Representations of Finite Groups - Homework 6
Pablo Sánchez Ocal
March 21st, 2018

Exercise 2.4.2.

Given three finite sets X, Y, Z and kernels $k_{1} \in K[X \times Y], k_{2} \in K[Y \times Z]$, prove that $T_{k_{1}} \circ T_{k_{2}}=T_{k_{1} * k_{2}}$ where $k_{1} * k_{2}: X \times Z \longrightarrow K$ is defined by $k_{1} * k_{2}(x, z)=$ $\sum_{y \in Y} k_{1}(x, y) k_{2}(y, z)$ for all $(x, z) \in X \times Z$.

We first note that this composition makes sense since $T_{k_{1}}: K[Y] \longrightarrow K[X]$ and $T_{k_{2}}: K[Z] \longrightarrow K[Y]$, and moreover $T_{k_{1} * k_{2}}: K[Z] \longrightarrow K[X]$, so the equality can actually be true. Now, consider any $f \in K[Z]$, we prove that $T_{k_{1}} \circ T_{k_{2}}(f)=T_{k_{1} * k_{2}}(f)$. For this, let $x \in X$, we have:

$$
\begin{aligned}
T_{k_{1}} \circ T_{k_{2}}(f)(x) & =\sum_{y \in Y} k_{1}(x, y) T_{k_{2}}(f)(y)=\sum_{y \in Y} k_{1}(x, y) \sum_{z \in Z} k_{2}(y, z) f(z) \\
& =\sum_{y \in Y} \sum_{z \in Z} k_{1}(x, y) k_{2}(y, z) f(z)=\sum_{z \in Z} \sum_{y \in Y} k_{1}(x, y) k_{2}(y, z) f(z) \\
& =\sum_{z \in Z} k_{1} * k_{2}(x, z) f(z)=T_{k_{1} * k_{2}}(f)(x)
\end{aligned}
$$

proving the desired equality.

Exercise 2.4.5.

Show that $\operatorname{dim}_{K}\left(\operatorname{Hom}_{G}(K[X], 1)\right)=|G \backslash X|$, where 1 denotes the trivial representation of G. When K is algebraically closed and $\operatorname{char}(K)$ does not divide $|G|$, conclude that the multiplicity of 1 in $K[X]$ is the same as the number of G-orbits in X.

Notice that if we take $Y=\{*\}$ a singleton, then Y is a G set under the trivial action (the only possible one). Now the permutation representation $\rho_{Y}: G \longrightarrow \mathrm{GL}(K[Y])$ is exactly the trivial representation, since $K[Y]$ is one dimensional because $|Y|=1$ and for any $f \in K[Y]$ we have that $\rho_{Y}(g)(f)(*)=f\left(g^{-1} \cdot *\right)=f(*)$ and thus $\rho_{Y}(g)=\operatorname{id}_{K[Y]}$. Applying now [1, Theorem 2.4.4 (p. 42)] we have that:

$$
\operatorname{dim}_{K}\left(\operatorname{Hom}_{G}(K[X], 1)\right)=\operatorname{dim}_{K}\left(\operatorname{Hom}_{G}(K[X], K[\{*\}])\right)=|G \backslash X \times\{*\}|=|G \backslash X|
$$

the desired result.
For the second part, notice that if $\operatorname{char}(K)$ does not divide $|G|$ then by [1, Theorem 1.4.3 (p. 13)] we have that $K[X]$ is completely reducible, and if K is algebraically closed then by [1, Exercise 1.3.11. (p. 10)], keeping in mind [1, Theorem 1.3.5 (p. 9)] and thus we may permute the elements inside Hom to count multiplicity, we have that $\operatorname{dim}_{K}\left(\operatorname{Hom}_{G}(K[X], 1)\right)$ is the multiplicity of 1 in $K[X]$. Since that is $|G \backslash X|$ and $G \backslash X$ is the set of G-orbits of X, we have that the multiplicity is exactly the number of G-orbits in X, as desired.

Exercise 2.4.6.

