Representations of Finite Groups - Homework 8

Pablo Sánchez Ocal

April 11th, 2018

Exercise 4.2.2.

Let (ρ, V) be a representation of a group G over a field K and $\chi: G \longrightarrow K^{*}$ a multiplicative character. We prove that if ρ is simple, then $\rho \otimes \chi$ is simple.

We proceed by contrapositive: suppose $\rho \otimes \chi$ is not simple, that is, there exists a linear subspace $W \subseteq V$ such that $\rho \otimes \chi(g)(W) \subseteq W$ for all $g \in G$. Now for every $g \in G$:

$$
\chi(g) \rho(g)(W)=\rho \otimes \chi(g)(W) \subseteq W \quad \Longrightarrow \quad \rho(g)(W) \subseteq \chi(g)^{-1} W \subseteq W
$$

since $\chi(g) \in K^{*}$ is invertible and W is a linear subspace. Thus ρ is not simple, proving the contrapositive and thus the original claim, as desired.

Exercise 4.3.3.

Let m and n be arbitrary positive integers. Show that the number of partitions on n with parts bounded by m is equal to the number of partitions of n with at most m parts.

Suppose $\lambda=\left(\lambda_{1}, \ldots, \lambda_{l}\right)$, where we may change l. We consider the sets $A=\{\lambda \vdash$ $n: \lambda_{i} \leq m$ for $\left.i=1, \ldots, l\right\}$ and $B=\{\lambda \vdash n: l \leq m\}$. We will now construct a bijection between them.

Consider the map (as sets):

$$
\begin{aligned}
R: A & \longrightarrow \\
& \\
& \\
& \longmapsto
\end{aligned}
$$

where λ^{\prime} is the conjugate partition of λ. This is well defined; if λ is a partition of n with parts bounded by m, then $\lambda_{1} \leq m$ is the length of λ^{\prime} (this is immediate using that the Young diagrams of λ^{\prime} is the transpose of the Young diagram of λ, since the length of λ^{\prime} is the number of rows of its Young diagram which is λ_{1} by construction) and clearly λ^{\prime} is still a partition of n (again, immediate using the Young diagrams). Thus $\lambda^{\prime} \in B$.

Consider the map (as sets):

$$
\begin{aligned}
S: B & \longrightarrow A \\
& \longrightarrow \\
& \longmapsto
\end{aligned}
$$

where λ^{\prime} is the conjugate partition of λ. This is well defined; if λ is a partition of n with at most m parts, then $\lambda_{1}^{\prime} \leq m$ (we proved above that λ_{1}^{\prime} is the length of λ) so since it is true for the first part and these are in increasing order, all parts of λ^{\prime} are bounded by m and clearly λ^{\prime} is still a partition of n (as above). Thus $\lambda^{\prime} \in A$.

Since transposing twice a Young diagram is itself, we have that $S \circ R(\lambda)=\lambda$ for all $\lambda \in A$ and $R \circ S(\lambda)=\lambda$ for all $\lambda \in B$, and thus $|A|=|B|$, the desired result.

Exercise 4.3.4.

For each partition λ of n, show that $f_{\lambda}=f_{\lambda^{\prime}}$. Thus we want to see that the number of SYT of shape λ is the same as the number of SYT of shape λ^{\prime}.

Notice that given Y a SYT of shape λ, this is in fact a SSYT of shape λ and type $\left(1^{n}\right)$, so each of the integers in $\{1, \ldots, n\}$ appears exactly once in Y, making the rows of Y strictly increasing (it already has columns strictly increasing since it is a SSYT). Thus P^{\prime}, the Young tableau obtained by transposing P (including the numbers that fill $P)$, is of shape λ^{\prime} by construction and it has the numbers $\{1, \ldots, n\}$ appearing exactly one on it, strictly increasing in both rows and columns, so P^{\prime} is a SYT of shape λ^{\prime}.

This proves that the following is a well defined map:

$$
\begin{array}{cccc}
R:\{\text { SYT of shape } \lambda\} & \longrightarrow & \left\{\text { SYT of shape } \lambda^{\prime}\right\} \\
P & \longmapsto & P^{\prime}
\end{array}
$$

and since $\left(\lambda^{\prime}\right)^{\prime}=\lambda$, the same argument also proves that:

$$
S:\left\{\text { SYT of shape } \lambda^{\prime}\right\} \quad \longrightarrow \quad\{\text { SYT of shape } \lambda\}
$$

is a well defined map. Moreover since transposing twice does not change the SYT, we obtain $S \circ R(P)=P$ for all $P \in\{$ SYT of shape $\lambda\}$ and $R \circ S(P)=P$ for all $P \in$ $\left\{\right.$ SYT of shape $\left.\lambda^{\prime}\right\}$, and thus $f_{\lambda}=\mid\{$ SYT of shape $\lambda\}|=|\left\{\right.$ SYT of shape $\left.\lambda^{\prime}\right\} \mid=f_{\lambda^{\prime}}$, the desired result.

