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Exercise 5.4.13.

Show that:

trace(w(n);Vλ) =

{
(−1)k if λ = (n− k, 1k) for some 0 ≤ k ≤ n− 1,

0 otherwise.

In virtue of [1, Theorem 5.4.11. (p. 115)] we have that trace(w(n);Vλ) is the coeffi-

cient of xλ+δ in p(n)aδ. Notice that since (n) is a partition of n, we can specialize to n
variables, thus taking δ = (n − 1, n − 2, . . . , 1, 0). Hence we have to find the coefficient
of xλ+δ in:

p(n)(x1, . . . , xn)aδ =

(
n∑
i=1

xni

) ∏
1≤i<j≤n

xi − xj

 .

Since p(n)(x1, . . . , xn)aδ is a multiplication of a symmetric polynomial with an alternating
polynomial, it is an alternating polynomial, and since we saw that alternating polyno-
mials are determined by the coefficients of their decreasing monomials, it is enough to
determine the coefficient of one of these. If any of these decreasing monomials can be
related to xλ+δ, we would have its coefficient and thus as above the desired result. Hence
we now proceed to find a relationship between the decreasing monomials and xλ+δ.

First, note that by definition aδ is the Vandermonde determinant:

aδ =

∣∣∣∣∣∣∣
xn−11 · · · x01

...
...

xn−1n · · · x0n

∣∣∣∣∣∣∣ =
∑
σ∈Sn

sgn(σ)
n∏
i=1

xn−iσ(i)

by the Leibniz formula for determinants. Thus we can rewrite:

p(n)(x1, . . . , xn)aδ =

(
n∑
i=1

xni

)(∑
σ∈Sn

sgn(σ)
n∏
i=1

xn−iσ(i)

)

so each monomial in p(n)(x1, . . . , xn)aδ is of the form:

sgn(σ)xni x
n−1
σ(1) · · ·x

1
σ(n−1).

Since we are looking for decreasing monomials we need i = 1 because n > n− k for all
1 ≤ k ≤ n − 1. Moreover since σ ∈ Sn there is an j ∈ {1, . . . , n} such that σ(j) = 1.
Hence we can rewrite:

sgn(σ)xn1x
n−1
σ(1) · · ·x

1
σ(n−1) = sgn(σ)xn+n−j1 xn−1σ(1) · · ·x

n−(j−1)
σ(j−1) x

n−(j+1)
σ(j+1) · · ·x

1
σ(n−1).

Since we are looking for decreasing monomials and the monomial above already has
decreasing exponents, we just need:

σ(1) < · · · < σ(j − 1) < σ(j + 1) < · · · < σ(n− 1)
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and since σ(j) = 1 we have that none of the above can take 1 as a value, hence:

1 < σ(1) < · · · < σ(j − 1) < σ(j + 1) < · · · < σ(n− 1) ≤ n.

Notice that since we are looking for decreasing monomials, we can choose σ such that:

σ(1) = 2, σ(2) = 3, . . . , σ(j − 1) = j, σ(j + 1) = j + 1, . . . , σ(n− 1) = n− 1

and the monomial will be decreasing. There are other possible options for σ, but the one
chosen here is the simpler one (and, as we will see, the one that yields the monomial xλ+δ,
so this is the correct choice for our intentions). Hence this σ is the cycle (1, 2, . . . , j −
1, j) = (1, 2)(2, 3) · · · (j−2, j−1)(j−1, j) having a decomposition into j−1 transpositions
and thus sgn(σ) = (−1)j−1. We then have for our choice of σ:

sgn(σ)xn1x
n−1
σ(1) · · ·x

1
σ(n−1) = (−1)j−1xn+n−j1 xn−12 · · ·xn−(j−2)j−1 x

n−(j−1)
j x

n−(j+1)
j+1 · · ·x1n−1

which has as exponents the tuple:

(n+n− j, n− 1, . . . , n− j + 1, n− j − 1, . . . , 1, 0) =

= (n− (j − 1) + (n− 1), 1 + (n− 2), . . . , 1 + (n− j), 1 + (n− (j + 1)), . . . , 1, 0)

= (n− (j − 1), 1, . . . , 1) + (n− 1, n− 2, . . . , 1, 0)

so setting k = j − 1 we have k ∈ {0, . . . , n − 1}. Moreover we have that if λ = (n −
k, 1, . . . , 1) then our decreasing monomial is:

(−1)j−1xn+n−j1 xn−12 · · ·xn−(j−2)j−1 x
n−(j−1)
j x

n−(j+1)
j+1 · · ·x1n−1 = (−1)kxλ+δ

moreover, notice that since the tuple δ has a zero in the position n, we need to have 0 in
the exponent of xn to be able to decompose the exponents of the decreasing monomial
as a sum of a partition λ with δ. In particular this means that if we make a choice of σ
such that xn appears in the decreasing monomial, it will not contribute to the coefficient
of xλ+δ, regardless of the partition λ. Hence the condition of having λ = (n− k, 1 . . . , 1)
is not only sufficient but necessary for xλ+δ to have non zero coefficient.

