
A Reading on “Algebraic Coherent Sheaves” by J.-P. Serre

Pablo Sánchez Ocal
Supervised by Professor Bruno Kahn

July 2016
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1 Introduction

The aim of this dissertation is to present in a concise way several results exposed by
Jean-Pierre Serre in [1]. Our main focus will be the study of algebraic coherent sheaves,
in particular the cohomology of affine varieties and projective varieties when they take
values on the aforementioned sheaves. The motivation of such study is the generalization
to abstract algebraic geometry the methods used by H. Cartan, S. Eilenberg and others
for the study of functions of several variables and classical algebraic geometry, among
others.

An outline of the Sections follows:

Section 2 is meant to be a concise and broad overview of the theory of sheaves that
will be used throughout the work. These include sheaves and sheaf cohomology.

Section 3 covers both algebraic and affine varieties. For the first general definitions
and results are presented, while for the second a complete characterization concerning
their cohomology over algebraic coherent sheaves and an identification of such
sheaves with the cohomology group of degree 0 are established.

Section 4 is where the main interest of the article yields. It contains the definition of
projective variety and establishes a correspondence of algebraic coherent sheaves
over them with graduated modules verifying condition (TF). This correspondence
is bijective when considering the elements in C and allows the computation of the
cohomology.

While the usual notations of K being a commutative field algebraically closed and
F a sheaf over a topological space X, we will mainly use the notation and reasoning
presented by Serre in his article. This notation is somewhat different although equivalent
to the one used nowadays, that is, the functorial approach preferred by Grothendieck.
For this secondary point of view, we will use as reference the relatively modern text [4].
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2 Generalities about sheaves and their cohomology

The definition of a sheaf over a topological space X used nowadays is that of a functor
over X (or presheaf ) with some additional structure (see [4]). Equivalently, we have:

Definition 1. Let X be a topological space. Consider a function F : X → F that assigns
to every point x ∈ X an abelian group Fx and a topology over F =

∐
x∈X Fx the sum of

those groups seen as sets. We have the usual projection π : F → X by π(f) = x when
f ∈ Fx and the sum F + F = {(f, g) ∈ F × F|π(f) = π(g)}. A sheaf of abelian groups
over X is defined by a pair (F,F) under the axioms:

1. For every f ∈ Fx, there are neighborhoods V of f and U of π(f) with π(V ) ∼= U .

2. The maps − : F → F and + : F + F → F are continuous.

Example 1. Let G be an abelian group. For any topological space X, let Fx = G. We
can identify F ∼= X ×G and give it the product topology (using the discrete topology for
G), thus obtaining the so called constant sheaf isomorphic to G.

As usual, for opens U ⊂ X we have (continuous) sections s : U → F with π◦s = idU ,
which form the abelian groups Γ(U,F), and homomorphisms ρVU : Γ(V,F) → Γ(U,F)
when U ⊂ V . Moreover, Fx = lim−→x∈U Γ(U,F) as a consequence of the first axiom above.
The following result states the aforementioned equivalence, that is, we can reduce the
study of sheaves to the study of its sections:

Proposition 1. Let F be a sheaf of abelian groups. Via the collection (Γ(U,F), ρVU ) we
can define a sheaf that is canonically isomorphic to F .

Moreover, the sheaf defined by (Γ(U,F), ρVU ) has the additional structure required in
[4].In fact, every construction and result in this dissertation can be translated thusly.

Example 2. Let G be an abelian group, set FU = {f : U → G|f map} for any topological
space X. Consider ρVU : FV → FU the restriction map. We obtain a system (FU , ρ

V
U ) and

thus the so called sheaf of germs of functions F with values in G, with FU ∼= Γ(U,F).

Given F a sheaf over X, there are several constructions that can be done. Setting
F(U) = π−1(U) =

∐
x∈U Fx defines the induced sheaf over an open U ⊂ X, and

conversely if for an open cover we have a system of compatible sheaves, they define
a sheaf over X. Two that deserve a special mention are:

Definition 2. Let F be a sheaf over X, we say it is concentrated over a closed Y ⊂ X
when Fx = 0 for x ∈ X \ Y (in such cases Γ(X,F) ∼= Γ(Y,F(Y ))). Let F(Y ) be the
induced sheaf over Y , by extending it by 0 out of Y we obtain a sheaf noted FX (which
unequivocally determines F).

Definition 3. Let A be a sheaf over X, we say it is a sheaf of rings if Ax is a ring (with
unity, varying continuously) for every x ∈ X and · : A+A → A is continuous. A sheaf
F is called a sheaf of A-modules if Fx is an Ax-module (with unity) and · : A+F → F
is continuous.
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From F , G sheaves of modules emerge the usual constructions: sub-sheaves and
quotient sheaves are well defined and determine the exact sequence 0 → Γ(U,G) →
Γ(U,F)→ Γ(U,F/G), A-homomorphisms (of sheaves of modules) are given by a collec-
tion of homomorphisms of Ax-modules ϕx : Fx → Gx making ϕ : F → G continuous,
the collections Ker(ϕx) and Im(ϕx) define the kernel and image sheaves of ϕ, it holds
F/Ker(ϕ) ∼= Im(ϕ), the cokernel sheaf of ϕ is the quotient G/Im(ϕ), the homomorphism
ϕ is injective when Ker(ϕ) = 0 and surjective when Coker(ϕ) = 0 (bijective when both
hold), a sequence I → F → G is said to be exact when in F the image coincides with
the kernel (in general, every definition concerning homomorphisms of modules has an
analogue in homomorphisms of sheaves of modules), the direct sum F ⊕G is the sheaf of
modules defined by the collection Fx+Gx as a subset of F ×G, the tensor product F ⊗G
is the sheaf of modules defined by the collection Fx ⊗Ax Gx with structure compatible
with the sections over F and G, the collection ϕx ⊗ φx : Fx ⊗ Gx → F ′x ⊗ G′x defines an
A-homomorphism ϕ⊗ φ : F ⊗ G → F ′ ⊗ G′ (again, every property of tensor product of
modules has an analogue in tensor product of sheaves of modules), and we finally have
HomA(F ,G), the sheaf of germs of homomorphisms from F to G, defined by the family
(varying U ⊂ X) of group of homomorphisms from F(U) to G(U) (with the analogue
results as in modules). This last construction has the particularity that the induced
homomorphism ρ : HomA(F ,G)x → HomAx(Fx,Gx) is not a bijection in general.

Definition 4. Let F be a sheaf of A-modules, s1, . . . , sp ∈ Γ(U,F). Consider the maps
+p
i=1si(x) : Apx → Fx, that define +p

i=1si : A(U)p → F(U). The sheaf of relations among
said sections is Ker(+p

i=1si) = R(s1, . . . , sp). We say that F is of finite type if it is
locally generated by a finite number of sections. We say that F is coherent if: F is of
finite type and R(s1, . . . , sp) is of finite type (over U) for any s1, . . . , sp ∈ Γ(U,F ). We
say that A is a coherent sheaf of rings if it is coherent as an A-module.

