Representations of Finite Groups - Homework 5
Pablo Sánchez Ocal
March 7th, 2018

Exercise 2.1.13.

For each $x \in X$, denote by 1_{x} the indicator at x. Show that $\rho_{X}(g)\left(1_{x}\right)=1_{g \cdot x}$. Let $y \in X$, then:

$$
\rho_{X}(g)\left(1_{x}\right)(y)=1_{x}\left(g^{-1} \cdot y\right)=\left\{\begin{array}{l}
1 \text { if } x=g^{-1} \cdot y, \\
0 \text { if } x \neq g^{-1} \cdot y,
\end{array}=\left\{\begin{array}{l}
1 \text { if } g \cdot x=y, \\
0 \text { if } g \cdot x \neq y,
\end{array}=1_{g \cdot x}(y),\right.\right.
$$

that is $\rho_{X}(g)\left(1_{x}\right)=1_{g \cdot x}$, as desired.

Exercise 2.1.14.

Show that the character of a permutation representation is given by the number of fixed points, that is, $\operatorname{Tr}\left(\rho_{X}(g)\right)=\left|X^{g}\right|$ where $X^{g}=\{x \in X: g \cdot x=x\}$.

Let $g \in G$, to compute the trace of $\rho_{X}(g)$ we consider the basis of $K[X]$ given by $\left\{1_{x}\right\}_{x \in X}$ (the indicators). They clearly generate since any $f \in K[X]$ can be written as $f=\sum_{x \in X} f(x) 1_{x}$ and they are linearly independent since they all take non zero values on different elements of X, and thus if $\sum_{x \in X} \alpha_{x} 1_{x}=0$ for some $\left\{\alpha_{x}\right\}_{x \in X} \subset K$ then evaluating at each $x \in X$ we find that $\alpha_{x}=0$, and thus linearly independence follows.

We want to see when do we have $\rho_{X}(g)\left(1_{x}\right)=\beta_{x} 1_{x}$, and thus these β_{x} for $x \in X$ will add up to the trace. By Exercise 2.1.13. we have that $\beta_{x} \in\{0,1\}$ for $x \in X$, and $1_{x}=\rho_{X}(g)\left(1_{x}\right)=1_{g \cdot x}$ if and only if $x=g \cdot x$ if and only if $x \in X^{g}$. Thus we add 1 for each such x, and we have as many x 's as $\left|X^{g}\right|$, hence:

$$
\operatorname{Tr}\left(\rho_{X}(g)\right)=\sum_{x \in X} \beta_{x}=\sum_{x \in X^{g}} 1=\left|X^{g}\right|
$$

as desired.

Exercise 2.1.15.

If X and Y are isomorphic as G sets, prove that $K[X]$ and $K[Y]$ are isomorphic as representations of G.

Let $\phi: X \longrightarrow Y$ be the G set isomorphism, that is, for every $g \in G$ we have $\phi(g \cdot x)=g \cdot \phi(x)$. Consider:

$$
\begin{aligned}
T: K[X] & \longrightarrow K[Y] \\
& \longrightarrow \\
1_{x} & \longrightarrow 1_{\phi(x)}
\end{aligned}
$$

and extend linearly. This is linear by definition and bijective since:

$$
\begin{aligned}
S: K[Y] & \longrightarrow K[X] \\
1_{y} & \longrightarrow 1_{\phi^{-1}(y)}
\end{aligned}
$$

and extend linearly, is its inverse: for all $x \in X$ and $y \in Y$:

$$
\begin{aligned}
& S \circ T\left(1_{x}\right)=S\left(1_{\phi(x)}\right)=1_{\phi^{-1}(\phi(x))}=1_{x} \\
& T \circ S\left(1_{y}\right)=S\left(1_{\phi^{-1}(y)}\right)=1_{\phi\left(\phi^{-1}(y)\right)}=1_{y}
\end{aligned}
$$

and thus $S=T^{-1}$ and T is a bijective linear map (by linearity, it is enough to check properties on the basis). Moreover, it is also an intertwiner since for all $g \in G$ and $x \in X$:

$$
T \circ \rho_{X}(g)\left(1_{x}\right)=T\left(1_{g \cdot x}\right)=1_{\phi(g \cdot x)}=1_{g \cdot \phi(x)}=\rho_{Y}(g)\left(1_{\phi(x)}\right)=\rho_{Y}(g) \circ T\left(1_{x}\right),
$$

and hence T is a bijective intertwiner, thus an isomorphism of representations.

