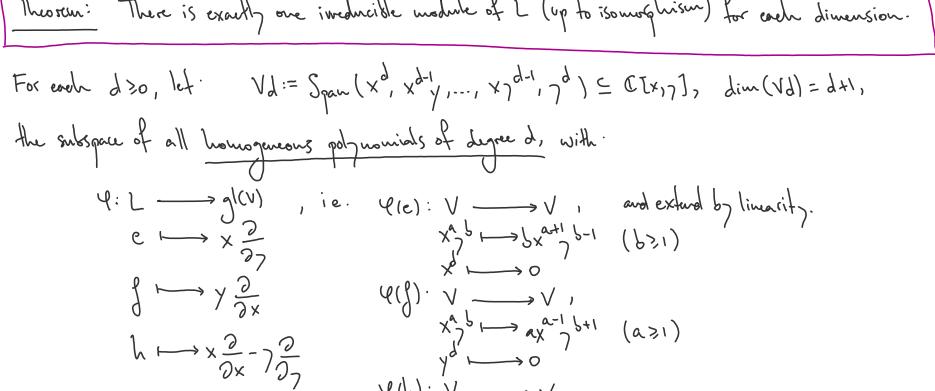
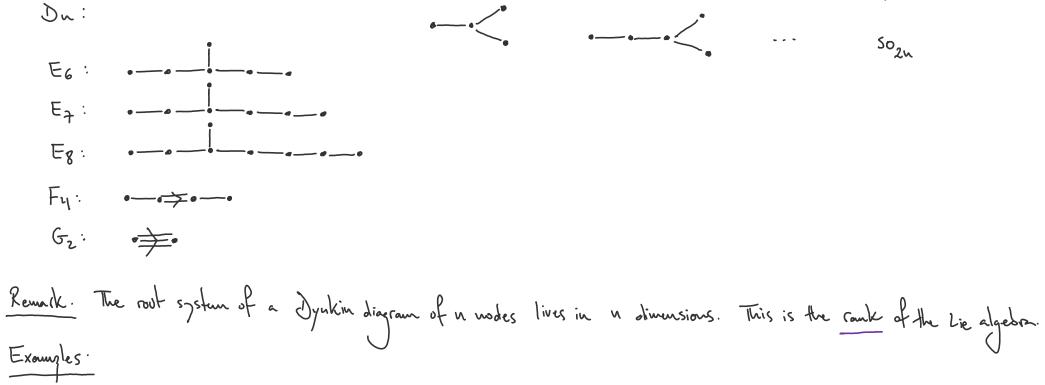
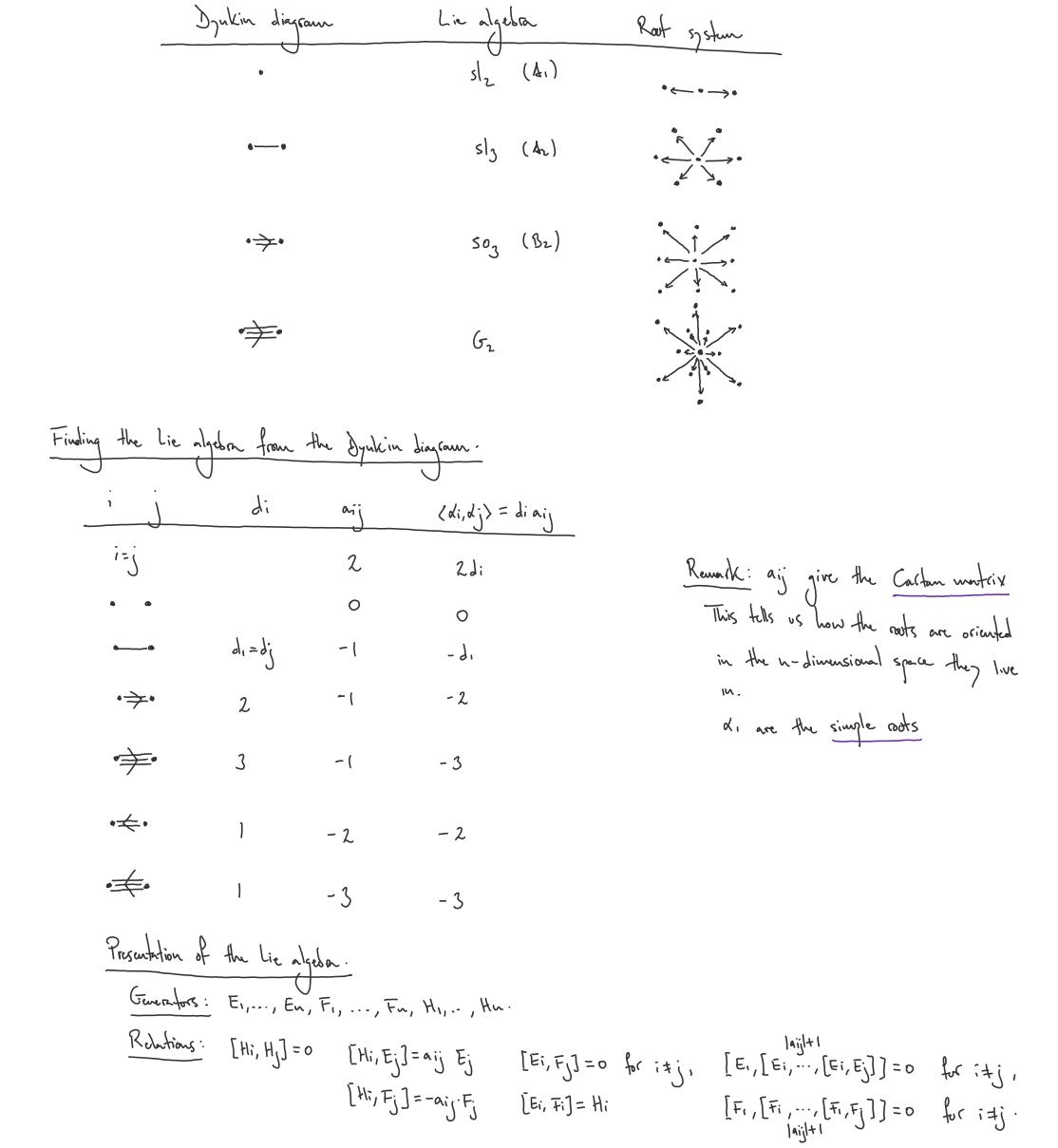
2020/2005 Lecher 3. File S Out
Summer on his algebra is an algebra is with a multiplication [??]: LKL
$$\rightarrow$$
 L satisfying.
A Lie algebra is an algebra is with a multiplication [??]: LKL \rightarrow L satisfying.
(1) Shows symmetry: $[X_1X] = 0$ for all $X \in L_3$.
(1) Jechs identity: $[[X_1X]_2] + [[T_1,7]_1X] + [[T_2,7]_2] = 0$ for all $X_1,7,2 \in L$.
Example:
(1) The general linear Lie algebra glu(k) are all user motions over k with backet.
[M103]:= MN-NM for all MN of glu(k).
(11) The general linear Lie algebra shulk) are all user motions over k with backet.
[M103]:= MN-NM for all MN of glu(k).
(11) The general linear Lie algebra shulk) are all user motions over k with backet.
[M103]:= MN - NM for all MN of glu(k).
(11) The special linear Lie algebra shulk) are all user motions over k with backet.
[M103]:= MN - Lie algebra shulk for all user is a lie shull glue.
(11) The special linear Lie algebra shulk are all user motions over k with a linear endomorphismer
of V The Lie an enviritive algebra with sumlightedion the comprision of glu(k).
(12) Let V is an enviritive algebra with sumlightedion the comprision of functions.
(13) Let V is an enviritive algebra with sumlightedion of $g(V)$.
