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Exercise 3.1.4.

Suppose that λ = (n − l, l) and µ = (n −m,m) for 0 ≤ l,m ≤ bn/2c. Show that there
exists a unique SSYT of shape µ and type λ if and only if m ≤ l, and if m > l then
there is no SSYT of shape µ and type λ.
⇒) Suppose we have a unique SSYT of shape µ and type λ. This means that the

first row has n−m squares and the second has m squares, and they are filled with n− l
ones and l twos. Notice that we need the twos to fill the second row, otherwise we have
a one in the second row and we violate the fact that a SSYT is, from top to bottom,
strictly increasing in columns. This means that l ≥ m.
⇐) Consider an empty Young diagram of shape µ. If m ≤ l then we have to fill the

second row with twos (to satisfy that a SSYT is, from top to bottom, strictly increasing
in columns), and we have to put the remaining twos in the first row starting from the
right and fill the remaining space with ones (to satisfy that a SSYT is, from left to right,
weakly increasing in columns). This is a SSYT of shape µ and type λ, and is the only
way to do it to satisfy both conditions, obtaining existence and uniqueness. If m > l,
as reasoned above, we will need to have a one in the second row and we violate the fact
that a SSYT is, from top to bottom, strictly increasing in columns, and hence no SSYT
of shape µ and type λ will exist.
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Exercise 3.1.10.

Let λ = (m, 1k) for some m, k ∈ N+. Which are the partitions µ ≤ λ?
Consider µ = (µ1, . . . , µi) and λ = (λ1, . . . , λj), where j = k + 1 (although this is

irrelevant for the following discussion). Notice that if µ ≤ λ then the first condition is
that µ1 ≥ λ1 = m. Once this is satisfied, since µ is a partition, we must have that µl > 0
for 0 ≤ l ≤ i, and thus for every r ≤ min(i, j) we automatically have:

µ1 + µ2 + · · ·+ µr ≥ m+ 1 + · · · 1 = λ1 + λ2 + · · ·+ λr

and hence µ ≤ λ. Thus the sole condition for a partition µ to be smaller or equal to λ
is that µ1 ≥ m.
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Exercise 3.1.11.

Show that if µ and λ are partitions of n ∈ N with µ ≤ λ, then the number of parts in µ
is at most the number of parts in λ.

Consider µ = (µ1, . . . , µi) and λ = (λ1, . . . , λj), we want to see that if µ ≤ λ then
i ≤ j. Since i, j ∈ N+, we can compare them and thus there are three options: i < j,
i = j, i > j. Suppose that i > j, then we have that µj+1 > 0 and thus:

µ1 + · · ·+ µj < n = λ1 + · · ·+ λj

meaning that µ 6≤ λ, a contradiction with the hypothesis. Hence only the other two are
possible and we must have i ≤ j as desired.
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Exercise 3.2.7.

Find the 5× 4 matrix A to which VRSK would associate the SSYT’s:

P =
1 1 2 3

2 4
, Q =

1 1 3 4

2 5
.

In the following, we denote first the pair of boxes that we are taking and the shadow
path that they form in the 5× 4 matrix (with an explanation if needed), then we add a
1 in the outer edges of the shadow path. We begin with the lower right box and move
left:(

4 , 5
) (

2 , 2
)

End

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0




0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1




0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 1




We finished the row, so we use this final matrix as the (to be) shadow matrix, we

move up one row and start the process again:(
3 , 4

) (
2 , 3

)
0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0





0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0




Notice that in the first step we need to have (4, 5) as a shadow point, otherwise the

shadow of the matrix will cover it and it will never again have the opportunity of being
a shadow point. Continuing:(

1 , 1
) (

1 , 1
)

0 0 0 0

0 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




0 1 0 0

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




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Where again in the third step we need to have (2, 2) as a shadow point, otherwise
the shadow of the matrix will cover it and it will never again have the opportunity of
being a shadow point. This ends the algorithm.

The remaining matrix is:

A =


1 1 0 0
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .
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Exercise 3.2.9.

Show that if RSK(A) = (P,Q) then RSK(AT ) = (Q,P ).
Given a matrix A, taking the transpose means that ATij = Aji. Notice that when we

draw a shadow path in A, all the relevant outer points defining it will still be the relevant
outer points when we transpose A, and the transpose of the shadow path we obtained
is exactly the corresponding shadow path of AT . That is, we can draw a parallel of the
application of RSK to AT and to A: the shadow path of AT in a given step, is simply the
transpose of the shadow path of A in the corresponding step, and similarly the shadow
matrix of AT in any given step will be the transpose of the shadow matrix of A in that
same step.

Set RSK(AT ) = (P ′, Q′). The above means that what is stored in P ′ in each step
(the information on the columns of AT ) is in fact given by the rows of A in each step,
which is stored in Q, and thus P ′ = Q. Similarly, what is stored in Q′ in each step (the
information on the rows of AT ) is in fact given by the columns of A in each step, which
is stored in P , and thus Q′ = P . This proves the desired result.
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Exercise 3.2.12.

Show that the number of involutions in Sn is equal to the number of SYT of size n.
First, note that there is a bijection between elements in Sn and n × n permutation

matrices. To see this, we introduce the following notation: let ei for 0 ≤ i ≤ n be the n×1
column vector having 1 in the position i and 0 elsewhere, notice that 1n×n = [e1 · · · en].
Now given σ ∈ Sn we associate the matrix [eσ(i) · · · eσ(n)]. This is a bijection since by
definition the permutation matrices are the matrices obtaining by permuting the rows
of a n×n identity matrix according to some permutation of the numbers {1, . . . , n}. Set
Pn the permutation matrices of size n, the above shows that the number of involutions
in Sn is equal to the number of involutions in Pn.