Many operations preserve this structure, one that stands out being:

Theorem 1. Let 0→ I → F → G → 0 be an exact sequence of sheaves over a topological
space X. If any couple among I, F , G is coherent, then the third is also coherent.

Proof. See [1].

But much more holds: the direct sum (and thus intersection and sum under a bigger
sheaf), kernel, cokernel and image of a homomorphism and tensor product, if A is
a coherent sheaf of rings and F is a coherent sheaf of A-modules, the annihilator of
F , all produce coherent sheaves. Moreover, HomA(F ,G)x ∼= HomAx(Fx,Gx) when F
is coherent and HomA(F ,G) is coherent when G is also coherent. We also have the
equivalences:

Theorem 2. Let A be a coherent sheaf of rings, I a coherent sheaf of ideals of A. A
sheaf F of A/I-modules is A/I-coherent if and only if F is A-coherent. In particular,
A/I is a coherent sheaf of rings.

Proposition 2. Let Y ⊂ X a closed subspace, A a sheaf of rings over Y . A sheaf F is
A-coherent if and only if FX is AX-coherent.
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Definition 5. Let U = {Ui}i∈I be a covering of X, F a sheaf. For s = (i0, . . . , ip) ∈ Ip+1

we denote Us = Ui0...ip = ∩pj=0Uij . A function f : Ip+1 →
∐
s∈Ip+1 Γ(Us,F) is called

a p-cochain of U with values in F . They form the group
∏
s∈Ip+1 Γ(Us,F) = Cp(U,F),

and this family form the complex C(U,F). We have the usual alternating p-cochains,
which form subgroups C ′p(U,F) and the subcomplex C ′(U,F).

The points in I may be viewed as vertexes of a simplex S(I) that defines a complex
K(I) and we have the concept of simplicial endomorphism. The canonical differential
operator ∂ : Kp+1(I)→ Kp(I) yields a homomorphism d : Cp(U,F)→ Cp+1(U,F):

(df)i0...ip+1 =

p+1∑
j=0

(−1)jρj(fi0...̂ij ...ip+1
), with ρj : Γ(Ui0...̂ij ...ip+1

,F)→ Γ(Ui0...ip+1 ,F),

with d◦d = 0 and the q-cohomology group of C(U,F) denoted Hq(U,F). Since d is stable
for alternating cochains, there are H ′q(U,F). Moreover, we have H0(U,F) = Γ(X,F)
and H ′q(U,F) ∼= Hq(U,F), this being zero for q > dim(U).

A refinement B of U induces a homomorphism σ(U,B) : Hq(B,F) → Hq(U,F).
Any U is equivalent to certain U′ indexed by P(X), thus the coverings can be viewed as
an ordered filtrant set. Thus Hq(U,F) only depends on the class of U, and let us define:

Hq(X,F) = lim−→
U

Hq(U,F).

As before, H0(X,F) = Γ(X,F). A homomorphism ϕ : F → G defines ϕ∗ : Hq(X,F)→
Hq(X,G), thus Hq(X, ·) is a functor, behaving in the same way as with modules.

Given 0→ I → F → G → 0 an exact sequence of sheaves, 0→ C(U, I)→ C(U,F)→
C(U,G) is exact, but we do not always have surjectivity. Considering C0(U,G) the
image onto C(U,G), the constructions above hold and we have the exact sequence · · · →
Hq(X,F) → Hq

0(X,G) → Hq+1(X, I) → Hq+1(X,F) → · · · , thus Γ(X,F) → Γ(X,G)
is surjective if H1(X, I) = 0 and when Hq

0(X,G) ∼= Hq(X,G):

· · · → Hq(X,F)→ Hq(X,G)→ Hq+1(X, I)→ Hq+1(X,F)→ · · · is exact.

Considering the induced covering U′ = {Y ∩ Ui}i∈I of Y ⊂ X closed, the restriction
induces a homomorphism ρ∗ : Hq(X,F) → Hq(Y,F(Y )) that is an isomorphism when
F is concentrated over Y , that is Hq(Y,G) ∼= Hq(X,GX).

Given U and B coverings, s ∈ S(I) and s′ ∈ S(J), set Us′ = {Vs′ ∩ Ui}i∈I and Bs =
{Us ∩ Vj}j∈J . We define the double complex C(U,B;F) as the family Cp,q(U,B;F) =∏
s∈Ip+1,s′∈Jq+1 Γ(Us ∩ Vs′ ,F) with homomorphisms dU : Cp,q(U,B;F)→ Cp+1,q(U,B;F)

and dB : Cp,q(U,B;F) → Cp,q+1(U,B;F) (set d′ = dU, d′′ = (−1)pdB and d = d′ + d′′,
see [5]). This allow us to determine cases where the induced restriction homomorphisms
Hn(U,F)→ Hn(U,B;F) and Hn(B,F)→ Hn(U,B;F) are bijections, which yields:

Theorem 3. Let U be a covering of a topological space X, F a sheaf over X. Suppose
there is Bα, α ∈ A a family of coverings of X verifying: every covering W of X has
some Bα as a refinement and Hq(Bα

s ,F) = 0 for every α ∈ A, s ∈ S(I), q > 0. Then
σ(U) : Hn(U,F)→ Hn(X,F) is a bijection for every n ≥ 0.
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3 Algebraic coherent sheaves over affine varieties

We begin by the definitions of algebraic varieties, then study the behavior of the sheaves
of local rings and their cohomology in affine varieties.

Definition 6. Let X be a topological space, we say that it verifies condition (A) if every
decreasing sequence of closed subsets of X is stationary.

Such a space X is compact but does not need to be Hausdorff, every subspace Y ⊂ X
also verifies (A) and if the family {Yi}pi=1 verifies (A), then

⋃p
i=1 Yi also verifies (A). We

must have X =
⋃q
i=1 Vi with all Vi irreducible closed subspaces, by asking Vi ( Vj for

any pair (i, j) the Vi are uniquely determined and called the irreducible components of
X. Given such X =

⋃q
i=1 Vi, it is irreducible if and only if all Vi are irreducible and

Vi ∩ Vj 6= ∅ for any pair (i, j).

Definition 7. Let r ∈ N and X = Kr the affine space of dimension r over K. We
consider the Zariski topology over X, where a subset is closed if it is the set of common
zeros of a family of polynomials in K[X1, . . . , Xr].