Remett: $Sl_2 = l\binom{n}{2} l = 4 = 0$
Has we C-basis. $h = \binom{n}{2}$, $c = \binom{n}{2}$, $f = \binom{n}{2}$.
The backets are. $(h, c] = 2c$, $[h, d] = -2d$, $[c, g] = h$.







Definition: The Bord subalgebon of a Lie algebon L is the subalgebon guerated by E1,..., En, H1,..., Hu.
The infolunt subalgebon of a Lie algebon L is the subalgebon guerated by E1,..., En.
Definition: Fix h an element of the weight lattice (1 c morally an eigenvector of H), say
$$h = (h_1, ..., h_n)$$
.
A Verian mobile with highest weight h is $M_{\lambda} := U_{01} \otimes C_{\lambda}$
Here of is our Lie algebon, b its Dord subalgebon, and C_{λ} the one-dimensional vector space C with b-module
stancture given by H, acting by h ; and Ei acting by O. Denote v_{λ} the basis of C_{λ} , the highest weight vector.
Definition: Let of be a Lie algebre. The inverse of the set of the basis of C_{λ} , the highest weight vector.

where I is the two solid ited over
$$T(g)$$
 quarket by denotes of the form $a \otimes b - b \otimes a - [a,b]$.
Conceptually:
1) The wintered analoging dealer contrins the original lie dealer in such a new that the booket
milliphication in g is now the analytic obtained by demonstrate theory: the lie approximations
if a live alphan generation that an expressive theory is the live approximations
if a live alphan of a regional to the analytic representation of the analytic alphan Ug.
In find, the extrant of a regional to the analytic representation of the analytic alphan Ug.
In find, the extrant of a regional to the analytic representation of the analytic alphan Ug.
In find, the extrant of a regional to the analytic representation of the analytic alphan Ug.
In find, the extrant of a regional by the analytic to the endows of the advice
over Ug, we dedice to deprive.
Example: Velow makeles the infinite the is spaced by linearly integrabed where it is, the other of the advice
over Ug, we dedice to be a space of $a_{1,1}$, $b_{1,2} = (b-2j) g$.
In packalar: $b_{1,2} = b_{1,2}$, $b_{2,2} = (b-(j-1))U_{1,1}$, $b_{2,2} = (b-2j) g$.
In packalar: $b_{2,2} = b_{1,2} = (b-(j-1))U_{1,1}$, $b_{2,2} = (b-2j) g$.
In packalar: $b_{2,2} = b_{1,2} = (b-(j-1))U_{1,1}$, $b_{2,2} = (b-2j) g$.
In packalar: $b_{2,2} = b_{1,2} = (b-2j) g$.
In packalar: $b_{2,2} = b_{1,2} = (b-2j) g$.
In packalar: $b_{2,2} = b_{1,2} = (b-2j) g$.
In packalar: $b_{2,2} = b_{1,2} = (b-2j) g$.
In packalar: $b_{2,2} = b_{1,2} = (b-2j) g$.
In packalar, $b_{2,3} = b_{1,2} = (b-2j) g$.
In packalar: $b_{2,3} = b_{1,3} = (b-2j) g$.
In packalar, $b_{2,3} = b_{2,3} = (b-2j) g$.
In packalar, $b_{2,3} = b_{2,3} = (b-2j) g$.
If $b \in O(M)$ there $b_{1,3} = b_{1,3} = b_{2,3} = (b-2j) g$.
 $U_{2,3} = U_{2,3} = U_{2,3} = (b-2j) g$.
If $b \in O(M)$ then $M_{3,3} = gingle infinite dimensional representation of she
 $U_{2,3} = U_{2,3} = U_{2,3} = (b-2j) g$.
Definition Leb M₃ be a View module of bijbach areginge paper maximal submodule
The particular set $b_{2,3$$

and integral then this quotient is finite dimensional.
The module
$$M_{\lambda}$$
 is inveducible if and only if $\lambda = (\lambda_1, ..., \lambda_n)$ with $\lambda_1, ..., \lambda_n \notin IN$