Let X a finite G-set, show that $|G||G \backslash|=\sum_{g \in G}\left|X^{g}\right|$ (notice that rewriting like this is fine since $|G|$ is finite so dividing by it is always well defined).

We will prove this using the representation theory here developed, so in particular we need K algebraically closed and $\operatorname{char}(K)$ not dividing $|G|$. In that case, we can apply [1, Theorem 1.7.14 (p. 27)], [1, Exercise 2.1.14 (p. 34)] and [1, Exercise 2.4.5. (p. 42)].

Combining the first and the last in the context of the representations ($\rho_{X}, K[X]$) and $\left(\rho_{Y}, K[Y]\right)$ as above, we have that:

$$
\begin{aligned}
|G \backslash X| & =\operatorname{dim}_{K}\left(\operatorname{Hom}_{G}(K[X], 1)\right)=m=\left\langle\chi_{\rho_{Y}}, \chi_{\rho_{X}}\right\rangle_{G}=\frac{1}{|G|} \sum_{g \in G} \chi_{\rho_{Y}}(g) \chi_{\rho_{X}}\left(g^{-1}\right) \\
& =\frac{1}{|G|} \sum_{g \in G} \chi_{\rho_{Y}}\left(g^{-1}\right) \chi_{\rho_{X}}(g)=\frac{1}{|G|} \sum_{g \in G}\left|X^{g}\right|
\end{aligned}
$$

where we have re-indexed the sum to simplify our lives, noted that since $K[Y]$ is the trivial representation (and has dimension one) all the traces are taken over the identity, and thus all the characters have value 1 , and we used the second reference above to compute the character of the permutation representation $K[X]$. This is the desired result.

Exercise 2.5.5.

Show that $x \in X_{k}$ is fixed by an element $g \in S_{n}$ if and only if x is a union of cycles of g. Use this to show that for each partition λ of n the number of elements of X_{k} fixed by an element of S_{n} with cycle decomposition λ is the number of ways of adding some parts of λ to get k.
$\Leftrightarrow)$ Let $x \in X_{k}$ being a union of cycles of g, say $x=\cup_{j \in J}\left(c_{1_{j}}, \ldots, c_{m_{j}}\right)$ where $\left(c_{1}, \ldots, c_{m_{j}}\right)$ is a cycle of g for all $j \in J$, in the usual cycle notation. Then:

$$
\begin{aligned}
& g \cdot x=g \cdot \bigcup_{j \in J}\left(c_{1_{j}}, \ldots, c_{m_{j}}\right)=\bigcup_{j \in J}\left(g\left(c_{1_{j}}\right), \ldots, g\left(c_{m_{j}}\right)\right) \\
&=\bigcup_{j \in J}\left(c_{2_{j}}, \ldots, c_{m_{j}}, c_{i_{j}}\right)=\bigcup_{j \in J}\left(c_{1_{j}}, \ldots, c_{m_{j}}\right)=x
\end{aligned}
$$

and thus x is fixed by g.
$\Rightarrow)$ Suppose that x is not a union of cycles of g. This means that there is some $c \in x$ and $m \in \mathbb{N}^{+}$such that $g^{m}(c) \notin x$. Notice that taking such m to be minimal, if $m>1$ then $g^{m-1}(c) \in x$ and $g\left(g^{m-1}(c)\right) \notin x$, so by considering $g^{m-1}(c)$ we may always assume that $m=1$. Hence, we found some $c \in x$ such that $g(x) \notin x$, meaning that x is not fixed by g. By contrapositive, we obtain the desired result.

Given λ a partition of n and $g \in S_{n}$ with cycle decomposition λ, the number of elements of X_{k} fixed by g is by the above the number of $x \in X_{k}$ such that x is a union of cycles of g. Thus since x must have cardinality k, to get one such x we consider cycles of g that add up to k elements in total, and we have to count how many such combinations we have. Since the dimension of the cycles of g is given by λ, the previous line is exactly the number of ways of adding parts of λ to get k, what we desired.

Exercise 2.5.6.

