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Exercise 2.1.13.

For each x ∈ X, denote by 1x the indicator at x. Show that ρX(g)(1x) = 1g·x.
Let y ∈ X, then:

ρX(g)(1x)(y) = 1x(g−1 · y) =

{
1 if x = g−1 · y,
0 if x 6= g−1 · y,

=

{
1 if g · x = y,

0 if g · x 6= y,
= 1g·x(y),

that is ρX(g)(1x) = 1g·x, as desired.
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Exercise 2.1.14.

Show that the character of a permutation representation is given by the number of fixed
points, that is, Tr(ρX(g)) = |Xg| where Xg = {x ∈ X : g · x = x}.

Let g ∈ G, to compute the trace of ρX(g) we consider the basis of K[X] given by
{1x}x∈X (the indicators). They clearly generate since any f ∈ K[X] can be written as
f =

∑
x∈X f(x)1x and they are linearly independent since they all take non zero values

on different elements of X, and thus if
∑

x∈X αx1x = 0 for some {αx}x∈X ⊂ K then
evaluating at each x ∈ X we find that αx = 0, and thus linearly independence follows.

We want to see when do we have ρX(g)(1x) = βx1x, and thus these βx for x ∈ X
will add up to the trace. By Exercise 2.1.13. we have that βx ∈ {0, 1} for x ∈ X, and
1x = ρX(g)(1x) = 1g·x if and only if x = g · x if and only if x ∈ Xg. Thus we add 1 for
each such x, and we have as many x’s as |Xg|, hence:

Tr(ρX(g)) =
∑
x∈X

βx =
∑
x∈Xg

1 = |Xg|

as desired.
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Exercise 2.1.15.

If X and Y are isomorphic as G sets, prove that K[X] and K[Y ] are isomorphic as
representations of G.

Let φ : X −→ Y be the G set isomorphism, that is, for every g ∈ G we have
φ(g · x) = g · φ(x). Consider:

T : K[X] −→ K[Y ]
1x −→ 1φ(x)

and extend linearly. This is linear by definition and bijective since:

S : K[Y ] −→ K[X]
1y −→ 1φ−1(y)

and extend linearly, is its inverse: for all x ∈ X and y ∈ Y :

S ◦ T (1x) = S(1φ(x)) = 1φ−1(φ(x)) = 1x

T ◦ S(1y) = S(1φ−1(y)) = 1φ(φ−1(y)) = 1y

and thus S = T−1 and T is a bijective linear map (by linearity, it is enough to check
properties on the basis). Moreover, it is also an intertwiner since for all g ∈ G and
x ∈ X:

T ◦ ρX(g)(1x) = T (1g·x) = 1φ(g·x) = 1g·φ(x) = ρY (g)(1φ(x)) = ρY (g) ◦ T (1x),

and hence T is a bijective intertwiner, thus an isomorphism of representations.
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Exercise 2.1.16.

Let X be a G set, and for each orbit O ⊂ X identify K[O] with the subspace of K[X]
consisting of functions supported on O. Prove that K[O] is an invariant subspace and
K[X] = ⊕O∈G\XK[O].

We clearly have that K[O] is invariant, as if we set O = Gx for some representative
x ∈ X, we have K[Gx] = 〈1g·x〉g∈G as a K vector space (by definition). We can then
write every ξ ∈ K[Gx] as ξ =

∑
h∈G ξ(h)1h·x, and thus for every g ∈ G:

ρX(g)(ξ) =
∑
h∈G

ξ(h)1(gh)·x =
∑
k∈G

ξ(g−1k)1k·x ∈ K[Gx]

via re-indexing. Hence ρX(g)(K[Gx]) ⊂ K[Gx] for all g ∈ G, obtaining invariance of
K[Gx].

To prove the direct sum, notice that given x ∈ X, the indicator 1x ∈ K[O] for
exactly one orbit: if 1x ∈ K[Gy] ∩K[Gz] then there exist g, h ∈ G with x = g · y and
x = h · z, meaning that g · y = h · z which happens if and only if z = (h−1g) · y and
thus Gy = Gz. Hence, since 1x ∈ K[Gx] for all x ∈ X, all indicators belong to at least
one such K[O] and thus K[X] = ∪O∈G\XK[O]. Moreover, if ξ ∈ K[Gx] we have that
ξ /∈ K[Gy] whenever Gy 6= Gx, since otherwise the indicators forming ξ would be in K[O]
for two different orbits. This means that for Gx 6= Gy we have K[Gx] ∩K[Gy] = {0},
and this pairwise trivial intersection means that the union above is in fact a direct sum:

K[X] =
⊕
O∈G\X

K[O],

as desired.
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Exercise 2.1.17.

Prove that the subspace K[X]0 = {f : X −→ K|
∑

x∈X f(x) = 0} is always an invariant
subspace of K[X]. If char(K) does not divide |X|, then it has an invariant complement.

