TRIALITY: A PARTICULARITY OF Spin(8)

Pablo Sánchez Ocal

UAB

July 7, 2015

Supervised by Professor Jaume Aguadé

Pablo Sánchez Ocal (UAB)

TRIALITY: A PARTICULARITY OF Spin(8)

▶ < ≧ ▶ ≧ ∽ Q (? July 7, 2015 1 / 17

Introduction

A duality is a well know concept:

Definition

Let V_1 , V_2 be two vector spaces over a field \mathbb{K} . We say that there is a **duality** between them if there exists a linear map:

 $f: V_1 \otimes V_2 \longrightarrow \mathbb{K}.$

That is non degenerate:

$$f(v_1 \otimes v_2) = 0$$
 for every $v_i \iff v_j = 0$.

We wish to understand **triality**, an analogous construction over three vector spaces. We will use Clifford structures to define Spin(8) and use his representations as the three spaces.

< 回 ト < 三 ト < 三 ト

The Classical groups and Representations

This work has a strong basis on some Classical groups and Representations:

Definition

The general linear group and the (real) orthogonal group are:

 $\operatorname{GL}_n(\mathbb{K}) = \{A \in \operatorname{M}_n(\mathbb{K}) : \det A \neq 0\}, \operatorname{O}(n) = \{A \in \operatorname{GL}_n(\mathbb{R}) : A^T A = \operatorname{Id}_n\}.$

Definition

Let $(\mathbb{V}, | |)$ be a finite dimensional normed \mathbb{K} vector space, G be a matrix group that has a continuous homomorphism $\varphi : G \to \operatorname{GL}_{\mathbb{K}}(\mathbb{V})$. The associated action:

$$egin{array}{rcl} \mu_arphi & \colon & \mathcal{G} imes \mathbb{V} & \longrightarrow & \mathbb{V} \ & (oldsymbol{g},oldsymbol{v}) & \longmapsto & arphi(oldsymbol{g})(oldsymbol{v}) \end{array}$$

is called a (continuous) linear action or representation of G on \mathbb{V} .

イロト イポト イヨト イヨト

Clifford Algebras: definition and structure

To construct Spin(8), we will use several Clifford objects:

Definition

We define the **real Clifford algebra** in $n \in \mathbb{N}$ variables Cl_n as the \mathbb{R} algebra generated by the elements $e_1, \ldots, e_n \in Cl_n$ for which:

$$\begin{cases} e_s e_r = -e_r e_s \text{ if } s \neq r, \\ e_r^2 = -1. \end{cases}$$

Properties

There is a **canonical automorphism** $\alpha : Cl_n \to Cl_n$ and a **conjugation** $\overline{(\)}: Cl_n \to Cl_n$ determining a \pm -grading and a norm.

Theorem (Bott periodicity)

For $n \in \mathbb{N}$; $\operatorname{Cl}_{n+8} \cong \operatorname{Cl}_n \otimes \operatorname{M}_{16}(\mathbb{R})$ and $\operatorname{Cl}_{n+2} \otimes \mathbb{C} \cong (\operatorname{Cl}_n \otimes \mathbb{C}) \otimes_{\mathbb{C}} \operatorname{M}_2(\mathbb{C})$.

Clifford groups

Definition

Given $n \ge 1$, we define the **Clifford group** Γ_n as the subgroup:

$$\Gamma_n = \{ u \in \operatorname{Cl}_n^{ imes} : lpha(u) x u^{-1} \in \mathbb{R}^n ext{ for all } x \in \mathbb{R}^n \}.$$

Proposition

There is a continuous group homomorphism:

Proposition

There is a continuous group homomorphism:

Pablo Sánchez Ocal (UAB)

TRIALITY: A PARTICULARITY OF Spin(8)

Pin(n) and Spin(n): definition and characterization

Definition

Given $n \ge 1$, we define the **pinor group** $\operatorname{Pin}(n)$ and the **spinor group** $\operatorname{Spin}(n)$ as: $\operatorname{Pin}(n) = \ker \nu$, $\operatorname{Spin}(n) = \operatorname{Pin}(n) \cap \operatorname{Cl}_n^+$.

In fact, Pin(n) to S^{n-1} and Spin(n) to SO(n) are intimately related:

Theorem

- It holds $\langle \mathbb{S}^{n-1} \rangle = \operatorname{Pin}(n)$, where $\mathbb{S}^{n-1} = \left\{ \sum_{r=1}^{n} x_r e_r : \sum_{r=1}^{n} x_r^2 = 1 \right\}$.
- The map $\rho^+ : \operatorname{Spin}(n) \to \operatorname{SO}(n)$ is surjective with ker $\rho^+ = \{\pm 1\}$.