Since K[X1, . . . , Xr] is noetherian, X verifies condition (A). It is easily checked that
X is irreducible. For any point x ∈ X, we denote Ox the local ring of x (the subring
of K(X1, . . . , Xr) with denominator non zero in x). An element of Ox is said regular on
y in every point y ∈ X where the denominator is non zero. Thus Ox, x ∈ X, form a
subsheaf of rings O of the sheaf F(X) of germs of functions over X with values in K.

Let Y = U ∩ V ⊂ X (U open and V closed) be a locally closed subspace. For every
x ∈ Y the restriction of a function defines a homomorphism εx : F(X)x → F(Y )x whose
image Ox,Y = εx(Ox) are subring of F(Y )x that define the subsheaf OY of F(Y ) called
sheaf of local rings of Y . Given an open V ⊂ Y , a map f : V → K is said to be regular
when in each neighborhood of x ∈ V it is equal to the restriction to V of a regular
rational function in x. The (ring of) sections Γ(V,OY ) coincide with the regular maps
over V . The following is an important result that characterizes the sheaf OY :

Corollary 1. Let Y = U ∩ V as above, I(V ) = {f ∈ K[X1, . . . , Xr]|f(V ) = 0}, x ∈ V .
The ring Ox,Y is isomorphic to the ring of fractions of K[X1, . . . , Xr]/I(V ) relative to
the maximal ideal defined by the point x.

Given U , V locally closed subspaces of Kr, Ks respectively, we are interested in
studying the regular maps over U , that is maps ϕ : U → V that are continuous and for
x ∈ U , f ∈ Oϕ(x), V , then f ◦ϕ ∈ Ox,U . For a map to be regular is sufficient and enough
to be regular in each coordinate, the composite of regular maps is regular and a bijection
with regular inverse is called biregular isomorphism. Identifying Kr+s to Kr × Ks, the
Zariski topology is a refinement of the induced topology, and thus OU×V is well defined.
As expected, the product of two maps ϕ× ϕ′ : U × U ′ → V × V ′ is regular if and only
if each map is regular, and similarly with isomorphisms.

Definition 8. An algebraic variety over K is a set X together with a topology and a
subsheaf OX of the sheaf F(X) of germs of functions over X with values in K, verifying:
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(V AI) There is a finite open cover B = {Vi}i∈I of X such that each Vi ∼= Ui for some
locally closed subspace Ui of an affine space (both with the induced structure).

(V AII) The diagonal ∆ of X ×X is closed in X ×X.

While (V AI) can be asked, we must justify (V AII). If only (V AI) is satisfied, we
say that X is a prealgebraic variety, X automatically satisfies condition (A) via the
isomorphisms ϕi : Vi → Ui, called charts of Vi, the topology over X is called the
Zariski topology over X and the sheaf OX is called the sheaf of local rings of X. The
structure of prealgebraic variety over X =

⋃p
i=1Xi can be well defined via the structure

of prealgebraic variety of each Xi mwhen they are compatible, making them open in
X, and thus if X ′ is another prealgebraic variety, the set X × X ′ has a structure of
prealgebraic variety induced by the structures of each component: this allow us to
consider the topology of X ×X, making (V AII) consistent.

The concept of regular maps ϕ : X → Y among algebraic varieties is analogous
to the one among locally closed subspaces of affine spaces, as are the properties. The
natural way of defining the induced structure of algebraic variety of a locally closed
subset X ′ ⊂ X works well, and X ′ is called subvariety of X. Similarly, the product
X × Y yields an algebraic variety called product variety.

Let X be an irreducible algebraic variety. For a non empty open U ⊂ X, set AU =
Γ(U,OX) (which is an integral ring). Denote by KU the field of quotients, we have an
isomorphism KU ∼= KV when U ⊂ V . The family KU defines a sheaf of fields K, with
Kx canonically isomorphic to the field of quotients of Ox,X . It turns out that K is a
constant sheaf and the sections are Γ(U,K) ∼= Kx = K(X) for every x ∈ X, a field that
we call field of rational functions over X. The identification in Corollary 1 means that
K(X) is an extension of finite type of K (and in particular Ox,X is a subring of K(X)),
we say that the degree of transcendence of this extension is the dimension of X. For
reducible algebraic varieties X =

⋃
i∈I Yi, we set dim(X) = supi∈I(dim(Yi)).

Proposition 3. Let V be an algebraic variety, then OV is a coherent sheaf of rings over
V . In particular for X an affine space, O is a coherent sheaf of rings.

Proof. Consider first an affine space X, let x ∈ X, U neighborhood of x and f1, . . . , fp ∈
Γ(U,O). Suppose we have y ∈ U and gi ∈ Oy with

∑p
i=1 gifi = 0 locally. We may write

as a quotient of polynomials: fi = Pi/Q and gi = Ri/Q, thus equivalently
∑p

i=1RiPi =
0. Since the ring of polynomials is noetherian, the module of relations among the Pi is
of finite type, and thus R(f1, . . . , fp) is of finite type.

For the algebraic variety, the property is local, so we may take V as a locally closed
subvariety of an affine space X. Considering I(V ) the sheaf of ideals of the functions
that are locally zero restricted to V , it is readily checked that it is a coherent sheaf of
O-modules, thus O/I(V ) = OXV , a coherent sheaf of rings over X that is zero out of V
and OV inside V . Thus OV is a coherent sheaf of rings over V by Proposition 2.

Definition 9. Let V be an algebraic variety, we say that F is an algebraic sheaf over
V if it is a sheaf of OV -modules. For F , G algebraic sheaves, a OV -homomorphism
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ϕ : F → G is called an algebraic homomorphism. An algebraic sheaf F is said to be
coherent if it is a coherent sheaf of OV -modules.

Proposition 4. Let W be a closed subvariety of an algebraic variety V . If F is an alge-
braic coherent sheaf over W , then FV is an algebraic coherent sheaf over V . Conversely,
if G is an algebraic coherent sheaf over V with annihilator containing I(W ), then G(W )
is an algebraic coherent sheaf over W .

In particular, every algebraic coherent sheaf over an affine variety can be viewed as
an algebraic coherent sheaf over the affine space. Remark that when G is zero outside
of W , we can only guarantee that a power of I(W ) is contained in the annihilator of G.

Definition 10. Let V be an algebraic variety. we say that V is affine if it is isomorphic
to a closed subvariety of an affine space. An open subset U of an algebraic variety V is
called affine if provided with the structure of algebraic variety induced by V , is an affine
variety.

The product of affine varieties and closed subvarieties of an affine variety remain
affine. Moreover, the intersection of affine opens is affine, and given f a regular map
over V an affine variety, the subset Vf = {x ∈ V |f(x) 6= 0} is an affine open. Given V
a closed subvariety of an affine space, T ⊂ V closed, the family of affine opens VP with
polynomials P (T ) = 0 form a basis for the topology of V \ T . Thus, the family of affine
open subsets of an algebraic variety X form a basis of its topology, and the coverings of
X given by affine subsets are arbitrarily refined.