We first check invariance. Let f ∈ K[X]0, that is f =
∑

x∈X f(x)1x with
∑

x∈X f(x) =
0, and g ∈ G. Then:

ρX(g)(f) =
∑
x∈X

f(x)1g·x =
∑
y∈X

f(g−1 · y)1y

via re-indexing, so:∑
x∈X

ρX(g)(f)(x) =
∑
x∈X

f(g−1 · x) =
∑
y∈X

f(y) = 0,

again via re-indexing (notice that g−1 ·x = y if and only if x = g ·y and multiplying by g
is a bijective map from X ot X, so we still sum over all elements in X when re-indexing).
Thus ρX(g)(f) ∈ K[X]0.

We now fix x0 ∈ X and notice that K[X]0 has {1x0 − 1x}x∈X as a basis. For this,
we clearly have {1x0 − 1x}x∈X ⊂ K[X]0 since

∑
y∈X (1x0 − 1x)(y) = 1x0(x0)− 1x(x) = 0

for all x0 6= x ∈ X, and this set is linearly independent: suppose that we have αx ∈ K
for x0 6= x ∈ X with:

0 =
∑

x0 6=x∈X
αx(1x0 − 1x) =

∑
x0 6=x∈X

αx1x0 −
∑

x0 6=x∈X
αx1x

and since {1x}x∈X is a basis of K[X], we must have αx = 0 for x0 6= x ∈ X, obtaining
the desired linear independence. This means that dimK(K[X]0) ≥ |X| − 1. Finally,
since dimK(K[X]) = |X| and {1x}x∈X 6⊂ K[X]0 since

∑
y∈X 1x(y) = 1 for all x ∈ X,

we have that K[X]0 ( K[X] and thus dimK(K[X]0) < dimK(K[X]), meaning that
dimK(K[X]0) = |X| − 1. Since |{1x0 − 1x}x∈X | = |X| − 1, it follows that {1x0 − 1x}x∈X
is a basis (linearly independent set in K[X]0 of the same cardinality as its dimension).

We now assume that char(K) does not divide |X|. Notice that W the space of con-
stant functions is an invariant subspace of dimension 1. First, notice that if f ∈W then
f(x) = α ∈ K for all x ∈ X, and thus f =

∑
x∈X f(x)1x =

∑
x∈X α1x = α

∑
x∈X 1x,

and vice-versa if α ∈ K then α
∑

x∈X 1x =
∑

x∈X α1x ∈W . Thus {
∑

x∈X 1x} is a basis
of W , so dimK(W ) = 1. Moreover, W is invariant since for any f ∈ W , say f(x) = α
for all x ∈ X, and g ∈ G, we have ρX(g)(f)(x) = f(g−1 · x) = α for all x ∈ X and thus
ρX(g)(f) ∈ W . Finally, we claim that W is the invariant complement of K[X]0, and
start by noticing K[X]0 ∩W = {0}: given f ∈ W with f(x) = α ∈ K for all x ∈ X we
have for any g ∈ G: ∑

x∈X
f(x) =

∑
x∈X

α = α|X|.

Thus since char(K) does not divide |X| we have that f ∈ K[X]0 if and only if α = 0
and thus f = 0. Thus K[X]0 and W are in direct sum. Moreover dimK(K[X]0 ⊕W ) =
dimK(K[X]0) + dimK(W ) = |X| so K[X]0 ⊕W = K[X] and W is indeed the invariant
complement of K[X]0, as desired.
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Exercise 2.2.7.

List the six permutations of S3 in lexicographic order and draw the multiplication table.
We usually denote the elements of S3 as id, (12), (23), (13), (123), (132). In this

same order but in permutation string notation, they are 123, 213, 132, 321, 231, 312.
Now it is easy to order them according to the lexicographic order:

123 < 132 < 213 < 231 < 312 < 321.

The multiplication table is:

id (12) (23) (13) (123) (132)

id id (12) (23) (13) (123) (132)
(12) (12) id (123) (132) (23) (13)
(23) (23) (132) id (123) (13) (12)
(13) (13) (123) (132) id (12) (23)
(123) (123) (13) (12) (23) (132) id
(132) (132) (23) (13) (12) id (123)
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Exercise 2.2.11.

Show that the number of permutations in Sn with cycle type (n) is (n− 1)!.
Note that we have n positions to fill with n numbers, this can be done in n! different

ways. However, since we are considering permutations, we counted each one n times: it
does not matter where we put the parenthesis, if two permutations have the elements
in the same order, they are the same. Hence fixing a permutation of cycle type n, by
choosing a different element each time to where to put the parenthesis, we note that we
counted it n times instead of just one. Thus we have:

n!

n
= (n− 1)!

the number of permutations in Sn with cycle type (n).
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Exercise 2.2.12.

Show that the order of an element of Sn whose cycle type is λ = (λ1, . . . , λl) is the least
common multiple of λ1, . . . , λl.

First, note that if σ ∈ Sn has cycle type λ, then by definition it can be decomposed
in l disjoint cycles (in particular, they commute with each other) as σ = σ1 · · ·σl, where
σi has lenght λi (so in particular σi has order λi) for i = 1, . . . , l. Now the order of σ is
the minimum r ∈ N such that σr = id, in which case:

id = σr = σr1 · · ·σrl

and by the uniqueness of the cycle decomposition, we must have σri = id meaning that
λi divides r for i = 1, . . . , l. Thus r ∈ N is the minimum such that it is a multiple of
λ1, . . . , λl, hence by definition r = lcm(λ1, . . . , λl), as desired.
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