Representations of Finite Groups - Homework 5

Pablo Sánchez Ocal

March 7th, 2018

Exercise 2.1.13.

For each $x \in X$, denote by 1_x the indicator at x. Show that $\rho_X(g)(1_x) = 1_{g \cdot x}$. Let $y \in X$, then:

$$\rho_X(g)(1_x)(y) = 1_x(g^{-1} \cdot y) = \begin{cases} 1 \text{ if } x = g^{-1} \cdot y, \\ 0 \text{ if } x \neq g^{-1} \cdot y, \end{cases} = \begin{cases} 1 \text{ if } g \cdot x = y, \\ 0 \text{ if } g \cdot x \neq y, \end{cases} = 1_{g \cdot x}(y),$$

that is $\rho_X(g)(1_x) = 1_{g \cdot x}$, as desired.

Exercise 2.1.14.

Show that the character of a permutation representation is given by the number of fixed points, that is, $\text{Tr}(\rho_X(g)) = |X^g|$ where $X^g = \{x \in X : g \cdot x = x\}$.

Let $g \in G$, to compute the trace of $\rho_X(g)$ we consider the basis of K[X] given by $\{1_x\}_{x\in X}$ (the indicators). They clearly generate since any $f \in K[X]$ can be written as $f = \sum_{x\in X} f(x)1_x$ and they are linearly independent since they all take non zero values on different elements of X, and thus if $\sum_{x\in X} \alpha_x 1_x = 0$ for some $\{\alpha_x\}_{x\in X} \subset K$ then evaluating at each $x \in X$ we find that $\alpha_x = 0$, and thus linearly independence follows.

We want to see when do we have $\rho_X(g)(1_x) = \beta_x 1_x$, and thus these β_x for $x \in X$ will add up to the trace. By Exercise 2.1.13. we have that $\beta_x \in \{0,1\}$ for $x \in X$, and $1_x = \rho_X(g)(1_x) = 1_{g \cdot x}$ if and only if $x = g \cdot x$ if and only if $x \in X^g$. Thus we add 1 for each such x, and we have as many x's as $|X^g|$, hence:

$$\operatorname{Tr}(\rho_X(g)) = \sum_{x \in X} \beta_x = \sum_{x \in X^g} 1 = |X^g|$$

as desired.

Exercise 2.1.15.

If X and Y are isomorphic as G sets, prove that K[X] and K[Y] are isomorphic as representations of G.

Let $\phi : X \longrightarrow Y$ be the G set isomorphism, that is, for every $g \in G$ we have $\phi(g \cdot x) = g \cdot \phi(x)$. Consider:

$$\begin{array}{cccc} T & : & K[X] & \longrightarrow & K[Y] \\ & & 1_x & \longrightarrow & 1_{\phi(x)} \end{array}$$

and extend linearly. This is linear by definition and bijective since:

and extend linearly, is its inverse: for all $x \in X$ and $y \in Y$:

$$S \circ T(1_x) = S(1_{\phi(x)}) = 1_{\phi^{-1}(\phi(x))} = 1_x$$
$$T \circ S(1_y) = S(1_{\phi^{-1}(y)}) = 1_{\phi(\phi^{-1}(y))} = 1_y$$

and thus $S = T^{-1}$ and T is a bijective linear map (by linearity, it is enough to check properties on the basis). Moreover, it is also an intertwiner since for all $g \in G$ and $x \in X$:

$$T \circ \rho_X(g)(1_x) = T(1_{g \cdot x}) = 1_{\phi(g \cdot x)} = 1_{g \cdot \phi(x)} = \rho_Y(g)(1_{\phi(x)}) = \rho_Y(g) \circ T(1_x),$$

and hence T is a bijective intertwiner, thus an isomorphism of representations.

Exercise 2.1.16.

Let X be a G set, and for each orbit $\mathcal{O} \subset X$ identify $K[\mathcal{O}]$ with the subspace of K[X] consisting of functions supported on \mathcal{O} . Prove that $K[\mathcal{O}]$ is an invariant subspace and $K[X] = \bigoplus_{\mathcal{O} \in G \setminus X} K[\mathcal{O}].$

We clearly have that $K[\mathcal{O}]$ is invariant, as if we set $\mathcal{O} = G_x$ for some representative $x \in X$, we have $K[G_x] = \langle 1_{g \cdot x} \rangle_{g \in G}$ as a K vector space (by definition). We can then write every $\xi \in K[G_x]$ as $\xi = \sum_{h \in G} \xi(h) 1_{h \cdot x}$, and thus for every $g \in G$:

$$\rho_X(g)(\xi) = \sum_{h \in G} \xi(h) \mathbf{1}_{(gh) \cdot x} = \sum_{k \in G} \xi(g^{-1}k) \mathbf{1}_{k \cdot x} \in K[G_x]$$

via re-indexing. Hence $\rho_X(g)(K[G_x]) \subset K[G_x]$ for all $g \in G$, obtaining invariance of $K[G_x]$.