Some technical results about irreducible algebraic varieties are of interest when study-
ing the cohomology of sheaves over varieties. Let V be a closed subvariety of Kr, I(V )
the ideal of K[X1, . . . , Xr] of polynomials that are zero over V . There is a canonical
injective homomorphism ι : K[X1, . . . , Xr]/I(V )→ Γ(V,OV ) that is bijective when V is
irreducible. Suppose X is an irreducible algebraic variety, Q a regular function over X
and P a regular function over XQ, then for n big enough the rational function QnP is
regular over X. If we also have an algebraic coherent sheaf F over X and s ∈ Γ(X,F)
with s(XQ) = 0, then for n big enough Qns is zero over X. The way of proving these
facts is to use the locality of the properties to be verified and reasoning on fractions of
polynomials (see [6] or [7] for the background in commutative algebra).

Proposition 5. Let X be an irreducible affine variety, Qi, i ∈ I, a finite family of
regular functions over X non zero simultaneously and U = {XQi}i∈I . If F is an algebraic
coherent subsheaf of OpX , then Hq(U,F) = 0 for every q > 0.

Proof. We shall only say that the explicit forms of cocycles and fractions of polynomials
are used: it is mainly routine computations helped by the technical results above.

As a consequence of this result and that the coverings used are arbitrarily refined,
we have that Hq(X,F) = 0 for every q > 0. In fact, this implies that the exact
sequence of sheaves 0 → F → OpX → O

p
X/F → 0 induces and exact sequence 0 →

Γ(X,F)→ Γ(X,OpX)→ Γ(X,OpX/F)→ 0 and that K[X1, . . . , Xr]/I(V ) ∼= Γ(V,OV ) by
the homomorphism ι above.
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Theorem 4. Let F be an algebraic coherent sheaf over an affine variety X. For every
x ∈ X, Fx is generated as Ox,X-module by the global sections Γ(X,F).

Proof. We shall only sketch it. Since X is affine, we may extend it as a closed subvariety
of an affine space Kr and thus extend F onto FX which remains an algebraic coherent
sheaf, as noticed. It is thus enough to consider X = Kr. Locally F is isomorphic to a
quotient of a sheaf Op, thus there are a finite number of polynomials Qi (non zero and
not simultaneously zero) that determine surjections ϕi : Opi → F over XQi . Let x ∈ U0,
Fx is generated by the sections Γ(U0,F) and Q0 is invertible in Ox.

It is thus enough to prove that if s0 ∈ Γ(U0,F), then there is N ∈ N and s ∈ Γ(X,F)
with s = QN0 s0 over U0. Using the technical results above, for n big enough we can find
a family of sections s′i ∈ Γ(Ui,F) that coincide with Qn0s0 over Ui∩U0, for m big enough
we have Qm0 (s′i − s′j) = 0 over Ui ∩ Uj , and thus the sections Qm0 s

′
i are compatible and

determine a unique section s ∈ Γ(X,F) with s = Qn+m
0 s0 over U0, as desired.

This means that the sheaf F is isomorphic to a quotient sheaf of a sheaf OpX , since
X is compact and any sections generating Fx also generate locally. In fact, an exact
sequence I → F → G of algebraic coherent sheaves over an affine variety X determine
an exact sequence Γ(X, I)→ Γ(X,F)→ Γ(X,G).

Theorem 5. Let X be an affine variety, Qi, i ∈ I, a finite family of regular functions
over X non zero simultaneously and U = {XQi}i∈I . If F is an algebraic coherent sheaf
over X, then Hq(U,F) = 0 for every q > 0.

Proof. We shall only sketch it. Suppose first X irreducible, we can find an exact sequence
of sheaves 0 → R → OpX → F → 0 that induces an exact sequence of complexes
0→ C(U,R)→ C(U,OpX)→ C(U,F)→ 0 that induces an exact sequence in cohomology
· · · → Hq(U,OpX)→ Hq(U,F)→ Hq+1(U,R)→ · · · , with Hq(U,OpX) = 0 = Hq+1(U,R)
for every q > 0 by Proposition 5, thus Hq(U,F) = 0 for every q > 0.

Let X ⊂ Kr be any affine variety. The extension FKr
is an algebraic coherent sheaf,

Qi are induced by polynomials Pi and I(X) is generated by some Rj . Since Pi, Rj are
not zero simultaneously over Kr, they induce a covering U′ of Kr and Hq(U′,FKr

) = 0
for q > 0. Since C(U′,FKr

) ∼= C(U,F) as complexes, Hq(U,F) = 0 for q > 0.

Since the coverings used are arbitrarily refined, this technicality implies:

Corollary 2. Let X be an affine variety and F an algebraic coherent sheaf over X.
Then Hq(X,F) = 0 for every q > 0.

Moreover, the exact sequence of sheaves 0 → I → F → G → 0 induces and ex-
act sequence 0 → Γ(X, I) → Γ(X,F) → Γ(X,G) → 0. The above also implies that
Hq(U,F) = 0 for any finite affine cover U of X, and building on this and using Theorem
3 we have:

Theorem 6. Let X be an algebraic variety, U a finite affine covering of X. If F is an
algebraic coherent sheaf over X, then the homomorphisms σ(U) : Hn(U,F)→ Hn(X,F)
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are bijections for every n ≥ 0. If we have 0 → I → F → G → 0 an exact sequence
of sheaves over X with I being an algebraic coherent sheaf, then the homomorphism
Hq

0(U, G)→ Hq(U,G) is a bijection for every q ≥ 0.

This means that the homomorphism Hq
0(X,G) → Hq(X,G) is a bijection for every

q ≥ 0, thus · · · → Hq(X,F) → Hq(X,G) → Hq+1(X, I) → Hq+1(X,F) → · · · is an
exact sequence.

Definition 11. Let V be an affine variety with sheaf of local rings O. The ring A =
Γ(V,O) is called the coordinate ring of V .

We may see A as an algebra over K without nilpotent elements different from zero,
when V ⊂ Kr we identify A ∼= K[X1, . . . , Xr]/I(V ) and thus A is finitely generated. Con-
versely, let A be a commutative K-algebra without nilpotent elements different from zero
and finitely generated, then there is an affine variety V (determined up to isomorphism)
with Γ(V,O) ∼= A.

Let M be an A-module, identify it with the constant sheaf that defines over V and
consider it as a sheaf of A-modules. Consider O a sheaf of A-modules. Set A(M) = O⊗A
M , an algebraic sheaf over V . The assignment A(M) is functorial, since ϕ : M → M ′

an A-homomorphism defines A(ϕ) = 1 ⊗ ϕ : A(M) → A(M ′) a homomorphism. This
functor is exact, A(M) = 0 implies M = 0 and if M is of finite type, then A(M) is an
algebraic coherent sheaf.

