COENDS ARE COLIMITS

PABLO S. OCAL

ABSTRACT. This note gives an explicit description of why and how coends are colimits, without
claiming any originality. Given T : C°? x C — D a functor, we construct a category Tw(C°?)°?
and functors & : Func(C°” x C,D) — Func(Tw(C?)°?, D), & : Cocone(&T) — Cowedge(T'), and
¥ : Cowedge(T') — Cocone(&T) such that

/wec T(z,x) =2 ® (colim(&T)) and W (/

zeC

T(x, x)) & colim(&T).

1. DEFINITIONS AND FUNCTORIALITY OF COENDS

Definition 1.1. Let C,D be categories, let S,T : C°? x C — D be functors. A dinatural transfor-
mation o : ST is a family of morphisms a. : S(c,¢) — T'(c, ¢) satisfying that for every morphism
f :c¢— c in C the following diagram commutes.

S(c,c) —X— T(c,c)

smy \T(idm

(1.2) S(d,c) T(c,c)

sm% %(f,idc/)

S(d,d) —— T(d,c)

Definition 1.3. Let B, D be categories, let d be an object in D. The constant functor Ag: B — D
sends every object b in B to d, and every function f : b — b’ in B to idy.

Definition 1.4. Let T : C°? x C — D be a functor. A cowedge for T is a dinatural transformation
a: T A4 where d is an object in D. Given o : T-3Ay and o' : T->Ay cowedges for T, a morphism
of cowedges g : o — o' for T is given by a morphism ¢ : d — d’ in D such that for every object ¢ in
C the following diagram commutes.

(1.5) 7 o

Note that a cowedge a : T-5A, for T is given by specifying an object d in D and a family of
morphisms a, : T'(¢,¢) — d satisfying that for every morphism f : ¢ — ¢’ in C the following diagram
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comimutes.
T(d,¢) Ty T(c,c)
(16) T(idc/,f) lﬂéc
T(C/,C/) a—/> d

Let Cowedge(T') be the category of cowedges for T'. Its vertices are cowedges for T, and its arrows
are morphisms of cowedges for T'.

Definition 1.7. Let T': C°? x C — D be a functor. A coend of T is an initial object in Cowedge(T').

If a coend of T exists, it is unique up to unique isomorphism, and we denote its corresponding
object in D by fxec T(z,x). The coend ¢ : T;)A‘[IEC T(w) of T satisfies that given a cowedge

x,xr
a : T5Ag of T then there exists a unique morphism h : fxec T(x,x) — d such that a. = he, for
every object ¢ in C. Equivalently, for all objects ¢, ¢ in C and all morphisms f : ¢ — ¢’ the following
diagram commutes.

T(d,¢) BCELON T(c,c)

In this note we assume that the coend of a functor always exists. Let S : C?xC — D, T : C’xC —
D, and U : C? x C — D be functors. We denote by ¥ : S%Afzec O T%Afzec T(2)’ and

v U%Afxec U(e) the coends of S, T', and U respectively.

Definition 1.9. Let S : C? xC — D and T : C°? x C — D be functors, let n : ST be a natural
transformation, and let ¢ be an object in C. We define

xeC
(1.10) a(S,T,n)c = teNee : S(e,c) — / T(x,x).

We denote by «(S,T,n) the family of morphisms {«(S,T,n). : S(c,¢c) — facec T(x,z)}c.

Proposition 1.11. Let S : CP xC — D and T : C? x C — D be functors, and let n : ST be a
natural transformation. Then «(S,T,n) is a cowedge for S.

Proof. Given f : ¢ — ¢’ a morphism in C, the naturality of 7 yields T'(idy, f)ne = S(f,id¢)ne,c and
T(f,ide)ne e = S(ide, f)ne . We thus have

a(S, T, ﬁ)cS(f, idc) = Lcnc,cs(fa idc) = LcT(f7 idc)nc’,c
= Lc’T(idc/7 f)nc’,c = Lc’nc’,c’s(idc’a f) = Oé(S, T, n)c’S(idc’a f)
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Namely, the following diagram commutes.

S(f,ide
S(d,e) (fide) S(c,c)
Te! e TNe,c
S(idus,f) T(d,c) TFide) » T(c, c)
S(d,d) T(idw,f) Le
w/
T(d, ) < > fxec T(x,x)

g

Since «(S,T,n) is a cowedge for S, there exists a unique morphism in D making the following
diagram commute for all objects ¢ in C.

W‘
:ceC l

> fxeCTa: x)

We denote said morphism by fxec - fxec S(z,x) — f$€c T(z,z).
Theorem 1.12. The assignment

Func(C? xC,D) —— D
T+—— fmec T(z,x)

s ["C

yields a functor fxec : Func(C? x C,D) — D.