Exercise 2.1.16.

Let X be a G set, and for each orbit $\mathcal{O} \subset X$ identify $K[\mathcal{O}]$ with the subspace of $K[X]$ consisting of functions supported on \mathcal{O}. Prove that $K[\mathcal{O}]$ is an invariant subspace and $K[X]=\oplus_{\mathcal{O} \in G \backslash X} K[\mathcal{O}]$.

We clearly have that $K[\mathcal{O}]$ is invariant, as if we set $\mathcal{O}=G_{x}$ for some representative $x \in X$, we have $K\left[G_{x}\right]=\left\langle 1_{g \cdot x}\right\rangle_{g \in G}$ as a K vector space (by definition). We can then write every $\xi \in K\left[G_{x}\right]$ as $\xi=\sum_{h \in G} \xi(h) 1_{h \cdot x}$, and thus for every $g \in G$:

$$
\rho_{X}(g)(\xi)=\sum_{h \in G} \xi(h) 1_{(g h) \cdot x}=\sum_{k \in G} \xi\left(g^{-1} k\right) 1_{k \cdot x} \in K\left[G_{x}\right]
$$

via re-indexing. Hence $\rho_{X}(g)\left(K\left[G_{x}\right]\right) \subset K\left[G_{x}\right]$ for all $g \in G$, obtaining invariance of $K\left[G_{x}\right]$.

To prove the direct sum, notice that given $x \in X$, the indicator $1_{x} \in K[\mathcal{O}]$ for exactly one orbit: if $1_{x} \in K\left[G_{y}\right] \cap K\left[G_{z}\right]$ then there exist $g, h \in G$ with $x=g \cdot y$ and $x=h \cdot z$, meaning that $g \cdot y=h \cdot z$ which happens if and only if $z=\left(h^{-1} g\right) \cdot y$ and thus $G_{y}=G_{z}$. Hence, since $1_{x} \in K\left[G_{x}\right]$ for all $x \in X$, all indicators belong to at least one such $K[\mathcal{O}]$ and thus $K[X]=\cup_{\mathcal{O} \in G \backslash X} K[\mathcal{O}]$. Moreover, if $\xi \in K\left[G_{x}\right]$ we have that $\xi \notin K\left[G_{y}\right]$ whenever $G_{y} \neq G_{x}$, since otherwise the indicators forming ξ would be in $K[\mathcal{O}]$ for two different orbits. This means that for $G_{x} \neq G_{y}$ we have $K\left[G_{x}\right] \cap K\left[G_{y}\right]=\{0\}$, and this pairwise trivial intersection means that the union above is in fact a direct sum:

$$
K[X]=\bigoplus_{\mathcal{O} \in G \backslash X} K[\mathcal{O}],
$$

as desired.

Exercise 2.1.17.

Prove that the subspace $K[X]_{0}=\left\{f: X \longrightarrow K \mid \sum_{x \in X} f(x)=0\right\}$ is always an invariant subspace of $K[X]$. If $\operatorname{char}(K)$ does not divide $|X|$, then it has an invariant complement.