Examples

Spin group	Classical group	Spin group	Classical group
Spin(1)	O(1)	Spin(4)	$SU(2) \times SU(2)$
Spin(2)	$\mathrm{SO}(2)\cong\mathrm{U}(1)$	Spin(5)	Sp(2)
Spin(3)	$\mathrm{SU}(2)\cong\mathrm{Sp}(1)\cong\mathbb{S}^3$	Spin(6)	SU(4)

The Spin(n) representations

 $\operatorname{Spin}(n)$ always has a representation $\lambda : \operatorname{Spin}(n) \to \operatorname{SO}(n) \subset \operatorname{GL}_n(\mathbb{C}).$

Proposition

Let $n \in \mathbb{N}$. If n = 2r + 1 is odd, then $\operatorname{Spin}(n)$ has one irreducible representation Δ of degree 2^r . If n = 2r is even, then $\operatorname{Spin}(n)$ has two irreducible representations Δ^+ , Δ^- of degree 2^{r-1} .

Proposition

Let $r \in \mathbb{N}$. The representation Δ of $\operatorname{Spin}(2r+1)$ is real if $2r+1 \equiv 1,7 \mod 8$. The representations Δ^+ and Δ^- of $\operatorname{Spin}(2r)$ are real if $2r \equiv 0 \mod 8$.

Clearly Spin(8) must be special, since $dim(\lambda) = dim(\Delta^+) = dim(\Delta^-) = 8$.

Theorem

The only irreducible representations of Spin(8) are λ , Δ^+ and Δ^- .

Pablo Sánchez Ocal (UAB)

イロン 不通 と イヨン イヨン

Automorphisms: definitions and characterization

Definition

Let A be an algebra over \mathbb{K} .

- The group of K-algebra automorphisms is $Aut_{\mathbb{K}}(A)$.
- Any conjugation by a unit element u ∈ A[×] is called an inner automorphism forming the group of inner automorphisms Inn_K(A).
- The group of outer automorphisms is defined as Out_K(A) = Aut_K(A)/Inn_K(A). The equivalence classes of Out_K(A) are called outer automorphisms.

The elements of $Out_{\mathbb{R}}(Spin(8))$ are in a one to one correspondence with the permutations of the three representations λ , Δ^+ and Δ^- :

Theorem

It holds $\operatorname{Out}_{\mathbb{K}}(\operatorname{Spin}(8)) = \Sigma_3\{\lambda, \Delta^+, \Delta^-\}.$

イロト イポト イヨト イヨト

Sketch of the proof: the morphism is surjective

Define the homomorphism:

$$\begin{array}{cccc} \psi : \operatorname{Out}_{\mathbb{R}}(\operatorname{Spin}(8)) & \longrightarrow & \Sigma_{3}\{\lambda, \Delta^{+}, \Delta^{-}\} \\ \alpha & \longmapsto & \psi(\alpha) & : & \{\lambda, \Delta^{+}, \Delta^{-}\} & \longrightarrow & \{\lambda, \Delta^{+}, \Delta^{-}\} \\ & & & & & & & & \\ \rho] & \longmapsto & & & & & & & \\ \rho \circ \alpha] \end{array}$$

Consider the diagram:

$$\begin{array}{c} \operatorname{Spin}(8) \\ \downarrow^{\alpha^{+}} \\ \downarrow^{\alpha^{+}} \\ \end{array} \xrightarrow{} \operatorname{SO}(8) \\ \xrightarrow{}$$

Which yields two permutations $\psi(\alpha^+)$ and $\psi(\alpha^-)$ that generate Σ_3 :

$\psi(\alpha^+)$	$\psi(\alpha^{-})$	Result		
2 or 3	3	Two permutations of differer	nt order generate Σ_3	
3	2	Two permutations of different order generate Σ_3		
2	2	Two different permutations of order 2 generate Σ_3		
		< ⊏	→ < 畳 > < 差 > < 差 > 差 の < 0	
Pablo Sánchez Ocal (UAB)		TRIALITY: A PARTICULARITY OF Spin(8)	July 7, 2015 9 / 17	

Sketch of the proof: the morphism is injective

Let $\alpha : \operatorname{Spin}(8) \to \operatorname{Spin}(8)$ be an automorphism with $\psi(\alpha) = \operatorname{Id}_{\Sigma_3}$. We showed that it is an inner automorphism. Consider the diagram:

Which commutes and in fact $\alpha = \chi_{\tilde{U}}$, it is a conjugation by an element $\tilde{U} \in \text{Spin}(8)$, as if $\tilde{U} \notin \text{Spin}(8)$ then $\alpha = \chi_{e_1}$ with a contradiction:

$$\Delta^+ \neq \Delta^+ \circ \alpha = \psi(\alpha)(\Delta^+) = \Delta^+.$$

Pablo Sánchez Ocal (UAB)

July 7, 2015 10 / 17

Triality: definition

Definition

Let V_1 , V_2 , V_3 be three finite dimensional vector spaces over a field \mathbb{K} . We say that there is a **triality** between them if there exists a linear map:

$$f: V_1 \otimes V_2 \otimes V_3 \longrightarrow \mathbb{K}.$$

That is non degenerate:

$$f(v_1 \otimes v_2 \otimes v_3) = 0$$
 for every $v_i \iff v_j = 0$ or $v_k = 0$.