Let F be an algebraic sheaf over V , consider the global sections Γ(F) = Γ(V,F),
which have a structure of A-module. This assignment is functorial, since ϕ : F → G
an algebraic homomorphism defines Γ(ϕ) : Γ(F) → Γ(G) an A-homomorphism. This
functor is also exact when applied to algebraic coherent sheaves by Theorem 4 and if F
is coherent, then Γ(F) is of finite type.

Theorem 7. The functors A(·) and Γ(·) are quasi-inverse:

1. If M is an A-module of finite type, then Γ(A(M)) ∼= M canonically.

2. If F is an algebraic coherent sheaf over V , then A(Γ(F)) ∼= F canonically.

This correspondence can be extended to projective modules (see [5] or [8]), since for
M an A-module of finite type, M is projective if and only if Ox ⊗A M is free as an
Ox-module for every x ∈ V . Since having for an algebraic coherent sheaf F over V that
Fx is isomorphic to Op for every x ∈ V means that F is locally isomorphic to Op, with
p ∈ N constant over the connected components of V , this yields:

Corollary 3. Let F be an algebraic coherent sheaf over a connected affine variety V .
Then Γ(F) is a projective A-module if and only if F is locally isomorphic to a sheaf Op.
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4 Algebraic coherent sheaves over projective varieties

We begin by the definition of projective space and proceed to identify coherent sheaves
over them with graduated modules, which enables the study of their cohomology.

Definition 12. Let r ∈ N and Y = Kr+1 \{0} with the componentwise multiplication by
elements of the multiplicative group K×. We define X = Pr(K) the projective space of
dimension r as the quotient of Y by the equivalence relation y′ ∼ y when there is λ ∈ K×
with (y′0, . . . , y

′
r) = λ(y0, . . . , yr), and denote π the canonical projection.

For each i = 0, . . . , n we denote ti : Kr+1 → K the projections onto the coordinates,
Vi = {x ∈ Kr+1|ti(x) 6= 0} and Ui = π(Vi). We have U = {Ui}ri=0 a covering of X,
for every i, j = 0, . . . , n the function tj/ti is regular over Vi, invariant by K× and thus
defines a function over Ui. Fixing i and varying j, these functions define a bijection
ψi : Ui → Kr.

Since Kr+1 has a structure of algebraic variety, Y has the induced structure. Letting
X have the quotient topology, for an open U ⊂ X set AU = Γ(π−1(U),OY ) and A0

U ⊂ AU
the elements invariant by K×. When U ⊂ V there is a restriction homomorphism
ϕVU : A0

V → A0
U , and thus the family (A0

U , ϕ
V
U ) defines the sheaf denoted OX , which

may be considered as a subsheaf of F(X) the sheaf of germs of functions over X. Thus
f ∈ Ox,X if and only if it can be written locally as P/Q with P,Q ∈ K[t0, . . . , tr]
homogeneous of the same degree and Q(y) 6= 0 whenever y ∈ π−1(x), denoted Q(x) 6= 0.

Proposition 6. The projective space X with OX as above is an algebraic variety.

As with affine varieties, we define:

Definition 13. An algebraic variety V will be said to be a projective variety if it is
isomorphic to a closed subvariety of the projective space X.

Applying Theorem 6 it immediately follows that for F an algebraic coherent sheaf
over X, then Hn(X,F) ∼= Hn(U,F) for n ∈ N and Hn(X,F) = 0 for n > r. This can
be generalised: let V an algebraic variety isomorphic to a locally closed subvariety of X
and F an algebraic coherent sheaf over V such that F(V \W ) = 0 for some subvariety
W ⊂ V , then Hn(V,F) = 0 for n > dim(W ). To establish this we need two technical
results: if k = dim(W ) there are k + 1 homogeneous polynomials Pi(t0, . . . , tr) of non
trivial degree that are zero over X \ U (for U open with V ⊂ U closed) but not zero
simultaneously over W , and if P (t0, . . . , tr) is an homogeneous polynomial of non trivial
degree, then XP = {x ∈ X|P (x) 6= 0} is an affine open.

Definition 14. Let F be an algebraic sheaf over X, n ∈ Z. Consider Fi = F(Ui), we
have isomorphisms θij(n) = ·tnj /tni : Fj(Ui∩Uj)→ Fi(Ui∩Uj) and θij(n)◦θjk(n) = θik(n)
in Ui ∩ Uj ∩ Uk (they are compatible). This defines F(n) an algebraic sheaf over X.

This construction sets canonical isomorphisms F(0) ∼= F and F(n)(m) ∼= F(n+m),
F(n) is locally isomorphic to F and thus an exact sequence of sheaves F → F ′ → F ′′
gives an exact sequence of sheaves F(n)→ F ′(n)→ F ′′(n).
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Considering O, we obtain the sheaf O(n) that can be canonically identified with
the sheaf O′(n) defined by the family AnU of homogeneous elements of degree n of AU
(in particular f ∈ O′(n)x if and only if it can be written locally as P/Q with P,Q ∈
K[t0, . . . , tr] homogeneous with Q(x) 6= 0 and deg(P )−deg(Q) = n). Moreover, given an
algebraic sheaf F , the construction gives a canonical isomorphism F(n) ∼= F ⊗O O(n).

Some analogous technicalities to those exposed in Page 10 arise. Let V be an affine
variety, F an algebraic coherent sheaf over V , Q a regular function over V and s ∈
Γ(VQ,F), then for n ∈ N big enough there is s′ ∈ Γ(V,F) with s′ = Qns over VQ. Let
si ∈ Γ(Ui,F), then for n ∈ N big enough there is s′ = (s′j)

r
j=0 ∈ Γ(X,F(n)) with s′i = si.

These allow us to prove analogous results to those of Theorem 4, that is, the sections of
F(n) behave in an analogous way as the sections of F whenever it is coherent:

Theorem 8. Let F an algebraic coherent sheaf over X. There exists n(F) ∈ Z such
that for every n ≥ n(F) and every x ∈ X, F(n)x is generated as Ox-module by the global
sections Γ(X,F(n)).

Proof. We shall only sketch it. A section s ∈ Γ(X,F(n)) is by definition a system
s = (si)i∈I of sections si ∈ Γ(Ui,F), verifying the compatibility conditions si = (tnj /t

n
i )sj

over Ui ∩ Uj . Since Ui ∼= Kr for every i ∈ I, as a result of Theorem 4 there are a finite
number of sections sai ∈ Γ(Ui,F) with a ∈ A that generate Fx for every x ∈ Ui. As we
have pointed before as a technicality, there is n ∈ N big enough for which we can find
sections s′a ∈ Γ(X,F(n)) with s′ai = sai . Both indexes I and A being finite, we can fix n
for every i ∈ I and a ∈ A. Thus, Γ(X,F(n)) generate F(n)x for every x ∈ X.