We first check invariance. Let $f \in K[X]_{0}$, that is $f=\sum_{x \in X} f(x) 1_{x}$ with $\sum_{x \in X} f(x)=$ 0 , and $g \in G$. Then:

$$
\rho_{X}(g)(f)=\sum_{x \in X} f(x) 1_{g \cdot x}=\sum_{y \in X} f\left(g^{-1} \cdot y\right) 1_{y}
$$

via re-indexing, so:

$$
\sum_{x \in X} \rho_{X}(g)(f)(x)=\sum_{x \in X} f\left(g^{-1} \cdot x\right)=\sum_{y \in X} f(y)=0,
$$

again via re-indexing (notice that $g^{-1} \cdot x=y$ if and only if $x=g \cdot y$ and multiplying by g is a bijective map from X ot X, so we still sum over all elements in X when re-indexing). Thus $\rho_{X}(g)(f) \in K[X]_{0}$.

We now fix $x_{0} \in X$ and notice that $K[X]_{0}$ has $\left\{1_{x_{0}}-1_{x}\right\}_{x \in X}$ as a basis. For this, we clearly have $\left\{1_{x_{0}}-1_{x}\right\}_{x \in X} \subset K[X]_{0}$ since $\sum_{y \in X}\left(1_{x_{0}}-1_{x}\right)(y)=1_{x_{0}}\left(x_{0}\right)-1_{x}(x)=0$ for all $x_{0} \neq x \in X$, and this set is linearly independent: suppose that we have $\alpha_{x} \in K$ for $x_{0} \neq x \in X$ with:

$$
0=\sum_{x_{0} \neq x \in X} \alpha_{x}\left(1_{x_{0}}-1_{x}\right)=\sum_{x_{0} \neq x \in X} \alpha_{x} 1_{x_{0}}-\sum_{x_{0} \neq x \in X} \alpha_{x} 1_{x}
$$

and since $\left\{1_{x}\right\}_{x \in X}$ is a basis of $K[X]$, we must have $\alpha_{x}=0$ for $x_{0} \neq x \in X$, obtaining the desired linear independence. This means that $\operatorname{dim}_{K}\left(K[X]_{0}\right) \geq|X|-1$. Finally, since $\operatorname{dim}_{K}(K[X])=|X|$ and $\left\{1_{x}\right\}_{x \in X} \not \subset K[X]_{0}$ since $\sum_{y \in X} 1_{x}(y)=1$ for all $x \in X$, we have that $K[X]_{0} \subsetneq K[X]$ and thus $\operatorname{dim}_{K}\left(K[X]_{0}\right)<\operatorname{dim}_{K}(K[X])$, meaning that $\operatorname{dim}_{K}\left(K[X]_{0}\right)=|X|-1$. Since $\left|\left\{1_{x_{0}}-1_{x}\right\}_{x \in X}\right|=|X|-1$, it follows that $\left\{1_{x_{0}}-1_{x}\right\}_{x \in X}$ is a basis (linearly independent set in $K[X]_{0}$ of the same cardinality as its dimension).

We now assume that char (K) does not divide $|X|$. Notice that W the space of constant functions is an invariant subspace of dimension 1. First, notice that if $f \in W$ then $f(x)=\alpha \in K$ for all $x \in X$, and thus $f=\sum_{x \in X} f(x) 1_{x}=\sum_{x \in X} \alpha 1_{x}=\alpha \sum_{x \in X} 1_{x}$, and vice-versa if $\alpha \in K$ then $\alpha \sum_{x \in X} 1_{x}=\sum_{x \in X} \alpha 1_{x} \in W$. Thus $\left\{\sum_{x \in X} 1_{x}\right\}$ is a basis of W, so $\operatorname{dim}_{K}(W)=1$. Moreover, W is invariant since for any $f \in W$, say $f(x)=\alpha$ for all $x \in X$, and $g \in G$, we have $\rho_{X}(g)(f)(x)=f\left(g^{-1} \cdot x\right)=\alpha$ for all $x \in X$ and thus $\rho_{X}(g)(f) \in W$. Finally, we claim that W is the invariant complement of $K[X]_{0}$, and start by noticing $K[X]_{0} \cap W=\{0\}$: given $f \in W$ with $f(x)=\alpha \in K$ for all $x \in X$ we have for any $g \in G$:

