and α ∈ K we have:

φ(S + S̃, T ) = (S + S̃)⊗ T = S ⊗ T + S̃ ⊗ T = φ(S, T ) + φ(S̃, T )

φ(S, T + T̃ ) = S ⊗ (T + T̃ ) = S ⊗ T + S ⊗ T̃ = φ(S, T ) + φ(S, T̃ )

φ(αS, T ) = (αS)⊗ T = α(S ⊗ T )

φ(S, αT ) = S ⊗ (αT ) = α(S ⊗ T )

αφ(S, T ) = α(S ⊗ T )

and thus there exists a linear φ : HomK(V1, V2)⊗HomK(W1,W2) −→ HomK(V1 ⊗W1, V2 ⊗W2)
by the Universal Property of the tensor product.

We first notice that the dimensions of the range and target of φ are the same:

dimK(HomK(V1, V2)⊗HomK(W1,W2)) = dimK(HomK(V1, V2)) dimK(HomK(W1,W2))

= dimK(V1) dimK(V2) dimK(W1) dimK(W2)

= dimK(V1) dimK(W1) dimK(V2) dimK(W2)

= dimK(V1 ⊗W1) dimK(V2 ⊗W2)

= dimK(HomK(V1 ⊗W1, V2 ⊗W2))

and thus to prove that it is bijective it suffices to check that it establishes a bijection be-
tween the elements of the basis of HomK(V1, V2)⊗HomK(W1,W2) and HomK(V1 ⊗W1, V2 ⊗W2).
For this, we set V1 = 〈v11, . . . , v1n1

〉, V2 = 〈v21, . . . , v2n2
〉, W1 = 〈w1

1, . . . , w
1
m1
〉, W2 =

〈w2
1, . . . , w

2
m2
〉 be the basis of the respective spaces. Then HomK(V1, V2) has basis Aij

the matrix having 1 in the position (i, j) and 0 elsewhere, for 1 ≤ i ≤ n2 and 1 ≤ j ≤ n1,
HomK(W1,W2) has basis Bkl the matrix having 1 in the position (k, l) and 0 elsewhere,
for 1 ≤ k ≤ m2 and 1 ≤ l ≤ m1. Thus HomK(V1, V2) ⊗ HomK(W1,W2) has the usual
basis in terms of these two and HomK(V1 ⊗W1, V2 ⊗W2) has basis Cst the matrix having
1 in the position (s, t) and 0 elsewhere, for 1 ≤ s ≤ n2m2 and 1 ≤ t ≤ n1m1, where in
both cases the order of the basis elements is the usual one corresponding to the tensor
product.

We will now fix 1 ≤ i ≤ n2, 1 ≤ j ≤ n1, 1 ≤ k ≤ m2, 1 ≤ l ≤ m1 and compute the
map φ(Aij ⊗Bkl) = Aij ⊗Bkl applied to the elements of the basis of V1⊗W1: notice by
the above that Aij(v

1
p) = δjpv

2
i and Bkl(w

1
q) = δlqw

2
k, so:

(Aij ⊗Bkl)(v
1
p ⊗ w1

q) = Aij(v
1
p)⊗Bkl(w

1
q) = (δjpv

2
i )⊗ (δlqw

2
k)

and for this to be non zero we need j = p and l = q, and in that case Aij ⊗ Bkl is
the matrix with a 1 in the position (m2(i − 1) + k,m1(j − 1) + l). The way to notice
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this is that in matrix form, the row (that is the first component) is determined by the
position of the basis element in the target space, while the column (that is the second
component) is determined by the position of the basis element in the range space. Thus
going to the element basis v1i ⊗ w1

k, which is in the position m1(i − 1) + k, from the
element basis v1j ⊗w1

l , which is in the position m1(j − 1) + l, requires the matrix with a
1 in the position (m2(i− 1) + k,m1(j − 1) + l).

Thus the map φ is clearly a bijective one since we indeed have in its image all
the elements of the basis of HomK(V1 ⊗W1, V2 ⊗W2). Thus φ is a bijective linear
transformation so indeed an isomorphism. Moreover, notice that the computation above
establishes that Im(φ) is indeed the usual definition of tensor product among matrices,
otherwise known as Kronecker product. This will be extremely useful for the following
exercise.
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Exercise 1.6.4.

Show that if S : V1 −→ V2 and T : W1 −→ W2 are linear maps (and V1, V2, W1, W2

finite dimensional) then Tr(S ⊗ T ) = Tr(S)Tr(T ).
Fixing the basis above (we must have n1 = n2 = n and m1 = m2 = m to compute

the trace) and considering both S and T as matrices, say S = (sij)i,j=1,...,n and T =
(tkl)k,l=1,...,m, then using that S ⊗ T is the Kronecker product, we find that:

Tr(S ⊗ T ) = Tr

s11T · · · s1nT
...

...
sn1T · · · snnT

 = s11Tr(T ) + · · ·+ snnTr(T )

=

(
n∑

i=1

sii

)
Tr(T ) = Tr(S)Tr(T )

as desired.
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Exercise 1.6.8.

Let (ρ, V ) and (σ,W ) be representations of groups G and H respectively, then (ρ′ �
σ, V ′⊗W ) is a representation of G×H. Also, HomK(V,W ) is a representation of G×H
via τ : G×H −→ GL(HomK(V,W )) given by τ(g, h)(T ) = σ(h) ◦ T ◦ ρ(g)−1. Show that
the isomorphism T : V ′⊗W −→ HomK(V,W ) induced by T : V ′×W −→ HomK(V,W )
given by T (ξ, y)(x) = ξ(x)y is an intertwiner of the representations of G×H, and thus
V ′ ⊗W ∼= HomK(V,W ) as representations of G×H.

For T to be an intertwiner we must have for every (g, h) ∈ G×H that τ(g, h) ◦ T =
T ◦ (ρ′ � σ)(g, h), so given any ξ ⊗ y ∈ V ′ ⊗W and x ∈ V , it is enough to prove that
τ(g, h) ◦ T (ξ ⊗ y)(x) = T ◦ (ρ′ � σ)(g, h)(ξ ⊗ y)(x). This is true:

τ(g, h) ◦ T (ξ ⊗ y)(x) = (σ(h) ◦ T (ξ ⊗ y) ◦ ρ(g)−1)(x) = σ(h)(T (ξ ◦ y)(ρ(g)−1(x)))

= σ(h)(ξ(ρ(g)−1(x))y) = ξ(ρ(g)−1(x))σ(h)(y)

T ◦ (ρ′ � σ)(g, h)(ξ ⊗ y)(x) = T ((ρ′(g)⊗ σ(h))(ξ ⊗ y))(x) = T (ρ′(g)(ξ)⊗ σ(h)(y))(x)

= ρ′(g)(ξ)(x)σ(h)(y)

which are indeed equal since by definition ρ′ is given by ρ′(g)(ξ)(x) = ξ(ρ(g)−1(x)) for
all g ∈ G, ξ ∈ V ′ and x ∈ V . Thus we obtain the desired commutativity and thus T is
an intertwiner.
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