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Exercise 4.2.2.

Let (ρ, V ) be a representation of a group G over a field K and χ : G −→ K∗ a multi-
plicative character. We prove that if ρ is simple, then ρ⊗ χ is simple.

We proceed by contrapositive: suppose ρ ⊗ χ is not simple, that is, there exists a
linear subspace W ⊆ V such that ρ⊗χ(g)(W ) ⊆W for all g ∈ G. Now for every g ∈ G:

χ(g)ρ(g)(W ) = ρ⊗ χ(g)(W ) ⊆W =⇒ ρ(g)(W ) ⊆ χ(g)−1W ⊆W

since χ(g) ∈ K∗ is invertible and W is a linear subspace. Thus ρ is not simple, proving
the contrapositive and thus the original claim, as desired.
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Exercise 4.3.3.

Let m and n be arbitrary positive integers. Show that the number of partitions on n
with parts bounded by m is equal to the number of partitions of n with at most m parts.

Suppose λ = (λ1, . . . , λl), where we may change l. We consider the sets A = {λ `
n : λi ≤ m for i = 1, . . . , l} and B = {λ ` n : l ≤ m}. We will now construct a bijection
between them.

Consider the map (as sets):

R : A −→ B
λ 7−→ λ′

where λ′ is the conjugate partition of λ. This is well defined; if λ is a partition of n with
parts bounded by m, then λ1 ≤ m is the length of λ′ (this is immediate using that the
Young diagrams of λ′ is the transpose of the Young diagram of λ, since the length of λ′

is the number of rows of its Young diagram which is λ1 by construction) and clearly λ′

is still a partition of n (again, immediate using the Young diagrams). Thus λ′ ∈ B.
Consider the map (as sets):

S : B −→ A
λ 7−→ λ′

where λ′ is the conjugate partition of λ. This is well defined; if λ is a partition of n with
at most m parts, then λ′1 ≤ m (we proved above that λ′1 is the length of λ) so since it
is true for the first part and these are in increasing order, all parts of λ′ are bounded by
m and clearly λ′ is still a partition of n (as above). Thus λ′ ∈ A.

Since transposing twice a Young diagram is itself, we have that S ◦R(λ) = λ for all
λ ∈ A and R ◦ S(λ) = λ for all λ ∈ B, and thus |A| = |B|, the desired result.
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Exercise 4.3.4.

For each partition λ of n, show that fλ = fλ′ . Thus we want to see that the number of
SYT of shape λ is the same as the number of SYT of shape λ′.

Notice that given Y a SYT of shape λ, this is in fact a SSYT of shape λ and type
(1n), so each of the integers in {1, . . . , n} appears exactly once in Y , making the rows
of Y strictly increasing (it already has columns strictly increasing since it is a SSYT).
Thus P ′, the Young tableau obtained by transposing P (including the numbers that fill
P ), is of shape λ′ by construction and it has the numbers {1, . . . , n} appearing exactly
one on it, strictly increasing in both rows and columns, so P ′ is a SYT of shape λ′.

This proves that the following is a well defined map:

R : {SYT of shape λ} −→ {SYT of shape λ′}
P 7−→ P ′

and since (λ′)′ = λ, the same argument also proves that:

S : {SYT of shape λ′} −→ {SYT of shape λ}
P 7−→ P ′

is a well defined map. Moreover since transposing twice does not change the SYT, we
obtain S ◦ R(P ) = P for all P ∈ {SYT of shape λ} and R ◦ S(P ) = P for all P ∈
{SYT of shape λ′}, and thus fλ = |{SYT of shape λ}| = |{SYT of shape λ′}| = fλ′ , the
desired result.
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Exercise 5.1.3.

Express the product m(2,1)m(1,1) as a linear combination of monomial symmetric func-
tions.

For this, notice that since the final product will be symmetric, we only need to find
the coefficients of a single monomial of the possible combinations that can arise when
we are multiplying exponents given by the partitions (2, 1) and (1, 1). The possible
monomials that we can have must come from a multi-index with shape a partition of
5, obtained by combining (2, 1) and (1, 1), and with at most 4 non zero entries. This
tells us two things; one that m(2,1)m(1,1) will be a sum of monomial symmetric functions
of partitions of 5 and second that we need at most 4 variables in the single monomial
whose coefficient we are trying to find, so x1, x2, x3 and x4 is all we will need (and by
this symmetry sometimes even less). Each valid possibility of these variables (discussed
below) corresponds to a monomial symmetric function, where its coefficient in the sum
will be the possible choices that we can make to find the particular choice of variables
appear.