Exercise 5.1.3.

Express the product $m_{(2,1)} m_{(1,1)}$ as a linear combination of monomial symmetric functions.

For this, notice that since the final product will be symmetric, we only need to find the coefficients of a single monomial of the possible combinations that can arise when we are multiplying exponents given by the partitions $(2,1)$ and $(1,1)$. The possible monomials that we can have must come from a multi-index with shape a partition of 5 , obtained by combining $(2,1)$ and $(1,1)$, and with at most 4 non zero entries. This tells us two things; one that $m_{(2,1)} m_{(1,1)}$ will be a sum of monomial symmetric functions of partitions of 5 and second that we need at most 4 variables in the single monomial whose coefficient we are trying to find, so x_{1}, x_{2}, x_{3} and x_{4} is all we will need (and by this symmetry sometimes even less). Each valid possibility of these variables (discussed below) corresponds to a monomial symmetric function, where its coefficient in the sum will be the possible choices that we can make to find the particular choice of variables appear.

Now:

$$
m_{(2,1)}=\sum_{i \neq j} x_{i}^{2} x_{j}, \quad m_{(1,1)}=\sum_{i<j} x_{i} x_{j}
$$

so the possibilities with only four variables are $x_{1}^{3} x_{2}^{2}, x_{1}^{3} x_{2} x_{3}, x_{1}^{2} x_{2}^{2} x_{3}, x_{1}^{2} x_{2} x_{3} x_{4}$ (these are the valid possibilities mentioned above), so we will have $m_{(2,1)} m_{(1,1)}$ as a sum of $m_{(3,2)}, m_{(3,1,1)}, m_{(2,2,1)}, m_{(2,1,1,1)}$. We now see in how many ways can we obtain each, and this will give us the coefficients in which they appear in the multiplication:

- $x_{1}^{3} x_{2}^{2}$: the x_{2}^{2} cannot be obtained from $m_{(2,1)}$ since the coefficients in $m_{(1,1)}$ are different and thus will never be able to multiply to x_{1}^{2}. Thus we must have $x_{1}^{2} x_{2}$ from $m_{(2,1)}$ and hence $x_{1} x_{2}$ from $m_{(1,1)}$. We only have 1 choice.
- $x_{1}^{3} x_{2} x_{3}$: we need an x_{1}^{2} coming from $m_{(2,1)}$, and then we have $x_{1}^{2} x_{i}$ coming from $m_{(2,1)}$ with $i \in\{2,3\}$ since $i \neq 1$. This means that from $m_{(1,1)}$ we need to have $x_{1} x_{j}$ with $j \in\{2,3\} \backslash\{i\}$, which is determined after choosing i. Since we only have the choice of i, we have 2 choices.
- $x_{1}^{2} x_{2}^{2} x_{3}$: if x_{1}^{2} is coming from $m_{(2,1)}$, since we cannot have x_{2}^{2} coming from $m_{(1,1)}$ as discussed above, we must have $x_{1}^{2} x_{2}$ coming from $m_{(2,1)}$ and thus $x_{2} x_{3}$ comes from $m_{(1,1)}$; analogously if x_{2}^{2} is coming from $m_{(2,1)}$ we must have $x_{2} x_{3}$ coming from $m_{(1,1)}$. We have the choice of picking whether x_{1}^{2} or x_{2}^{2} comes from $m_{(2,1)}$, so we have 2 choices.
- $x_{1}^{2} x_{2} x_{3} x_{4}$: the x_{1}^{2} needs to come from $m_{(2,1)}$, so we have $x_{1}^{2} x_{i}$ coming from $m_{(2,1)}$ with $i \in\{2,3,4\}$ since $i \neq 1$. This means that from $m_{(1,1)}$ we need to have $x_{j} x_{k}$ with $j, k \in\{2,3,4\} \backslash\{i\}$, which is determined after choosing i since $j \leq k$. Since we only have the choice of i, we have 3 choices.

