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Exercise 2.4.2.

Given three finite sets X, Y , Z and kernels k1 ∈ K[X × Y ], k2 ∈ K[Y × Z], prove
that Tk1 ◦ Tk2 = Tk1∗k2 where k1 ∗ k2 : X × Z −→ K is defined by k1 ∗ k2(x, z) =∑

y∈Y k1(x, y)k2(y, z) for all (x, z) ∈ X × Z.
We first note that this composition makes sense since Tk1 : K[Y ] −→ K[X] and

Tk2 : K[Z] −→ K[Y ], and moreover Tk1∗k2 : K[Z] −→ K[X], so the equality can
actually be true. Now, consider any f ∈ K[Z], we prove that Tk1 ◦ Tk2(f) = Tk1∗k2(f).
For this, let x ∈ X, we have:

Tk1 ◦ Tk2(f)(x) =
∑
y∈Y

k1(x, y)Tk2(f)(y) =
∑
y∈Y

k1(x, y)
∑
z∈Z

k2(y, z)f(z)

=
∑
y∈Y

∑
z∈Z

k1(x, y)k2(y, z)f(z) =
∑
z∈Z

∑
y∈Y

k1(x, y)k2(y, z)f(z)

=
∑
z∈Z

k1 ∗ k2(x, z)f(z) = Tk1∗k2(f)(x)

proving the desired equality.
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Exercise 2.4.5.

Show that dimK(HomG(K[X], 1)) = |G\X|, where 1 denotes the trivial representation
of G. When K is algebraically closed and char(K) does not divide |G|, conclude that
the multiplicity of 1 in K[X] is the same as the number of G-orbits in X.

Notice that if we take Y = {∗} a singleton, then Y is a G set under the trivial action
(the only possible one). Now the permutation representation ρY : G −→ GL(K[Y ]) is
exactly the trivial representation, since K[Y ] is one dimensional because |Y | = 1 and for
any f ∈ K[Y ] we have that ρY (g)(f)(∗) = f(g−1 · ∗) = f(∗) and thus ρY (g) = idK[Y ].
Applying now [1, Theorem 2.4.4 (p. 42)] we have that:

dimK(HomG(K[X], 1)) = dimK(HomG(K[X],K[{∗}])) = |G\X × {∗}| = |G\X|

the desired result.
For the second part, notice that if char(K) does not divide |G| then by [1, Theorem

1.4.3 (p. 13)] we have that K[X] is completely reducible, and if K is algebraically
closed then by [1, Exercise 1.3.11. (p. 10)], keeping in mind [1, Theorem 1.3.5 (p. 9)]
and thus we may permute the elements inside Hom to count multiplicity, we have that
dimK(HomG(K[X], 1)) is the multiplicity of 1 in K[X]. Since that is |G\X| and G\X is
the set of G-orbits of X, we have that the multiplicity is exactly the number of G-orbits
in X, as desired.
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Exercise 2.4.6.

Let X a finite G-set, show that |G||G\| =
∑

g∈G |Xg| (notice that rewriting like this is
fine since |G| is finite so dividing by it is always well defined).

We will prove this using the representation theory here developed, so in particular
we need K algebraically closed and char(K) not dividing |G|. In that case, we can apply
[1, Theorem 1.7.14 (p. 27)], [1, Exercise 2.1.14 (p. 34)] and [1, Exercise 2.4.5. (p. 42)].

Combining the first and the last in the context of the representations (ρX ,K[X])
and (ρY ,K[Y ]) as above, we have that:

|G\X| = dimK(HomG(K[X], 1)) = m = 〈χρY , χρX 〉G =
1

|G|
∑
g∈G

χρY (g)χρX (g−1)

=
1

|G|
∑
g∈G

χρY (g−1)χρX (g) =
1

|G|
∑
g∈G
|Xg|

where we have re-indexed the sum to simplify our lives, noted that since K[Y ] is the
trivial representation (and has dimension one) all the traces are taken over the identity,
and thus all the characters have value 1, and we used the second reference above to
compute the character of the permutation representation K[X]. This is the desired
result.
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Exercise 2.5.5.

