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Introduction

A duality is a well know concept:

Definition

Let V1, V2 be two vector spaces over a field K. We say that there is a
duality between them if there exists a linear map:

f : V1 ⊗ V2 −→ K.

That is non degenerate:

f (v1 ⊗ v2) = 0 for every vi ⇐⇒ vj = 0.

We wish to understand triality, an analogous construction over three
vector spaces. We will use Clifford structures to define Spin(8) and use his
representations as the three spaces.
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The Classical groups and Representations

This work has a strong basis on some Classical groups and Representations:

Definition

The general linear group and the (real) orthogonal group are:

GLn(K) = {A ∈ Mn(K) : det A 6= 0}, O(n) = {A ∈ GLn(R) : ATA = Idn}.

Definition

Let (V, | |) be a finite dimensional normed K vector space, G be a matrix
group that has a continuous homomorphism ϕ : G → GLK(V). The
associated action:

µϕ : G × V −→ V
(g , v) 7−→ ϕ(g)(v)

is called a (continuous) linear action or representation of G on V.
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Clifford Algebras: definition and structure

To construct Spin(8), we will use several Clifford objects:

Definition

We define the real Clifford algebra in n ∈ N variables Cln as the R
algebra generated by the elements e1, . . . , en ∈ Cln for which:{

eser = −eres if s 6= r ,

e2
r = −1.

Properties

There is a canonical automorphism α : Cln → Cln and a conjugation
( ) : Cln → Cln determining a ±-grading and a norm.

Theorem (Bott periodicity)

For n ∈ N; Cln+8
∼= Cln ⊗M16(R) and Cln+2 ⊗C ∼= (Cln ⊗C)⊗C M2(C).
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Clifford groups

Definition

Given n ≥ 1, we define the Clifford group Γn as the subgroup:

Γn = {u ∈ Cl×n : α(u)xu−1 ∈ Rn for all x ∈ Rn}.

Proposition

There is a continuous group homomorphism:

ρ : Γn −→ O(n)
u 7−→ ρu

with
ρu : Rn −→ Rn

v 7−→ α(u)vu−1 an isometry.

Proposition

There is a continuous group homomorphism:

ν : Γn −→ R×
u 7−→ uu
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Pin(n) and Spin(n): definition and characterization

Definition

Given n ≥ 1, we define the pinor group Pin(n) and the spinor group
Spin(n) as: Pin(n) = ker ν, Spin(n) = Pin(n) ∩ Cl+n .

In fact, Pin(n) to Sn−1 and Spin(n) to SO(n) are intimately related:

Theorem

It holds
〈
Sn−1

〉
= Pin(n), where Sn−1 =

{∑n
r=1 xrer :

∑n
r=1 x2

r = 1
}

.

The map ρ+ : Spin(n)→ SO(n) is surjective with ker ρ+ = {±1}.

Examples

Spin group Classical group

Spin(1) O(1)
Spin(2) SO(2) ∼= U(1)
Spin(3) SU(2) ∼= Sp(1) ∼= S3

Spin group Classical group

Spin(4) SU(2)× SU(2)
Spin(5) Sp(2)
Spin(6) SU(4)
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The Spin(n) representations

Spin(n) always has a representation λ : Spin(n)→ SO(n) ⊂ GLn(C).

Proposition

Let n ∈ N. If n = 2r + 1 is odd, then Spin(n) has one irreducible
representation ∆ of degree 2r . If n = 2r is even, then Spin(n) has two
irreducible representations ∆+, ∆− of degree 2r−1.

Proposition

Let r ∈ N. The representation ∆ of Spin(2r + 1) is real if
2r + 1 ≡ 1, 7 mod 8. The representations ∆+ and ∆− of Spin(2r) are real
if 2r ≡ 0 mod 8.

Clearly Spin(8) must be special, since dim(λ) = dim(∆+) = dim(∆−) = 8.

Theorem

The only irreducible representations of Spin(8) are λ, ∆+ and ∆−.
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Automorphisms: definitions and characterization

Definition

Let A be an algebra over K.

The group of K -algebra automorphisms is AutK(A).

Any conjugation by a unit element u ∈ A× is called an inner
automorphism forming the group of inner automorphisms InnK(A).

The group of outer automorphisms is defined as
OutK(A) = AutK(A)/InnK(A). The equivalence classes of OutK(A)
are called outer automorphisms.

The elements of OutR(Spin(8)) are in a one to one correspondence with
the permutations of the three representations λ, ∆+ and ∆−:

Theorem

It holds OutK(Spin(8)) = Σ3{λ,∆+,∆−}.
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Sketch of the proof: the morphism is surjective

Define the homomorphism:

ψ : OutR(Spin(8)) −→ Σ3{λ,∆+,∆−}
α 7−→ ψ(α) : {λ,∆+,∆−} −→ {λ,∆+,∆−}

[ρ] 7−→ [ρ ◦ α]

Consider the diagram:

Spin(8)

∆+

,,++))$$
α+

��
Spin(8) // // SO(8) �

� // O(8) �
� // GL8(R) �

� // GL8(C)

Which yields two permutations ψ(α+) and ψ(α−) that generate Σ3:

ψ(α+) ψ(α−) Result

2 or 3 3 Two permutations of different order generate Σ3

3 2 Two permutations of different order generate Σ3

2 2 Two different permutations of order 2 generate Σ3
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Sketch of the proof: the morphism is injective