Hence the desired result:

$$
m_{(2,1)} m_{(1,1)}=m_{(3,2)}+2 m_{(3,1,1)}+2 m_{(2,2,1)}+3 m_{(2,1,1,1)}
$$

Exercise 5.2.3.

Show that if $\mu \leq \lambda$ (in reverse dominance order), then λ precedes μ in the reverse lexicographic order.

As stated, this is false since $\mu=(2,1) \leq(1,1,1)=\lambda$ in the reverse dominance order $(2>1$ and $3>2)$ but $(1,1,1)$ does not precede $(2,1)$ in the reverse lexicographic order since $2>1$. We will instead prove: if $\mu \leq \lambda$ (in reverse dominance order), then μ precedes λ in the reverse lexicographic order.

Suppose that $\mu \leq \lambda$ in the reverse dominance order, say $\mu=\left(\mu_{1}, \ldots, \mu_{m}\right)$ and $\lambda=\left(\lambda_{1}, \ldots, \lambda_{l}\right)$. Notice that if $l<m$ then $\lambda_{1}+\cdots+\lambda_{l}=n>\mu_{1}+\cdots+\mu_{l}$, a contradiction with $\mu \leq \lambda$ in the reverse dominance order, so $l \geq m$. Since the reverse lexicographic order is a total order, we can compare μ and λ. If they are equal, we are done. If not, we proceed by contradiction; suppose that λ precedes μ in the reverse lexicographic order. This means that there is a $i \in\{1, \ldots, m\}$ such that $\lambda_{j}=\mu_{j}$ for $j<i$ and $\lambda_{i}>\mu_{i}$ (this can happen since $l \geq m$, so we never run out of space for λ). This implies $\mu_{1}+\cdots+\mu_{i}<\lambda_{1}+\cdots+\lambda_{i}$, a contradiction with $\mu \leq \lambda$ in the reverse dominance order. Hence λ cannot precede μ, and since they are not equal and the reverse lexicographic order is a total order, we must have that μ precedes λ in the lexicographic order, as desired.

Exercise 5.3.2.

Compute the specialized symmetric functions $m_{\lambda}\left(x_{1}, x_{2}, x_{3}\right), e_{\lambda}\left(x_{1}, x_{2}, x_{3}\right), h_{\lambda}\left(x_{1}, x_{2}, x_{3}\right)$, and $p_{\lambda}\left(x_{1}, x_{2}, x_{3}\right)$, for all partitions λ of 3 . Compute the specialized symmetric functions $m_{\lambda}\left(x_{1}, x_{2}\right), e_{\lambda}\left(x_{1}, x_{2}\right), h_{\lambda}\left(x_{1}, x_{2}\right)$, and $p_{\lambda}\left(x_{1}, x_{2}\right)$, for all partitions λ of 3 .

Notice that the three partitions of 3 are $(3),(2,1)$ and $(1,1,1)$. Since we have a lot of polynomials to write, we will omit the intermediate steps that stem from the definition and the further simplifications, and we simply present the final expressions.

We start by $m_{\lambda}\left(x_{1}, x_{2}, x_{3}\right)$:

- $m_{(3)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}$,
- $m_{(2,1)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}$,
- $m_{(1,1,1)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} x_{3}$,
then $e_{\lambda}\left(x_{1}, x_{2}, x_{3}\right)$:
- $e_{(3)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2} x_{3}$,
- $e_{(2,1)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}+3 x_{1} x_{2} x_{3}$,
- $e_{(1,1,1)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+3 x_{1}^{2} x_{2}+3 x_{1} x_{2}^{2}+3 x_{1}^{2} x_{3}+3 x_{1} x_{3}^{2}+3 x_{2}^{2} x_{3}+3 x_{2} x_{3}^{2}+$ $6 x_{1} x_{2} x_{3}$,
then $h_{\lambda}\left(x_{1}, x_{2}, x_{3}\right)$:
- $h_{(3)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}+x_{1} x_{2} x_{3}$,
- $h_{(2,1)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+2 x_{1}^{2} x_{2}+2 x_{1} x_{2}^{2}+2 x_{1}^{2} x_{3}+2 x_{1} x_{3}^{2}+2 x_{2}^{2} x_{3}+2 x_{2} x_{3}^{2}+$ $3 x_{1} x_{2} x_{3}$,
- $h_{(1,1,1)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+3 x_{1}^{2} x_{2}+3 x_{1} x_{2}^{2}+3 x_{1}^{2} x_{3}+3 x_{1} x_{3}^{2}+3 x_{2}^{2} x_{3}+3 x_{2} x_{3}^{2}+$ $6 x_{1} x_{2} x_{3}$,
then $p_{\lambda}\left(x_{1}, x_{2}, x_{3}\right)$:
- $p_{(3)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}$,
- $p_{(2,1)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+x_{1}^{2} x_{2}+x_{1} x_{2}^{2}+x_{1}^{2} x_{3}+x_{1} x_{3}^{2}+x_{2}^{2} x_{3}+x_{2} x_{3}^{2}$,
- $p_{(1,1,1)}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}+3 x_{1}^{2} x_{2}+3 x_{1} x_{2}^{2}+3 x_{1}^{2} x_{3}+3 x_{1} x_{3}^{2}+3 x_{2}^{2} x_{3}+3 x_{2} x_{3}^{2}+$ $6 x_{1} x_{2} x_{3}$.