Show that x ∈ Xk is fixed by an element g ∈ Sn if and only if x is a union of cycles of
g. Use this to show that for each partition λ of n the number of elements of Xk fixed
by an element of Sn with cycle decomposition λ is the number of ways of adding some
parts of λ to get k.
⇐) Let x ∈ Xk being a union of cycles of g, say x = ∪j∈J(c1j , . . . , cmj ) where

(c1j , . . . , cmj ) is a cycle of g for all j ∈ J , in the usual cycle notation. Then:

g·x = g ·
⋃
j∈J

(c1j , . . . , cmj ) =
⋃
j∈J

(g(c1j ), . . . , g(cmj ))

=
⋃
j∈J

(c2j , . . . , cmj , cij ) =
⋃
j∈J

(c1j , . . . , cmj ) = x

and thus x is fixed by g.
⇒) Suppose that x is not a union of cycles of g. This means that there is some c ∈ x

and m ∈ N+ such that gm(c) /∈ x. Notice that taking such m to be minimal, if m > 1
then gm−1(c) ∈ x and g(gm−1(c)) /∈ x, so by considering gm−1(c) we may always assume
that m = 1. Hence, we found some c ∈ x such that g(x) /∈ x, meaning that x is not fixed
by g. By contrapositive, we obtain the desired result.

Given λ a partition of n and g ∈ Sn with cycle decomposition λ, the number of
elements of Xk fixed by g is by the above the number of x ∈ Xk such that x is a union of
cycles of g. Thus since x must have cardinality k, to get one such x we consider cycles of
g that add up to k elements in total, and we have to count how many such combinations
we have. Since the dimension of the cycles of g is given by λ, the previous line is exactly
the number of ways of adding parts of λ to get k, what we desired.
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Exercise 2.5.6.

Let K be an algebraically closed field of characteristic greater than 3. Compute the
character of the simple representation V1 of S3.

Consider the permutation representation ρ : G −→ GL(K[X1]), we have thatK[X1] =
V0 ⊕ V1. Notice that V0 = K[X0] = K[{∗}] and thus as seen above we have that V0 is
the trivial representation. Keeping in mind that both are simple, we obtain that for any
g ∈ Sn:

ρ(g) =

[
ρ|V0(g) 0

0 ρ|V1(g)

]
as a square matrix. Hence:

χK[X1](g) = Tr(ρ(g)) = Tr(ρ|V0(g)) + Tr(ρ|V1(g)).

Moreover, in virtue of [1, Exercise 2.1.14 (p. 34)] we can compute traces over K[X1],
and since V0 is the trivial representation we are taking traces over the identity in a one
dimensional space, so the above becomes:

|Xg
1 | = 1 + Tr(ρ|V1(g)) =⇒ χV1(g) = Tr(ρ|V1(g)) = |Xg

1 | − 1.

In virtue of [1, Theorem 2.2.15 (p. 37)] we have that the conjugacy classes in S3
are given by the number of partitions of 3, namely λ1 = (1, 1, 1), λ2 = (2, 1), λ3 = (3).
We can consider idS3 , (12), (123) as representatives for them, respectively. Notice that

X1 = {{0}, {1}, {2}} ≡ [n] and thus |X id
1 | = 3, |X(12)

1 | = 1, |X(123)
1 | = 0, meaning that

χV1(id) = 2, χV1(12) = 0, χV1(123) = −1 and the character table is:

λ1 λ2 λ3
ρ|V1 2 0 −1

.
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Exercise 2.5.7.

Show that the character value of the representation V1 of Sn at a permutation with cycle
type λ is m1(λ)− 1 where m1(λ) is the number of times that 1 occurs in λ.

The reasoning above still holds (for the most part, until we work specifically for
n = 3), namely given g ∈ Sn we still have:

χV1(g) = |Xg
1 | − 1.

Now, let g have cycle type λ, notice that since X1 ≡ [n] we have that |Xg
1 | is exactly the

number of points fixed by g. Since λ gives the lengths of the cycles forming g, a 1 in
λ corresponds bijectively to a fixed point by g (that is, for every point g fixes we must
have exactly one 1 in λ), and thus m1(λ), the number of 1 in λ, is the number of fixed
points by g. Hence m1(λ) = |Xg

1 | and thus:

χV1(g) = m1(λ)− 1

as desired.
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