Second, notice that A ∈ Pn is an involution when A2 = 1n×n, so in particular
A = A−1. We now check that the inverse of a permutation matrix is its transpose:

(PP T )ij =
n∑
k=1

PikP
T
kj =

n∑
k=1

PikPjk = δij = (1n×n)ij

(P TP )ij =
n∑
k=1

P TikPkj =

n∑
k=1

PkiPkj = δij = (1n×n)ij

since if Pik = 1 then Pjk = 0 for j 6= i since a permutation matrix has a single 1 per
row, and if Pki = 1 then Pkj = 0 for j 6= i since a permutation matrix has a single 1 per
column. This proves that A−1 = AT . Thus this means that A = A−1 = AT .

Third, applying [1, Theorem 3.2.11 (p. 67)] we have that RSK determines a bijection
between the permutation matrices Pn and the set of pairs of SYT of the same shape.
Since a permutation matrix in Pn is a (1n)× (1n) matrix, by [1, Theorem 3.2.2 (p. 63)]
we have that the set of pairs of SYT have both size n by definition. For the subset
of involutions of Pn we can apply Exercise 3.2.9. to obtain that (P,Q) = RSK(A) =
RSK(AT ) = (Q,P ), and thus P = Q so RSK(A) = (P, P ). Notice how here we do not
have a “pair” of SYT both of size n, but just one SYT of size n, namely there is a bijection
between the set {(P, P ) : P is a SYT of size n} and the set {P : P is a SYT of size n}.
Since RSK is still a bijection, the number of involutions in Pn is equal to the cardinality
of {P : P is a SYT of size n}.

Hence:

|{σ ∈ Sn : σ−1 = σ}| = |{A ∈ Pn : A = AT }| = |{P : P is a SYT of size n}|

that is, the number of involutions of Sn is the number of involutions of Pn which is the
number of SYT of size n, which is what we wanted to prove.
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Exercise on applying the VRSK Algorithm

Let:

A =



0 0 1 0 0 0 0
0 0 0 0 0 2 0
1 1 1 1 0 1 0
0 0 1 0 0 0 0
2 1 0 1 0 0 0
0 0 0 0 0 0 1

 ,

run the RSK algorithm using it as input.
Applying the RSK algorithm, we denote by brackets the updated original matrix and

we denote by parenthesis the updated shadow matrix:

Step 1: p = 1 q = 1

0 0 1 0 0 0 0

0 0 0 0 0 2 0

1 1 1 1 0 1 0

0 0 1 0 0 0 0

2 1 0 1 0 0 0

0 0 0 0 0 0 1





0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




p = 11 q = 12

0 0 0 0 0 0 0

0 0 0 0 0 2 0

0 1 1 1 0 1 0

0 0 1 0 0 0 0

2 1 0 1 0 0 0

0 0 0 0 0 0 1





0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 0 1 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0




p = 111 q = 122

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 1 1 0 1 0

0 0 1 0 0 0 0

1 1 0 1 0 0 0

0 0 0 0 0 0 1





0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 0 2 0

0 0 0 0 0 0 0

0 1 1 0 0 0 0

0 0 0 0 0 0 0




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p = 1112 q = 1223

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 1 0

0 0 1 0 0 0 0

0 1 0 1 0 0 0

0 0 0 0 0 0 1





0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 0 2 0

0 0 0 1 0 0 0

0 1 2 0 0 0 0

0 0 0 0 0 0 0




p = 11124 q = 12233

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 0 0 1





0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 0 2 0

0 0 0 1 0 0 0

0 1 2 0 0 1 0

0 0 0 0 0 0 0




p = 111247 q = 122336

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 1





0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 0 2 0

0 0 0 1 0 0 0

0 1 2 0 0 1 0

0 0 0 0 0 0 0




Now we consider the shadow matrix as the original one, and we repeat the algorithm:

Step 2: p = 2 q = 3

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 0 2 0

0 0 0 1 0 0 0

0 1 2 0 0 1 0

0 0 0 0 0 0 0





0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0




p = 23 q = 33

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 2 0

0 0 0 1 0 0 0

0 0 2 0 0 1 0

0 0 0 0 0 0 0





0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 1 1 0 0 0

0 0 0 0 0 0 0




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p = 233 q = 333

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0

0 0 1 0 0 1 0

0 0 0 0 0 0 0





0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 1 1 0 1 0

0 0 0 0 0 0 0




p = 2336 q = 3335

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0





0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 1 1 0 1 0

0 0 0 0 0 0 0




Updating again the original matrix by the shadow one, we repeat the algorithm:

Step 3: p = 3 q = 4

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 1 1 0 1 0

0 0 0 0 0 0 0





0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0




p = 34 q = 45

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 1 0 1 0

0 0 0 0 0 0 0





0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0




p = 346 q = 455

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0





0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0




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And updating original and shadow matrices once more, we repeat the algorithm for
the last time:

Step 4: p = 6 q = 5

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 0





0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




The remaining SSYT are:

P =
1 1 1 2 4 7

2 3 3 6

3 4 6

6

, Q =
1 2 2 3 3 6

3 3 3 5

4 5 5

5

.
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