Now:
m(2,1) =

∑
i 6=j

x2ixj , m(1,1) =
∑
i<j

xixj ,

so the possibilities with only four variables are x31x
2
2, x

3
1x2x3, x

2
1x

2
2x3, x

2
1x2x3x4 (these

are the valid possibilities mentioned above), so we will have m(2,1)m(1,1) as a sum of
m(3,2), m(3,1,1), m(2,2,1), m(2,1,1,1). We now see in how many ways can we obtain each,
and this will give us the coefficients in which they appear in the multiplication:

• x31x22: the x22 cannot be obtained from m(2,1) since the coefficients in m(1,1) are
different and thus will never be able to multiply to x21. Thus we must have x21x2
from m(2,1) and hence x1x2 from m(1,1). We only have 1 choice.

• x31x2x3: we need an x21 coming from m(2,1), and then we have x21xi coming from
m(2,1) with i ∈ {2, 3} since i 6= 1. This means that from m(1,1) we need to have
x1xj with j ∈ {2, 3}\{i}, which is determined after choosing i. Since we only have
the choice of i, we have 2 choices.

• x21x22x3: if x21 is coming from m(2,1), since we cannot have x22 coming from m(1,1)

as discussed above, we must have x21x2 coming from m(2,1) and thus x2x3 comes
from m(1,1); analogously if x22 is coming from m(2,1) we must have x2x3 coming
from m(1,1). We have the choice of picking whether x21 or x22 comes from m(2,1), so
we have 2 choices.

• x21x2x3x4: the x21 needs to come from m(2,1), so we have x21xi coming from m(2,1)

with i ∈ {2, 3, 4} since i 6= 1. This means that from m(1,1) we need to have xjxk
with j, k ∈ {2, 3, 4} \ {i}, which is determined after choosing i since j ≤ k. Since
we only have the choice of i, we have 3 choices.
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Hence the desired result:

m(2,1)m(1,1) = m(3,2) + 2m(3,1,1) + 2m(2,2,1) + 3m(2,1,1,1).
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Exercise 5.2.3.

Show that if µ ≤ λ (in reverse dominance order), then λ precedes µ in the reverse
lexicographic order.

As stated, this is false since µ = (2, 1) ≤ (1, 1, 1) = λ in the reverse dominance order
(2 > 1 and 3 > 2) but (1, 1, 1) does not precede (2, 1) in the reverse lexicographic order
since 2 > 1. We will instead prove: if µ ≤ λ (in reverse dominance order), then µ
precedes λ in the reverse lexicographic order.

Suppose that µ ≤ λ in the reverse dominance order, say µ = (µ1, . . . , µm) and
λ = (λ1, . . . , λl). Notice that if l < m then λ1 + · · · + λl = n > µ1 + · · · + µl, a
contradiction with µ ≤ λ in the reverse dominance order, so l ≥ m. Since the reverse
lexicographic order is a total order, we can compare µ and λ. If they are equal, we
are done. If not, we proceed by contradiction; suppose that λ precedes µ in the reverse
lexicographic order. This means that there is a i ∈ {1, . . . ,m} such that λj = µj for
j < i and λi > µi (this can happen since l ≥ m, so we never run out of space for λ).
This implies µ1 + · · · + µi < λ1 + · · · + λi, a contradiction with µ ≤ λ in the reverse
dominance order. Hence λ cannot precede µ, and since they are not equal and the reverse
lexicographic order is a total order, we must have that µ precedes λ in the lexicographic
order, as desired.
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Exercise 5.3.2.

Compute the specialized symmetric functionsmλ(x1, x2, x3), eλ(x1, x2, x3), hλ(x1, x2, x3),
and pλ(x1, x2, x3), for all partitions λ of 3. Compute the specialized symmetric functions
mλ(x1, x2), eλ(x1, x2), hλ(x1, x2), and pλ(x1, x2), for all partitions λ of 3.