Continuing the analogy, the sheaf F is isomorphic to a quotient sheaf of O(n)p, since
F(−n)x is generated by Γ(X,F(−n)) and thus F(−n) is isomorphic to a quotient of Op
thus F ∼= F(−n)(n) is isomorphic to a quotient of O(n)p ∼= Op(n).

Definition 15. Set S = K[t0, . . . , tr] for r ∈ N a graduated algebra, S =
⊕

n∈Z Sn with
Sn the vector space of homogeneous polynomials of degree n (setting Sn = 0 for n < 0).

For M =
⊕

n∈ZMn a graduated module over S, we say an element of Mn has degree
n and N =

⊕
n∈ZN ∩Mn is an homogeneous submodule of M . For M , M ′ graduated

S-modules, an S-homomorphism ϕ : M → M ′ is said to be homogeneous of degree s
when ϕ(Mn) ⊂M ′n+s. Given n ∈ Z, we denote M(n) =

⊕
m∈ZM(n)m =

⊕
m∈ZMn+m.

A graduated S-module L is said to be of finite type if it is generated by a finite number
of elements, free if it admits a basis consisting of homogeneous elements (thus L =⊕

i∈I S(ni)), free of finite type if its basis is finite (thus I is finite).
As in [2]: the class of graduated S-modules M having Mn = 0 for n big enough will be

denoted C , for an exact sequence by homomorphisms of degree 0 of graduated S-modules
A → B → C having A, B ∈ C imply C ∈ C , an homomorphism ϕ : A → B is said
injective, surjective or bijective when Ker(ϕ) ∈ C , Coker(ϕ) ∈ C or both, respectively.

Definition 16. A graduated S-module M is said to verify condition (TF ) if there is
m ∈ Z such that

⊕
n≥mMn is of finite type, equivalently M is C -isomorphic to a module

of finite type. In particular, the modules verifying (TF ) form a class containing C .
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We remark that the following constructions are analogous to what was done in Page
12, although then for A(M) we had a concise way to express them by a tensor product,
the only differences being that here we only consider the homogeneous component of
degree 0, and for Γ(F) we only needed one ring of sections, when now we need many.

Let U ∈ P(X) not empty, denote S(U) =
⋃
n∈Z{P ∈ Sn|P (x) 6= 0∀x ∈ U}, writ-

ing S(x) instead of S({x}). For M a graduated S-module, set MU =
⋃
n∈Z{m/Q|m ∈

Mn, Q ∈ S(U), deg(Q) = n}, writing Mx instead of M{x}. We determine an equivalence
relation by identifying m/Q, m′/Q′ ∈MU if there is Q′′ ∈ S(U) with Q′′(Q′m−Qm′) =
0. In particular for S, we have SU the ring of rational fractions P/Q of homogeneous
polynomials with deg(P ) = deg(Q) and Q ∈ S(U). Thus we can define over MU a struc-
ture of SU -module by setting m/Q + m′/Q′ = (Q′m + Qm′)/QQ′ and (P/Q)(m/Q′) =
Pm/QQ′. Since U ⊂ V means S(V ) ⊂ S(U), we have the restriction homomorphisms
ϕVU : MV → MU and thus considering only open subsets, the system (MU , ϕ

V
U ) de-

fines the sheaf A(M). We clearly have A(M)x = lim−→x∈U MU = Mx, and in particular

A(S) = O. It follows that A(M) is a sheaf of A(S)-modules, thus an algebraic sheaf
over X. The assignment A(M) is functorial, since ϕ : M → M ′ an S-homomorphism
defines ϕU : MU → M ′U an SU -homomorphism and thus A(ϕ) = A(M) → A(M ′) a
homomorphism of sheaves. This functor is additive and exact, A(M)(n) ∼= A(M(n)) for
n ∈ Z, and when M verifies condition (TF ) then A(M) is coherent and A(M) = 0 if and
only if M ∈ C . In fact, when M and M ′ are graduated S-modules verifying condition
(TF ), a homomorphism ϕ : M → M ′ is injective, surjective or bijective if and only if
A(ϕ) : A(M)→ A(M ′) is C -injective, C -surjective or C -bijective, respectively.

Let F be an algebraic sheaf over X, set Γ(F) =
⊕

n∈Z Γ(F)n =
⊕

n∈Z Γ(X,F(n)), a
graduated group. For s ∈ Γ(X,F(q)), P ∈ Sp, we can identify P to a section of O(p) and
thus defining P · s = P ⊗ s, we obtain a section of O(p) ⊗ F(q) ∼= F(q)(p) ∼= F(p + q),
giving Γ(F) a structure of S-module compatible with the graduation. An equivalent
way of defining this multiplication is in terms of components, since s = (si)

r
i=0 with

si ∈ Γ(Ui,F) and si = (tqj/t
q
i )sj over Ui ∩Uj , thus defining (P · s)i = (P/tpi )si yields the

same result. This assignment is again functorial.

Definition 17. We wish to compare the functors A(M) and Γ(F).
Let M be a graduated S-module, m ∈M0. We have m/1 ∈Mx varying continuously

with x ∈ X, thus defining a section α(m) ∈ Γ(X,A(M)). If we have m ∈ Mn, then
m ∈ M(n)0 and defines a section α(m) ∈ Γ(X,A(M(n))) = Γ(X,A(M)(n)). This
defines a homomorphism α : M → Γ(A(M)).

Let F be an algebraic sheaf over X, s/Q ∈ Γ(F)x with s ∈ Γ(X,F(n)), Q ∈ Sn and
Q(x) 6= 0. The fraction 1/Q is homogeneous of degree −n and regular on x, thus is in
O(−n)x. It follows that 1/Q⊗ s ∈ O(−n)x ⊗F(n)x ∼= Fx, an element denoted βx(s/Q)
(as before, we can define componentwise βx(s/Q) = (tni /Q)si(x) when x ∈ Ui). The
collection βx with x ∈ X defines a homomorphism β : A(Γ(F))→ F .

An immediate computation yields the following:

Proposition 7. Let M be a graduated S-module, the composition β ◦ A(α) : A(M) →
Γ(A(M)) → A(M) is the identity idA(M). Let F be an algebraic sheaf over X, the
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composition Γ(β) ◦ α : Γ(F)→ Γ(A(Γ(F)))→ Γ(F) is the identity idΓ(F).