To prove the direct sum, notice that given $x \in X$, the indicator $1_x \in K[\mathcal{O}]$ for exactly one orbit: if $1_x \in K[G_y] \cap K[G_z]$ then there exist $g, h \in G$ with $x = g \cdot y$ and $x = h \cdot z$, meaning that $g \cdot y = h \cdot z$ which happens if and only if $z = (h^{-1}g) \cdot y$ and thus $G_y = G_z$. Hence, since $1_x \in K[G_x]$ for all $x \in X$, all indicators belong to at least one such $K[\mathcal{O}]$ and thus $K[X] = \bigcup_{\mathcal{O} \in G \setminus X} K[\mathcal{O}]$. Moreover, if $\xi \in K[G_x]$ we have that $\xi \notin K[G_y]$ whenever $G_y \neq G_x$, since otherwise the indicators forming ξ would be in $K[\mathcal{O}]$ for two different orbits. This means that for $G_x \neq G_y$ we have $K[G_x] \cap K[G_y] = \{0\}$, and this pairwise trivial intersection means that the union above is in fact a direct sum:

$$K[X] = \bigoplus_{\mathcal{O} \in G \setminus X} K[\mathcal{O}],$$

as desired.

Exercise 2.1.17.

Prove that the subspace $K[X]_0 = \{f : X \longrightarrow K | \sum_{x \in X} f(x) = 0\}$ is always an invariant subspace of K[X]. If char(K) does not divide |X|, then it has an invariant complement.

We first check invariance. Let $f \in K[X]_0$, that is $f = \sum_{x \in X} f(x) \mathbb{1}_x$ with $\sum_{x \in X} f(x) = 0$, and $g \in G$. Then:

$$\rho_X(g)(f) = \sum_{x \in X} f(x) \mathbf{1}_{g \cdot x} = \sum_{y \in X} f(g^{-1} \cdot y) \mathbf{1}_y$$

via re-indexing, so:

$$\sum_{x \in X} \rho_X(g)(f)(x) = \sum_{x \in X} f(g^{-1} \cdot x) = \sum_{y \in X} f(y) = 0,$$

again via re-indexing (notice that $g^{-1} \cdot x = y$ if and only if $x = g \cdot y$ and multiplying by g is a bijective map from X of X, so we still sum over all elements in X when re-indexing). Thus $\rho_X(g)(f) \in K[X]_0$.

We now fix $x_0 \in X$ and notice that $K[X]_0$ has $\{1_{x_0} - 1_x\}_{x \in X}$ as a basis. For this, we clearly have $\{1_{x_0} - 1_x\}_{x \in X} \subset K[X]_0$ since $\sum_{y \in X} (1_{x_0} - 1_x)(y) = 1_{x_0}(x_0) - 1_x(x) = 0$ for all $x_0 \neq x \in X$, and this set is linearly independent: suppose that we have $\alpha_x \in K$ for $x_0 \neq x \in X$ with:

$$0 = \sum_{x_0 \neq x \in X} \alpha_x (1_{x_0} - 1_x) = \sum_{x_0 \neq x \in X} \alpha_x 1_{x_0} - \sum_{x_0 \neq x \in X} \alpha_x 1_x$$

and since $\{1_x\}_{x\in X}$ is a basis of K[X], we must have $\alpha_x = 0$ for $x_0 \neq x \in X$, obtaining the desired linear independence. This means that $\dim_K(K[X]_0) \geq |X| - 1$. Finally, since $\dim_K(K[X]) = |X|$ and $\{1_x\}_{x\in X} \not\subset K[X]_0$ since $\sum_{y\in X} 1_x(y) = 1$ for all $x \in X$, we have that $K[X]_0 \subsetneq K[X]$ and thus $\dim_K(K[X]_0) < \dim_K(K[X])$, meaning that $\dim_K(K[X]_0) = |X| - 1$. Since $|\{1_{x_0} - 1_x\}_{x\in X}| = |X| - 1$, it follows that $\{1_{x_0} - 1_x\}_{x\in X}$ is a basis (linearly independent set in $K[X]_0$ of the same cardinality as its dimension).