$$
\sum_{x \in X} f(x)=\sum_{x \in X} \alpha=\alpha|X| .
$$

Thus since $\operatorname{char}(K)$ does not divide $|X|$ we have that $f \in K[X]_{0}$ if and only if $\alpha=0$ and thus $f=0$. Thus $K[X]_{0}$ and W are in direct sum. Moreover $\operatorname{dim}_{K}\left(K[X]_{0} \oplus W\right)=$ $\operatorname{dim}_{K}\left(K[X]_{0}\right)+\operatorname{dim}_{K}(W)=|X|$ so $K[X]_{0} \oplus W=K[X]$ and W is indeed the invariant complement of $K[X]_{0}$, as desired.

Exercise 2.2.7.

List the six permutations of \mathbb{S}_{3} in lexicographic order and draw the multiplication table.
We usually denote the elements of \mathbb{S}_{3} as id, (12), (23), (13), (123), (132). In this same order but in permutation string notation, they are $123,213,132,321,231,312$. Now it is easy to order them according to the lexicographic order:

$$
123<132<213<231<312<321
$$

The multiplication table is:

	id	(12)	(23)	(13)	(123)	(132)
id	id	(12)	(23)	(13)	(123)	(132)
(12)	(12)	id	(123)	(132)	(23)	(13)
(23)	(23)	(132)	id	(123)	(13)	(12)
(13)	(13)	(123)	(132)	id	(12)	(23)
(123)	(123)	(13)	(12)	(23)	(132)	id
(132)	(132)	(23)	(13)	(12)	id	(123)

Exercise 2.2.11.

Show that the number of permutations in \mathbb{S}_{n} with cycle type (n) is $(n-1)$!.
Note that we have n positions to fill with n numbers, this can be done in $n!$ different ways. However, since we are considering permutations, we counted each one n times: it does not matter where we put the parenthesis, if two permutations have the elements in the same order, they are the same. Hence fixing a permutation of cycle type n, by choosing a different element each time to where to put the parenthesis, we note that we counted it n times instead of just one. Thus we have:

$$
\frac{n!}{n}=(n-1)!
$$

the number of permutations in \mathbb{S}_{n} with cycle type (n).

Exercise 2.2.12.

Show that the order of an element of \mathbb{S}_{n} whose cycle type is $\lambda=\left(\lambda_{1}, \ldots, \lambda_{l}\right)$ is the least common multiple of $\lambda_{1}, \ldots, \lambda_{l}$.

First, note that if $\sigma \in \mathbb{S}_{n}$ has cycle type λ, then by definition it can be decomposed in l disjoint cycles (in particular, they commute with each other) as $\sigma=\sigma_{1} \cdots \sigma_{l}$, where σ_{i} has lenght λ_{i} (so in particular σ_{i} has order λ_{i}) for $i=1, \ldots, l$. Now the order of σ is the minimum $r \in \mathbb{N}$ such that $\sigma^{r}=\mathrm{id}$, in which case:

$$
\mathrm{id}=\sigma^{r}=\sigma_{1}^{r} \cdots \sigma_{l}^{r}
$$

and by the uniqueness of the cycle decomposition, we must have $\sigma_{i}^{r}=\mathrm{id}$ meaning that λ_{i} divides r for $i=1, \ldots, l$. Thus $r \in \mathbb{N}$ is the minimum such that it is a multiple of $\lambda_{1}, \ldots, \lambda_{l}$, hence by definition $r=\operatorname{lcm}\left(\lambda_{1}, \ldots, \lambda_{l}\right)$, as desired.

References

[1] A. Prasad, Representation Theory: A Combinatorial Viewpoint, Cambridge studies in advanced mathematics, 2015.
[2] T. W. Hungerford, Algebra, Springer-Verlag, 1974.