When L =
⊕

j∈J O(nj) is an algebraic sheaf over X, J being finite, then Γ(L) verifies
condition (TF ) and β : A(Γ(L))→ L is a bijection. In fact:

Theorem 9. Let F be an algebraic coherent sheaf over X. Then there is a graduated
S-module M verifying condition (TF ) such that A(M) ∼= F .

Proof. We shall only sketch it. As a consequence of Theorem 8, there is an exact sequence
of algebraic sheaves L1 ϕ→ L0 → F → 0 with L1 =

⊕
j∈J1 O(nj) and L0 =

⊕
j∈J0 O(nj).

For Γ(ϕ) : Γ(L1) → Γ(L0) let M = Coker(Γ(ϕ)), by the above we know that it verifies
condition (TF ). Applying the functor A to the exact sequence Γ(L1)→ Γ(L0)→M →
0, we obtain the exact sequence A(Γ(L1)) → A(Γ(L0)) → A(M) → 0. Consider the
commutative diagram:

A(Γ(L1)) //

β
��

A(Γ(L0)) //

β
��

A(M) // 0

L1 // L0 // F // 0

,

we have that both vertical homomorphisms are bijections, and thus A(M) ∼= F .

When studying the cohomology, we shall use this equivalence and work over modules.
With the usual notations X = Pr(K), I = {0, . . . , r} and S = K[t0, . . . , tr], let M be a
graduated S-module and k, q ∈ N. We define a group Cqk(M) through its elements, which
are maps m〈·〉 : Iq+1 → Mk(q+1) with the element m〈i0 . . . iq〉 being alternating. Via
the obvious internal sum and multiplication by elements of K, Cqk(M) has a structure
of vector space over K. Set Ck(M) =

⊕r
q=0C

q
k(M), it is a complex with the differential

d : Cqk(M) → Cq+1
k (M) given by (dm)〈i0 · · · iq+1〉 =

∑q+1
j=0(−1)jtkijm〈i0 · · · îj · · · iq+1〉,

where d ◦ d = 0. We denote by Hq
k(M) the q-cohomology group of Ck(M). Given

k ≤ h ∈ Z, we have a homomorphism ρhk : Cqk(M) → Cqh(M) via ρhk(m)〈i0 · · · iq〉 =
(ti0 · · · tiq)h−km〈i0 · · · iq〉 that commutes with the differential and ρlh ◦ ρhk = ρlk when
k ≤ h ≤ l. This allow us to define the complex C(M) = lim−→k→∞Ck(M), whose coho-

mology groups are Hq(M) = lim−→k→∞H
q
k(M) since cohomology commutes with inductive

limits. A homomorphism ϕ : M → M ′ defines a homomorphism ϕ : Ck(M) → Ck(M
′)

via ϕ(m)〈i0 · · · iq〉 = ϕ(m〈i0 · · · iq〉), thus taking limits a homomorphism ϕ : C(M) →
C(M ′). Those two homomorphisms commute with the differential, defining the homo-
morphisms ϕ : Hq

k(M) → Hq
k(M ′) and ϕ : Hq(M) → Hq(M ′). As usual, an exact

sequence of graduated S-modules 0 → M → M ′ → M ′′ → 0 gives rise to the ex-
act sequences of complexes 0 → Ck(M) → Ck(M

′) → Ck(M
′′) → 0 and 0 → C(M) →

C(M ′)→ C(M ′′)→ 0, thus in cohomology to · · · → Hq
k(M ′)→ Hq

k(M ′′)→ Hq+1
k (M)→

Hq+1
k (M ′)→ · · · and · · · → Hq(M ′)→ Hq(M ′′)→ Hq+1(M)→ Hq+1(M ′)→ · · · both

long exact sequences.
We are interested in computing Hq(M) in the general case. For this, the natural

way to proceed is by induction over the dimension of M as a graduated S-module. It
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is thus interesting to first see how the cohomology of certain modules, that will be the
ones of lesser dimension, behaves. Let m ∈ M0, we have αk(m) = {tkim}i∈I ∈ C0

k(M)
a 0-cocycle, by being precisely in degree 0 it can be identified to its cohomology class.
This defines a K-linear homomorphism αk : M0 → H0

k(M) with αk = ρhk ◦ αh when
h ≥ k, thus taking limits we obtain a homomorphism α : M0 → H0(M). Consider
(P0, . . . , Ph) ∈ Sh, we denote (P0, . . . , Ph)M = {

∑h
i=0 Pimi|mi ∈ M} a submodule of

M , that is homogeneous if the Pi are homogeneous. For P ∈ S and N a submodule
of M , we denote N : P = {m ∈ M |Pm ∈ N}, that is homogeneous if N and P are
homogeneous.

Proposition 8. Let M be a graduated S-module and k ∈ N. Suppose that for every
i ∈ I we have (tk0, . . . , t

k
i−1)M : tki = (tk0, . . . , t

k
i−1)M . Then:

1. αk : M0 → H0
k(M) is bijective (if r ≥ 1),

2. Hq
k(M) = 0 for 0 < q < r.

Proof. It is a particular case of a result in [3].

Taking S(n) as graduated S-module above, we obtain:

Proposition 9. Let k ∈ N, n ∈ Z, then:

1. αk : Sn → H0
k(S(n)) is bijective (if r ≥ 1),

2. Hq
k(S(n)) = 0 for 0 < q < r.

3. Hr
k(S(N)) admits as a basis over K the cohomology classes of the monomials

tα0
0 · · · tαr

r with 0 ≤ αi < k and
∑r

i=0 αi = k(r + 1) + n.

By a change of language and using how ρhk acts on the monomials above, it follows:

Corollary 4. For k ≥ −n − r, Hr
k(S(n)) admits as a basis over K the cohomology

classes of the monomials (t0 · · · tr)k/tβ00 · · · t
βr
r with βi > 0 and

∑r
i=0 βi = −n. For

h ≥ k, the homomorphism ρhk : Hq
k(S(n)) → Hq

h(S(n)) is a bijection for every q ≥ 0.
The homomorphism α : Sn → H0(S(n)) is bijective if r ≥ 1 or n ≥ 0. We have
Hq(S(n)) = 0 for 0 < q < r, Hr(S(n)) is a vector space over K of dimension

(−n−1
r

)
.

We now consider the general case over modules satisfying condition (TF ):

Proposition 10. Let M be a graduated S-module verifying condition (TF ). Then:

1. There is k(M) ∈ Z such that ρhk : Hq
k(M)→ Hq

h(M) is bijective for h ≥ k ≥ k(M)
and every q ∈ I.