Let K be an algebraically closed field of characteristic greater than 3 . Compute the character of the simple representation V_{1} of S_{3}.

Consider the permutation representation $\rho: G \longrightarrow \mathrm{GL}\left(K\left[X_{1}\right]\right)$, we have that $K\left[X_{1}\right]=$ $V_{0} \oplus V_{1}$. Notice that $V_{0}=K\left[X_{0}\right]=K[\{*\}]$ and thus as seen above we have that V_{0} is the trivial representation. Keeping in mind that both are simple, we obtain that for any $g \in S_{n}$:

$$
\rho(g)=\left[\begin{array}{cc}
\left.\rho\right|_{V_{0}}(g) & 0 \\
0 & \left.\rho\right|_{V_{1}}(g)
\end{array}\right]
$$

as a square matrix. Hence:

$$
\chi_{K\left[X_{1}\right]}(g)=\operatorname{Tr}(\rho(g))=\operatorname{Tr}\left(\left.\rho\right|_{V_{0}}(g)\right)+\operatorname{Tr}\left(\left.\rho\right|_{V_{1}}(g)\right) .
$$

Moreover, in virtue of [1, Exercise 2.1.14 (p. 34)] we can compute traces over $K\left[X_{1}\right.$], and since V_{0} is the trivial representation we are taking traces over the identity in a one dimensional space, so the above becomes:

$$
\left|X_{1}^{g}\right|=1+\operatorname{Tr}\left(\left.\rho\right|_{V_{1}}(g)\right) \Longrightarrow \chi_{V_{1}}(g)=\operatorname{Tr}\left(\left.\rho\right|_{V_{1}}(g)\right)=\left|X_{1}^{g}\right|-1
$$

In virtue of [1, Theorem 2.2 .15 (p. 37)] we have that the conjugacy classes in S_{3} are given by the number of partitions of 3 , namely $\lambda_{1}=(1,1,1), \lambda_{2}=(2,1), \lambda_{3}=(3)$. We can consider $\mathrm{id}_{S_{3}},(12),(123)$ as representatives for them, respectively. Notice that $X_{1}=\{\{0\},\{1\},\{2\}\} \equiv[n]$ and thus $\left|X_{1}^{\mathrm{id}}\right|=3,\left|X_{1}^{(12)}\right|=1,\left|X_{1}^{(123)}\right|=0$, meaning that $\chi_{V_{1}}(\mathrm{id})=2, \chi_{V_{1}}(12)=0, \chi_{V_{1}}(123)=-1$ and the character table is:

$$
\begin{array}{c|ccc}
& \lambda_{1} & \lambda_{2} & \lambda_{3} \\
\hline\left.\rho\right|_{V_{1}} & 2 & 0 & -1
\end{array}
$$

Exercise 2.5.7.

Show that the character value of the representation V_{1} of S_{n} at a permutation with cycle type λ is $m_{1}(\lambda)-1$ where $m_{1}(\lambda)$ is the number of times that 1 occurs in λ.

The reasoning above still holds (for the most part, until we work specifically for $n=3$), namely given $g \in S_{n}$ we still have:

$$
\chi_{V_{1}}(g)=\left|X_{1}^{g}\right|-1 .
$$

Now, let g have cycle type λ, notice that since $X_{1} \equiv[n]$ we have that $\left|X_{1}^{g}\right|$ is exactly the number of points fixed by g. Since λ gives the lengths of the cycles forming g, a 1 in λ corresponds bijectively to a fixed point by g (that is, for every point g fixes we must have exactly one 1 in λ), and thus $m_{1}(\lambda)$, the number of 1 in λ, is the number of fixed points by g. Hence $m_{1}(\lambda)=\left|X_{1}^{g}\right|$ and thus:

$$
\chi_{V_{1}}(g)=m_{1}(\lambda)-1
$$

as desired.

References

[1] A. Prasad, Representation Theory: A Combinatorial Viewpoint, Cambridge studies in advanced mathematics, 2015.
[2] T. W. Hungerford, Algebra, Springer-Verlag, 1974.