Proof. Note that fxec is well defined because fxec T(x,z) is an object in D and fxec Nyz 1S &
morphism in D by the above discussion. Given an object ¢ in C then

a(T7 T, idT)c = Lc(idT)c,c = l¢ idT(c,c) =l = idf:EEC T(z,z) Le-

Thus idf“”ECT(x,x) : fxec T(x,z) — IIECT (x,z) and fxec idr) fzecT (x,z) — fxeCT (z,x)

both make the following diagram commute.
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The uniqueness of said morphism implies [ el (id7)g,r =1id 7€ T(z,z)7 5O i vee preserves identities.
Given natural transformations n : ST and 6 : T=U in Func(C? x C, D) and an object ¢ in C then

zeC
a(S, U, 07])(: = Vc(en)c,c = Vcec,c'r/c,c = Oé(T, U, 0)6776,6 = / ex,xbc"?c,c
zeC zeC zeC
- Oé(S, Tv 77)0 = / em,ma(sa T7 77)0 = / ezp,x/ nx,m'lgc

Namely, the following diagram commutes.

» Uc, )

b \ i \ i
Ve
LEEC zeC ZGCB

S(z,x) —> foCT fmeCU(x,:r)

So fxec 01z fxec S(z,z) — fxec U(z,x) and fxec 0.0 fxec Na,a fxec S(z,z) = fxec Uz, z)
both make the following diagram commute.

The uniqueness of said morphism implies f el 01z = f el Opz [ el Ny,zs SO [ 2€C breserves com-
position of morphisms. O

Definition 1.13. Let T : J — C be a functor and let ¢ be an object in C. A cocone from T to ¢
is a family of morphisms ¢; : T'(j) — ¢ for each object j in J satisfying that for every morphism
f:7—j in J the following diagram commutes.

. T(f) ()

(1.14) \ /

Given {¢; : T(j) — c}7 and {¢} : T(j) — ¢’} 7 cocones, a morphism of cocones g : ¢ — ¢ is given
by a morphism g: ¢ — ¢ in C such that for every object j in J the following diagram commutes.

T(5)
(1.15) y \%J
c g o4

Let Cocone(T) be the category of cocones from T'. Tts vertices are cocones from 7', and its arrows
are morphisms of cocones from 7.

Definition 1.16. Let T': 7 — C be a functor. A colimit of T is an initial object in Cocone(T).

If a colimit of T exists, it is unique up to unique isomorphism, and we denote its corresponding
object in C by colim(7). The colimit {x; : T'(j) — colim(7T")}s of T satisfies that given a cocone
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{¢; : T(j) = c}s of T there exists a unique morphism h : colim(7") — ¢ such that hx; = ¢; for all
j in J. Equivalently, for all objects 7,7’ in J and all morphisms f : j — j’ the following diagram
commutes.

(f)

(1.17)

Definition 1.18. Let C be a category. The twisted arrow category Tw(C) of C has vertices f the
morphisms of C, and arrows f — g between two morphisms f : ¢ — ¢ and g : d — d’ of C pairs (I, r)
where [ : d — c and r : ¢ — d are morphisms in C such that g = rfl. Equivalently, the following
diagram commutes.

c+t—d
(1.19) fl ig
d——d

The opposite twisted arrow category Tw(CP)P of C° also has for vertices the morphisms of

C, and an arrow between two morphisms f : ¢ — ¢ and g : d — d' of C is given by a pair
(l:d — d,r:c— d) of morphisms in C such that f = Igr.

c———d

AN

d et
Definition 1.20. Let T : C? x C — D be a functor and let f : ¢ -, g:d — d,r:c — d,
[ :d — ¢ be morphisms in C. We define &T'(f) :=T(,c) and &T(l,r) =T(,r).

Definition 1.21. Let S : C? xC — D and T : C°? x C — D be functors, let n : ST be a natural
transformation, and let f : ¢ — ¢/ be a morphism in C. We define (£7)f = 1y ¢)-

Definition 1.22. Let T : C°? x C — D be a functor, let a : T-3A4 be a cowedge of T, let f:c — ¢
be a morphism in C. We define

(1.23) U(a)r=a(fid) : T(,e) = d,
or equivalently
(1.24) U(a)f = auT(dy, f) : T(d,c) = d.
The morphism ¥(a)¢ is well defined because the following diagram commutes.
T(d,¢) Ty T(c,c)

T(idcl,f)l \\\\\Ij(a)flac

T(d,d) ——5 d

(6%

We denote by ¥(a) the family of morphisms {W(a)s.cse = T(c/,¢) = e}rw(coryor-
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Definition 1.25. Let T : C°? xC — D be a functor, let d be an object in D, and let {¢f : ET(f) —
d}TW(Cop)op be a family of morphisms in D. We define

(1.26) D(@)e = ¢iq, : T(c,c) — d.
We denote by ®(¢) the family of morphisms {®(¢). : T'(c,c) — d}c.

2. A RELATION BETWEEN COENDS AND COLIMITS

Remark 2.1. Let T : J — C be a functor, let ¢ be an object in C, and let ¢ : T->A, be a natural
transformation. Then the family {¢; : T'(i) — c}7 of components of ¢ is a cocone from T to c.

We now show the analogous statement for dinatural transformations and cocones.
Proposition 2.2. Let T : C°? x C — D be a functor, then £ T : Tw(CP)°P — D is a functor.