We thus found that the monomial xλ+δ appears in p(n)(x1, . . . , xn)aδ if and only if
λ = (n− k, 1 . . . , 1) for some 0 ≤ k ≤ n− 1, and in that case it appears with coefficient
(−1)k. Hence:

trace(w(n);Vλ) =

{
(−1)k if λ = (n− k, 1k) for some 0 ≤ k ≤ n− 1,

0 otherwise

as desired.
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Exercise 5.5.2.

Show that chn(χλ) = sλ for every partition λ of n.
Notice that:

〈chn(χλ), sµ〉 = 〈χλ, χµ〉Sn =

{
1 if λ = µ,

0 if λ 6= µ,

in virtue of [1, Theorem 5.5.1. (p. 118)] and Schur’s orthogonality relations. Since the
Schur functions {sλ : λ ` n} form an orthonormal basis on ΛnK , this yields chn(χλ) = sλ
as desired.
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Exercise 5.5.3.

Show that for all class functions f, g ∈ K[Sn] we have 〈chn(f), chn(g)〉 = 〈f, g〉Sn .
We saw in [1, Exercise 1.7.12. (p. 26)] that the irreducible characters form a basis

for the class functions. Set this basis as {χλ1 , . . . , χλm} and write f =
∑m

i=1 fχλiχλi ,
g =

∑m
i=1 gχλiχλi . Thus:

〈chn(f), chn(g)〉 = 〈chn(f),
m∑
i=1

gχλi chn(χλi)〉 =
m∑
i=1

gχλi 〈chn(f), chn(χλi)〉

=
m∑
i=1

gχλi 〈chn(f), sλi〉 =
m∑
i=1

gχλi 〈f, χλi〉Sn = 〈f,
m∑
i=1

gχλiχλi〉Sn

= 〈f, g〉Sn

where we have used the bilinearity of the form on ΛnK and the bilinearity of the map on
K[Sn], as well as [1, Theorem 5.5.1. (p. 118)] and [1, Exercise 5.5.2. (p. 118)].
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Exercise 5.5.5.

Here we use the abbreviated notation mentioned on [1, (p. 118)], namely chn(Vλ) = sλ,
and also the usual abuse of notation by identifying the vector spaces of a representation
with the morphism of that representation. For every partition λ of n, we show that:

1. We have:

chn(K[Xλ]) = chn

⊕
ν≤λ

V ⊕Kνλν

 =
∑
ν≤λ

chn(V ⊕Kνλν )

=
∑
ν≤λ

Kνλchn(Vν) =
∑
ν≤λ

Kνλsν = hλ

where we have used [1, Theorem 3.3.1. (p. 68)], linearity of the map chn and [1,
Equation 5.19 (p. 110)]. Thus chn(K[Xλ]) = hλ.

2. We have:

chn(K[Xλ]⊗ ε) = chn

⊕
ν′≤λ

V
⊕Kν′λ
ν

 =
∑
ν′≤λ

chn(V
⊕Kν′λ
ν )

=
∑
ν′≤λ

Kν′λchn(Vν) =
∑
ν≤λ

Kνλchn(Vν′) =
∑
ν≤λ

Kνλsν′ = eλ

where we have used the direct consequence of [1, Theorem 4.4.2. (p. 68)] that

K[Xλ] ⊗ ε =
⊕

ν′≤λ V
⊕Kν′λ
ν , linearity of the map chn and [1, Equation 5.18 (p.

110)]. Thus chn(K[Xλ]⊗ ε) = eλ.
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Exercise 5.6.4.

Let fλ denote the number of Standard Young Tableaux of shape λ. We show that
for every partition λ we have fλ =

∑
µ∈λ− fµ, and as a consequence we recover that

dim(Vλ) = fλ.
Given any partition ν of n we define SY Tν the set of Standard Young Tableaux of

shape ν. To prove that fλ =
∑

µ∈λ− fµ it is enough to define a bijection between SY Tλ
and

∐
µ∈λ− SY Tµ. We now construct this bijection.

Given a SYT of shape λ (that is, an element in SY Tλ), we have that the Young
diagram is filled with the numbers {1, . . . , n}, each appearing only once. We can then
remove the box labeled n, obtaining a SYT of shape µ ∈ λ− (that is, an element in∐
µ∈λ− SY Tµ).

Given a SYT of shape µ ∈ λ−, its Young diagram has n− 1 boxes and its shape was
obtained from the Young diagram of λ by removing one box. This means that there is
a unique way of adding a box to µ and obtain a Young diagram of shape λ, and filling
this box with the label n we would obtain a SYT of shape λ.

The two maps above are well defined and inverses of each other, both by construction.
Hence they establish the desired bijection between SY Tλ and

∐
µ∈λ− SY Tµ, proving that

fλ =
∑

µ∈λ− fµ.
To prove that dim(Vλ) = fλ we proceed by induction on n the number that λ

partitions. The case n = 1 follows directly from [1, Exercise 3.3.4. (p. 69)]: that gives
us that fλ = 1 and since K[S1] is one dimensional we have that Vλ is one dimensional.
Suppose now that dim(Vν) = fν holds for ν any partition of n, for any partition λ
of n + 1 we use [1, Theorem 5.6.2. (p. 120)] and what we just proved: dim(Vλ) =∑

µ∈λ− dim(Vµ) =
∑

µ∈λ− fµ = fλ, as desired. This finishes induction and thus indeed
dim(Vλ) = fλ for λ any partition of any n ∈ N.
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