Let α : Spin(8)→ Spin(8) be an automorphism with ψ(α) = IdΣ3 . We
showed that it is an inner automorphism. Consider the diagram:

Spin(8)

πzzzz

� r

j

%%

α // Spin(8)
lL

jyy

π

$$ $$
SO(8)� r

i

$$

Pin(8)

πyyyy

χŨ // Pin(8)

π

%% %%

SO(8)
lL

izz
O(8)

χU // O(8)

Which commutes and in fact α = χŨ , it is a conjugation by an element

Ũ ∈ Spin(8), as if Ũ /∈ Spin(8) then α = χe1 with a contradiction:

∆+ 6= ∆+ ◦ α = ψ(α)(∆+) = ∆+.
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Triality: definition

Definition

Let V1, V2, V3 be three finite dimensional vector spaces over a field K.
We say that there is a triality between them if there exists a linear map:

f : V1 ⊗ V2 ⊗ V3 −→ K.

That is non degenerate:

f (v1 ⊗ v2 ⊗ v3) = 0 for every vi ⇐⇒ vj = 0 or vk = 0.

Examples

Consider K = R and V = V1 = V2 = V3 = R, C, H, we have a triality:

f : V ⊗ V ⊗ V −→ R
x ⊗ y ⊗ z 7−→ <(xyz)

Having a triality is not as easy as having a duality.
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Triality and division algebras

Definition

Let f : V1 ⊗ V2 ⊗ V3 −→ R be a triality over three finite dimensional real
vector spaces and f̃ , ϕ, ψ as above. We define Φ = f̃ ◦ (ψ ⊗ ϕ)−1.

Consider v1 ∈ V1, v2 ∈ V2, 0 6= e1 ∈ V1 and 0 6= e2 ∈ V2, define:

f̃ (v1 ⊗ v2) : V3 −→ R
v3 7−→ f (v1 ⊗ v2 ⊗ v3)

ϕ : V2 −→ V ∗
3

v2 7−→ f̃ (e1 ⊗ v2)

ψ : V1 −→ V ∗
3

v1 7−→ f̃ (v1 ⊗ e2)

Proposition

The map Φ : V ∗3 ⊗ V ∗3 → V ∗3 has an identity element and no zero divisors.

Φ is a “product” in V ∗3 , providing it with a structure of R division algebra.

Theorem

A finite dimensional real division algebra has dimension 1, 2, 4 or 8 (O).
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The Spin(8) representations induce a triality

Proposition

For the irreducible representations of Spin(8) we have that:

The representation λ is self dual, that is, λ∗ = λ.

The equality ∆+ ⊗∆− = λ+ Θ, where Θ is some representation.

The group Spin(8) acts transitively over S7 × S7 ⊂ λ×∆+.

Note that we interpreted the representations as the vector spaces the
group acts on, with λ⊗∆+ ⊗∆− = λ⊗ (λ+ Θ) = λ⊗ λ+ λ⊗Θ.

Definition

Given λ⊗∆+ ⊗∆− 3 v = w = (w1 ⊗ w2) + (w3 ⊗ w4) ∈ λ⊗ λ+ λ⊗Θ,
define f : λ⊗∆+ ⊗∆− → R as f (v) = µ(w1 ⊗ w2), µ : λ⊗ λ∗ → R.

Theorem

The map f : λ⊗∆+ ⊗∆− → R is a triality.
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Triality on Spin(8)

Sketch of the proof:
If any element x , y , z = 0, then f (x ⊗ y ⊗ z) = 0. Suppose there exist
x , y ∈ S7 ⊂ R8 with f̃ (x ⊗ y) = 0. There exist x0, y0 ∈ S7 ⊂ R8 for which
f̃ (x0 ⊗ y0) 6= 0 and g ∈ Spin(8) with g · x = x0 and g · y = y0. Thus:

0 = f̃ (x⊗y) = g · f̃ (x⊗y) = f̃ (g ·x⊗g ·y) = f̃ (x0⊗y0) 6= 0, contradiction.

Similarly, the following yields a contradiction:

f ◦ α(2,3) : λ⊗∆+ ⊗∆−
(2,3)←→ λ⊗∆− ⊗∆+ −→ R

x ⊗ ⊗ z 7−→ x ⊗ ⊗ z 7−→ f (x ⊗ ⊗ z),

f ◦ α(1,2,3) : λ⊗∆+ ⊗∆−
(1,2,3)←→ ∆− ⊗ λ⊗∆+ −→ R

⊗ y ⊗ z 7−→ ⊗ y ⊗ z 7−→ f ( ⊗ y ⊗ z).

Theorem

We can identify each and every one of λ, ∆+, ∆− with O.
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Conclusions

Beginning with the Clifford Algebras, we defined the Clifford group
Γn, the pinor group Pin(n) and the spinor group Spin(n).

We showed that Spin(n) is a double cover of SO(n) and characterized
the outer automorphisms of Spin(8): OutK(Spin(8)) = Σ3.

We constructed a triality over the representations of Spin(8).

Observation

In fact, we have the commutative diagram:

λ⊗∆+ ⊗∆−
f //

OO
∼=
��

R

R8 ⊗ R8 ⊗ R8
OO
∼=
��

O⊗O⊗O

F

<< with F (x ⊗ y ⊗ z) = <(xyz)

Pablo Sánchez Ocal (UAB) Triality: a particularity of Spin(8) July 7, 2015 15 / 17



Acknowledgements

I would like to thank the people that have made this work possible.
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