We now assume that $\operatorname{char}(K)$ does not divide |X|. Notice that W the space of constant functions is an invariant subspace of dimension 1. First, notice that if $f \in W$ then $f(x) = \alpha \in K$ for all $x \in X$, and thus $f = \sum_{x \in X} f(x) \mathbb{1}_x = \sum_{x \in X} \alpha \mathbb{1}_x = \alpha \sum_{x \in X} \mathbb{1}_x$, and vice-versa if $\alpha \in K$ then $\alpha \sum_{x \in X} \mathbb{1}_x = \sum_{x \in X} \alpha \mathbb{1}_x \in W$. Thus $\{\sum_{x \in X} \mathbb{1}_x\}$ is a basis of W, so $\dim_K(W) = \mathbb{1}$. Moreover, W is invariant since for any $f \in W$, say $f(x) = \alpha$ for all $x \in X$, and $g \in G$, we have $\rho_X(g)(f)(x) = f(g^{-1} \cdot x) = \alpha$ for all $x \in X$ and thus $\rho_X(g)(f) \in W$. Finally, we claim that W is the invariant complement of $K[X]_0$, and start by noticing $K[X]_0 \cap W = \{0\}$: given $f \in W$ with $f(x) = \alpha \in K$ for all $x \in X$ we have for any $g \in G$:

$$\sum_{x \in X} f(x) = \sum_{x \in X} \alpha = \alpha |X|.$$

Thus since $\operatorname{char}(K)$ does not divide |X| we have that $f \in K[X]_0$ if and only if $\alpha = 0$ and thus f = 0. Thus $K[X]_0$ and W are in direct sum. Moreover $\dim_K(K[X]_0 \oplus W) = \dim_K(K[X]_0) + \dim_K(W) = |X|$ so $K[X]_0 \oplus W = K[X]$ and W is indeed the invariant complement of $K[X]_0$, as desired.

Exercise 2.2.7.

List the six permutations of S_3 in lexicographic order and draw the multiplication table.

We usually denote the elements of S_3 as id, (12), (23), (13), (123), (132). In this same order but in permutation string notation, they are 123, 213, 132, 321, 231, 312. Now it is easy to order them according to the lexicographic order:

123 < 132 < 213 < 231 < 312 < 321.

The multiplication table is:

	id	(12)	(23)	(13)	(123)	(132)
id	id	(12)	(23)	(13)	(123)	(132)
(12)	(12)	id	(123)	(132)	(23)	(13)
(23)	(23)	(132)	id	(123)	(13)	(12)
(13)	(13)	(123)	(132)	id	(12)	(23)
(123)	(123)	(13)	(12)	(23)	(132)	id
(132)	(132)	(23)	(13)	(12)	id	(123)

Exercise 2.2.11.

Show that the number of permutations in S_n with cycle type (n) is (n-1)!.

Note that we have n positions to fill with n numbers, this can be done in n! different ways. However, since we are considering permutations, we counted each one n times: it does not matter where we put the parenthesis, if two permutations have the elements in the same order, they are the same. Hence fixing a permutation of cycle type n, by choosing a different element each time to where to put the parenthesis, we note that we counted it n times instead of just one. Thus we have:

$$\frac{n!}{n} = (n-1)!$$

the number of permutations in \mathbb{S}_n with cycle type (n).

Exercise 2.2.12.

Show that the order of an element of \mathbb{S}_n whose cycle type is $\lambda = (\lambda_1, \ldots, \lambda_l)$ is the least common multiple of $\lambda_1, \ldots, \lambda_l$.

First, note that if $\sigma \in \mathbb{S}_n$ has cycle type λ , then by definition it can be decomposed in *l* disjoint cycles (in particular, they commute with each other) as $\sigma = \sigma_1 \cdots \sigma_l$, where σ_i has lenght λ_i (so in particular σ_i has order λ_i) for $i = 1, \ldots, l$. Now the order of σ is the minimum $r \in \mathbb{N}$ such that $\sigma^r = id$, in which case:

$$\mathrm{id} = \sigma^r = \sigma_1^r \cdots \sigma_l^r$$

and by the uniqueness of the cycle decomposition, we must have $\sigma_i^r = \text{id}$ meaning that λ_i divides r for $i = 1, \ldots, l$. Thus $r \in \mathbb{N}$ is the minimum such that it is a multiple of $\lambda_1, \ldots, \lambda_l$, hence by definition $r = \text{lcm}(\lambda_1, \ldots, \lambda_l)$, as desired.

References

- [1] A. Prasad, *Representation Theory: A Combinatorial Viewpoint*, Cambridge studies in advanced mathematics, 2015.
- $\left[2\right]$ T. W. Hungerford, Algebra, Springer-Verlag, 1974.