Examples

Consider $K = \mathbb{R}$ and $V = V_1 = V_2 = V_3 = \mathbb{R}$, \mathbb{C} , \mathbb{H} , we have a triality:

$$\begin{array}{rccc} f & : & V \otimes V \otimes V & \longrightarrow & \mathbb{R} \\ & & x \otimes y \otimes z & \longmapsto & \Re(xyz) \end{array}$$

Having a triality is not as easy as having a duality

 Pablo Sánchez Ocal (UAB)
 TRIALITY: A PARTICULARITY OF Spin(8)
 July 7, 2015
 11 / 17

Triality and division algebras

Definition

Let $f: V_1 \otimes V_2 \otimes V_3 \longrightarrow \mathbb{R}$ be a triality over three finite dimensional real vector spaces and \tilde{f} , φ , ψ as above. We define $\Phi = \tilde{f} \circ (\psi \otimes \varphi)^{-1}$.

Consider $v_1 \in V_1$, $v_2 \in V_2$, $0 \neq e_1 \in V_1$ and $0 \neq e_2 \in V_2$, define:

Proposition

The map $\Phi: V_3^* \otimes V_3^* \to V_3^*$ has an identity element and no zero divisors.

 Φ is a "product" in V_3^* , providing it with a structure of $\mathbb R$ division algebra.

Theorem

A finite dimensional real division algebra has dimension 1, 2, 4 or 8 (\mathbb{O}).

Pablo Sánchez Ocal (UAB)

TRIALITY: A PARTICULARITY OF Spin(8)

July 7, 2015 12 / 17

The Spin(8) representations induce a triality

Proposition

For the irreducible representations of Spin(8) we have that:

- The representation λ is self dual, that is, $\lambda^* = \lambda$.
- The equality $\Delta^+ \otimes \Delta^- = \lambda + \Theta$, where Θ is some representation.
- The group $\operatorname{Spin}(8)$ acts transitively over $\mathbb{S}^7 \times \mathbb{S}^7 \subset \lambda \times \Delta^+$.

Note that we interpreted the representations as the vector spaces the group acts on, with $\lambda \otimes \Delta^+ \otimes \Delta^- = \lambda \otimes (\lambda + \Theta) = \lambda \otimes \lambda + \lambda \otimes \Theta$.

Definition

Given $\lambda \otimes \Delta^+ \otimes \Delta^- \ni v = w = (w_1 \otimes w_2) + (w_3 \otimes w_4) \in \lambda \otimes \lambda + \lambda \otimes \Theta$, define $f : \lambda \otimes \Delta^+ \otimes \Delta^- \to \mathbb{R}$ as $f(v) = \mu(w_1 \otimes w_2)$, $\mu : \lambda \otimes \lambda^* \to \mathbb{R}$.

Theorem

The map $f : \lambda \otimes \Delta^+ \otimes \Delta^- \to \mathbb{R}$ is a triality.

Pablo Sánchez Ocal (UAB)

TRIALITY: A PARTICULARITY OF Spin(8)

July 7, 2015 13 / 17

Triality on Spin(8)

Sketch of the proof:

If any element x, y, z = 0, then $f(x \otimes y \otimes z) = 0$. Suppose there exist $x, y \in \mathbb{S}^7 \subset \mathbb{R}^8$ with $\tilde{f}(x \otimes y) = 0$. There exist $x_0, y_0 \in \mathbb{S}^7 \subset \mathbb{R}^8$ for which $\tilde{f}(x_0 \otimes y_0) \neq 0$ and $g \in \text{Spin}(8)$ with $g \cdot x = x_0$ and $g \cdot y = y_0$. Thus:

$$0 = \tilde{f}(x \otimes y) = g \cdot \tilde{f}(x \otimes y) = \tilde{f}(g \cdot x \otimes g \cdot y) = \tilde{f}(x_0 \otimes y_0) \neq 0, \text{ contradiction}.$$

Similarly, the following yields a contradiction:

Theorem

We can identify each and every one of λ , Δ^+ , Δ^- with \mathbb{O} .

Pablo Sánchez Ocal (UAB)

TRIALITY: A PARTICULARITY OF Spin(8)

Conclusions

- Beginning with the Clifford Algebras, we defined the Clifford group Γ_n , the pinor group $\operatorname{Pin}(n)$ and the spinor group $\operatorname{Spin}(n)$.
- We showed that Spin(n) is a double cover of SO(n) and characterized the outer automorphisms of Spin(8): Out_K(Spin(8)) = Σ₃.
- We constructed a **triality** over the representations of Spin(8).

Observation

In fact, we have the commutative diagram:

I would like to thank the people that have made this work possible.

- Professor Jaume Aguadé: provided vital insight and guidance into the subject.
- The Topologia de Varietats course professors: valuable knowledge applied in the work.
- My parents for everything they have done, helping me through thick and thin.

THANK YOU FOR YOUR ATTENTION

Pablo Sánchez Ocal (UAB)

TRIALITY: A PARTICULARITY OF Spin(8)

→ ▲ ■ ▶ ■ クへへ July 7, 2015 17 / 17

(日) (周) (三) (三)