2. Hq(M) is a vector space over K of finite dimension for every q ∈ I.

3. There is n(M) ∈ Z such that for n ≥ n(M) we have α : Mn → H0(M(n)) a
bijection and Hq(M(n)) = 0 for q > 0.
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Proof. We shall only sketch it. Since M verifies condition (TF ), we can take M of finite
type. As usual, we say that dimension of M is dim(M) ≤ s for s ∈ N if there is an exact
sequence 0 → Ls → · · · → L → M → 0 of graduated S-modules, the Li being of finite
type for i = 0, . . . , s. By Hilbert’s syzygy Theorem (see [5]), dim(M) ≤ r + 1 always.

As foretold, we will use induction over dim(M). If dim(M) = 0, then M is free of
finite type, thus M =

⊕
j∈J S(nj) and the result follows from Corollary 4. Let dim(M) ≤

s, consider N = Ker(L0 →M) and the exact sequence 0 → N → L0 → M → 0. The
result is true for N and L0 by the induction hypothesis. Consider the commutative
diagram:

Hq
k(N) //

��

Hq
k(L0) //

��

Hq
k(M) //

��

Hq+1
k (N) //

��

Hq+1
k (L0)

��
Hq
h(N) // Hq

h(L0) // Hq
h(M) // Hq+1

h (N) // Hq+1
h (L0)

,

where h ≥ k ≥ sup(k(N), k(L0)), applying the Five Lemma (see [9]) the first point
is proved, and since Hq

k(M) is of finite dimension over K for being in a cohomology

sequence with both Hq
k(L0) and Hq+1

k (N) of finite dimension over K, then the second
point is also proved.

Consider now n ≥ sup(n(L0), n(N)). The exact sequenceHq(L0(n))→ Hq(M(n))→
Hq+1(N(n)) shows that Hq(M(n)) = 0. Consider the commutative diagram:

0 //

��

Nn
//

α
��

L0
n

//

α
��

Mn
//

α
��

0

��
0 // H0(N(n)) // H0(L0(N)) // H0(M(n)) // 0

,

it shows that α : Mn → H0(M(n)) is a bijection, proving the third point.

This will enable the comparison of the cohomology groups Hq(M) and Hq(X,A(M))
when M verifies condition (TF ). Since Hq(M) is defined via alternating cochains, we will
first compare C(M) with C ′(U,A(M)). Consider m ∈ Cqk(M), let (i0, . . . , iq) ∈ Iq+1,
we clearly have (ti0 · · · tiq)k ∈ S(Ui0···iq), and thus m〈i0 · · · iq〉/(ti0 · tiq)k ∈ MUi0···iq

.

The system ιk(m) formed by varying (i0, . . . , iq) ∈ Iq+1 is an alternating q-cochain of
U with values in A(M). We immediately see that ιk commutes with the differential
and ιk = ιk ◦ ρhk when h ≥ k, thus by taking limits they define a homomorphism
ι : C(M)→ C ′(U,A(M)) that commutes with the differential.

Proposition 11. Let M be a graduated S-module verifying condition (TF ), then ι :
C(M)→ C ′(U,A(M)) is bijective.

When A(M) is coherent, H ′q(U,A(M)) ∼= Hq(U,A(M)) ∼= Hq(X,A(M)), obtaining:

Corollary 5. Let M be a graduated S-module verifying condition (TF ), then ι : C(M)→
C ′(U,A(M)) defines an isomorphism Hq(M) ∼= Hq(X,A(M)) for every q ≥ 0.
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Several results that follow from the obtained above are that whenever M a gradu-
ated S-module verifies condition (TF ), then the homomorphism α : M → Γ(A(M)) is
C -bijective, thus when F is an algebraic coherent sheaf over X, Γ(F) is a graduated
S-module that verifies condition (TF ) and the homomorphism β : A(Γ(F)) → F is
bijective. Moreover, the cohomology groups Hq(X,F) are vector spaces of finite dimen-
sion over K for every q ≥ 0, and Hq(X,F(n)) = 0 for q ≥ 0 and n ∈ Z big enough. In
the special case of O, we have that Hq(X,O(n)) = 0 for 0 < q < r and Hr(X,O(n)) is a
vector space over K of dimension

(−n−1
r

)
, having for a basis the cohomology classes of the

monomials 1/tβ00 · · · t
βr
r with βi > 0 and

∑r
i=0 βi = −n. In particular, Hr(X,O(−r− 1))

is a vector space over K of dimension 1 and has the cohomology class of 1/t0 · · · tr as a
basis.

We can now study the behavior of algebraic coherent sheaves over projective varieties.
As a particular case of algebraic varieties, when V is a closed subvariety of the projective
space X and F is an algebraic coherent sheaf over V , by extending by 0 outside of V we
obtain FX an algebraic coherent sheaf over X satisfying Hq(X,FX) = Hq(V,F). The
study of algebraic coherent sheaves over projective varieties is then a consequence of the
study of algebraic coherent sheaves over the projective space that we just saw, thus by
the above:

Theorem 10. Let V be a projective variety, F an algebraic coherent sheaf over V , then
Hq(V,F) are vector spaces over K of finite dimension and are trivial for q > dim(V ).

In particular, H0(V,F) = Γ(V,F) is a vector space over K of finite dimension. By
considering the covering U′ = {U ′i}i∈I = {Ui ∩ V }i∈I of V , the analogous construction
of F(n) as in Definition 14 yields a generalization for V , while having the same formal
properties, in particular there is a canonical isomorphism F(n) ∼= F⊗OV (n). Moreover,
FX(n) = F(n)X and thus we obtain the desired result:

Theorem 11. Let V be a projective variety, F an algebraic coherent sheaf over V .
There is m(F) ∈ Z such that for every n ≥ m(F) we have:

1. For every x ∈ V , F(n)x is generated by Γ(V,F(n)) as an Ox,V -module.

2. Hq(V,F(n)) = 0 for every q > 0.
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5 Conclusion

The aim of the reading of the article, which was to determine the cohomology of affine
and projective varieties with values over algebraic coherent sheaves, has been attained.
Through the study of the identifications that relate finitely generated A-modules in the
first case and graduated S-modules verifying condition (TF ) in the second case with F
algebraic coherent sheaves, we achieved the expected results:

1. Hq(V,F) = 0 for V an affine variety,

2. Hq(V,F) = 0 for V a projective variety when q > dim(V ),

and restricting us to the case of V a projective variety, the not so obvious ones:

3. Hq(V,F) is a finite dimensional K-vector space,

4. Hq(V,F(n)) = 0 for n ∈ Z big enough.

The results presented in this dissertation cover most of J.-P. Serre’s article, although
not all of it has been featured: we stopped at the computation above. There is a way
of identifying the functors ExtqOx

(OX ,F) with the cohomology groups Hq(X,F) that
sometimes allows a more elegant and instructive ways of considering several of the results,
for example Corollary 2.

This is a natural continuation for further study and expansion that strengthens the
modern approach to the subject.
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