Notice that the three partitions of 3 are (3), (2, 1) and (1, 1, 1). Since we have a lot of
polynomials to write, we will omit the intermediate steps that stem from the definition
and the further simplifications, and we simply present the final expressions.

We start by mλ(x1, x2, x3):

• m(3)(x1, x2, x3) = x31 + x32 + x33,

• m(2,1)(x1, x2, x3) = x21x2 + x1x
2
2 + x21x3 + x1x

2
3 + x22x3 + x2x

2
3,

• m(1,1,1)(x1, x2, x3) = x1x2x3,

then eλ(x1, x2, x3):

• e(3)(x1, x2, x3) = x1x2x3,

• e(2,1)(x1, x2, x3) = x21x2 + x1x
2
2 + x21x3 + x1x

2
3 + x22x3 + x2x

2
3 + 3x1x2x3,

• e(1,1,1)(x1, x2, x3) = x31+x32+x33+3x21x2+3x1x
2
2+3x21x3+3x1x

2
3+3x22x3+3x2x

2
3+

6x1x2x3,

then hλ(x1, x2, x3):

• h(3)(x1, x2, x3) = x31 +x32 +x33 +x21x2 +x1x
2
2 +x21x3 +x1x

2
3 +x22x3 +x2x

2
3 +x1x2x3,

• h(2,1)(x1, x2, x3) = x31 +x32 +x33 + 2x21x2 + 2x1x
2
2 + 2x21x3 + 2x1x

2
3 + 2x22x3 + 2x2x

2
3 +

3x1x2x3,

• h(1,1,1)(x1, x2, x3) = x31+x32+x33+3x21x2+3x1x
2
2+3x21x3+3x1x

2
3+3x22x3+3x2x

2
3+

6x1x2x3,

then pλ(x1, x2, x3):

• p(3)(x1, x2, x3) = x31 + x32 + x33,

• p(2,1)(x1, x2, x3) = x31 + x32 + x33 + x21x2 + x1x
2
2 + x21x3 + x1x

2
3 + x22x3 + x2x

2
3,

• p(1,1,1)(x1, x2, x3) = x31+x32+x33+3x21x2+3x1x
2
2+3x21x3+3x1x

2
3+3x22x3+3x2x

2
3+

6x1x2x3.

We now set x3 = 0 in the above and obtain mλ(x1, x2):

• m(3)(x1, x2) = x31 + x32,

• m(2,1)(x1, x2) = x21x2 + x1x
2
2,

• m(1,1,1)(x1, x2) = 0,
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then eλ(x1, x2):

• e(3)(x1, x2) = 0,

• e(2,1)(x1, x2) = x21x2 + x1x
2
2,

• e(1,1,1)(x1, x2) = x31 + x32 + 3x21x2 + 3x1x
2
2,

then hλ(x1, x2):

• h(3)(x1, x2) = x31 + x32 + x21x2 + x1x
2
2,

• h(2,1)(x1, x2) = x31 + x32 + 2x21x2 + 2x1x
2
2,

• h(1,1,1)(x1, x2) = x31 + x32 + 3x21x2 + 3x1x
2
2,

then pλ(x1, x2):

• p(3)(x1, x2) = x31 + x32,

• p(2,1)(x1, x2) = x31 + x32 + x21x2 + x1x
2
2,

• p(1,1,1)(x1, x2) = x31 + x32 + 3x21x2 + 3x1x
2
2.

This is what we wanted.

9



Exercise 5.4.2.

Compute the Schur function s(2,1) in terms of monomial symmetric functions.
We know that for a partition λ of n we have sλ =

∑
µ≥λKλµmµ. Since (2, 1) is a

partition of 3, first want to know the partitions of 3 (computed above) that are bigger
or equal to this one, which are (2, 1) and (1, 1, 1). Now Kλµ is the number of SSYT of
type λ and shape µ. Thus K(2,1)(2,1) = 1, we have to put the ones in the top row and
the two in the bottom row, and K(2,1)(1,1,1) = 2 since given a SYT of shape (2, 1) we
need the one in the top left box, we have two places where we can put the 2 and then
the 3 has to fill the remaining space, so we only have 2 choices.

Hence the desired result:

s(2,1) = m(2,1) + 2m(1,1,1).
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