We now set $x_{3}=0$ in the above and obtain $m_{\lambda}\left(x_{1}, x_{2}\right)$:

- $m_{(3)}\left(x_{1}, x_{2}\right)=x_{1}^{3}+x_{2}^{3}$,
- $m_{(2,1)}\left(x_{1}, x_{2}\right)=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}$,
- $m_{(1,1,1)}\left(x_{1}, x_{2}\right)=0$,
then $e_{\lambda}\left(x_{1}, x_{2}\right)$:
- $e_{(3)}\left(x_{1}, x_{2}\right)=0$,
- $e_{(2,1)}\left(x_{1}, x_{2}\right)=x_{1}^{2} x_{2}+x_{1} x_{2}^{2}$,
- $e_{(1,1,1)}\left(x_{1}, x_{2}\right)=x_{1}^{3}+x_{2}^{3}+3 x_{1}^{2} x_{2}+3 x_{1} x_{2}^{2}$,
then $h_{\lambda}\left(x_{1}, x_{2}\right)$:
- $h_{(3)}\left(x_{1}, x_{2}\right)=x_{1}^{3}+x_{2}^{3}+x_{1}^{2} x_{2}+x_{1} x_{2}^{2}$,
- $h_{(2,1)}\left(x_{1}, x_{2}\right)=x_{1}^{3}+x_{2}^{3}+2 x_{1}^{2} x_{2}+2 x_{1} x_{2}^{2}$,
- $h_{(1,1,1)}\left(x_{1}, x_{2}\right)=x_{1}^{3}+x_{2}^{3}+3 x_{1}^{2} x_{2}+3 x_{1} x_{2}^{2}$,
then $p_{\lambda}\left(x_{1}, x_{2}\right)$:
- $p_{(3)}\left(x_{1}, x_{2}\right)=x_{1}^{3}+x_{2}^{3}$,
- $p_{(2,1)}\left(x_{1}, x_{2}\right)=x_{1}^{3}+x_{2}^{3}+x_{1}^{2} x_{2}+x_{1} x_{2}^{2}$,
- $p_{(1,1,1)}\left(x_{1}, x_{2}\right)=x_{1}^{3}+x_{2}^{3}+3 x_{1}^{2} x_{2}+3 x_{1} x_{2}^{2}$.

This is what we wanted.

Exercise 5.4.2.

Compute the Schur function $s_{(2,1)}$ in terms of monomial symmetric functions.
We know that for a partition λ of n we have $s_{\lambda}=\sum_{\mu \geq \lambda} K_{\lambda \mu} m_{\mu}$. Since $(2,1)$ is a partition of 3 , first want to know the partitions of 3 (computed above) that are bigger or equal to this one, which are $(2,1)$ and $(1,1,1)$. Now $K_{\lambda \mu}$ is the number of SSYT of type λ and shape μ. Thus $K_{(2,1)(2,1)}=1$, we have to put the ones in the top row and the two in the bottom row, and $K_{(2,1)(1,1,1)}=2$ since given a SYT of shape $(2,1)$ we need the one in the top left box, we have two places where we can put the 2 and then the 3 has to fill the remaining space, so we only have 2 choices.

Hence the desired result:

$$
s_{(2,1)}=m_{(2,1)}+2 m_{(1,1,1)} .
$$

References

[1] A. Prasad, Representation Theory: A Combinatorial Viewpoint, Cambridge studies in advanced mathematics, 2015.
[2] T. W. Hungerford, Algebra, Springer-Verlag, 1974.