Proof. Note that an object in Tw(C°)° is given by a morphism f : ¢ — ¢ in C, whence &T(f) =
T(c,c) is an object in D. Note that a morphism (I,7) : f — g in Tw(C)% from f : ¢ — ¢ to
g : d — d’ morphisms in C is given by morphisms [ : ' — ¢ and r : ¢ — d in C such that f = Igr,
whence &T(I,7) =T(l,r) : T(d,c¢) = T(d',d) is a morphism in D. Thus &7 has the correct source
Tw(C)° and target D. For f:c — ¢ an object in Tw(C°)°P, its identity morphism in Tw(C)°P
is the pair ids = (id., id.). Consequently &T preserves identities because

tT(ldf) - tT(ldC/,ldc) == T(idcf, ldc) - idT(c’,c) == ldtT(f)

by the functoriality of T. For (k : ¢ — V,q: b — ¢) and (I : d — ¢,r : ¢ = d) composable
morphisms in Tw(C) their composition is (kl : d — b',rq : b — d). Consequently & T preserves
composition of morphisms because

ET((Lr)(k,q) = £T(kl,rq) = T(kl,rq) = T(I,r)T(k,q) = £T(l,r) £T(k,q)
by the functoriality of T'. O

Proposition 2.3. Let S:CP? xC — D and T : CP? x C — D be functors, let n: ST be a natural
transformation. Then &n: & ST is a natural transformation.

Proof. Note that £S(f) = S(c,c), £T(f) = T(d,¢c), and n ) : S(c,¢) = T(c,c), whence
(&m)f = (e ,c) has the correct source and target. Given f : ¢ — ¢ and g : d — d’ objects in
Tw(C)%, and (I,7) : f — g a morphism in Tw(C?)°, and noticing that T'(l, )0 ) = na,a)S(,7)
because 7 is a natural transformation, then

tT(lﬂ")(kﬁ)f = T(lvr)n(c’,c) = n(d’,d)s(lar) = (tn)gts(lﬂ")

Namely, the following diagram commutes, as desired.

s
£5(F) % e ()
ES(,r) ET(,r)
Eng
£ 5(g) 0% r1(g)
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Theorem 2.4. The assignment
Func(C x C, D) —— Func(Tw(C)° D)
T &T
X &n
yields a functor & : Func(C x C, D) — Func(Tw(C°?)°P, D).

Proof. Note & is well defined because &7 is an object in Func(Tw(C)°, D) by Proposition and
& T is a morphism in Func(Tw(CP)°, D) by Proposition [2.3] Note & preserves identities because
for all objects f: ¢ — ¢ in Tw(C°)° then

(&idr)y = (idr)(e,¢) = idp(e o) = idpppy = (idpr)y

by the functoriality of 7" and & T, whence & idy = id, . Note & preserves composition of mor-
phisms because given 1 : ST and 0 : T—U then for all objects f : ¢ — ¢ in Tw(CP)? we

have
( & (On))f = (en)(c’,c) = e(c’,c)n(c’,c) = ( t@)f( tn)f

Vv

g

Proposition 2.5. Let T': C% x C — D be a functor and let {¢py : ET(f) = d}tw(cor)or be a cocone
from &T tod. Then ®(¢) is a cowedge for T.

Proof. Recall that ®(¢) is {®(d). : T(¢,c¢) — d}e. Given f : ¢ — ¢ an object in Tw(C)°P, the
pairs (f,id.) : f — id; and (idy, f) : ide — f are morphism in Tw(C)°, whence

i LT(d, s,
&T (f d ) ) T(C/,C) T( dc f) T(C,,C/)
and
Bide. by J bia,

are commutative diagrams because {¢; : &T(f) — d}qw(cor)yor is a cocone from & T to d. Then

(f, 1dc)ac = tT(f, 1dc)¢idc = (bf = tT(idc/, f)(bidc/ = T(idcl, f)ac/.

Namely, the following diagram commutes, as desired.

T(¢,e) " T(ec)

T(id uf)l \ l¢ldc
C C
O

Proposition 2.6. Let T : C°? x C — D be a functor and let o : T>A, be a cowedge for T. Then
U(w) is a cocone from ET to e.
Proof. Recall that W(a) is {¥().cser @ T(,¢) = e}qw(coryor- Given f:c — ¢ and g : d — d
objects in Tw(CP)°P, and (I,r) : f — g a morphism in Tw(C)°, note that &T(f) = T(c,¢) and
f =lgr, in particular ay : £T(f) — e has the correct source and target. Now
Qg & T(lv ’I“) = osz(g, 1dd’)T(l7 T) = OédT(lg, T) = OédT(lg, idd)T(idc’a ’I")
= ayT(idy,lg)T(ide,7) = aeT(ide, lgr) = agT(idy, f) = ay
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by the functoriality of T" and the dinaturality of . Namely, the following diagram commutes, as
desired.

T(,r)

T(d,c) T(d,d)
T(lg,r
T(idaf)l m (ig.r) l (0idy)
T(c, TP T(d,d) ,d)

T(idslg) /dd)

Proposition 2.7. Let T': C% x C — D be a functor, let {¢y : ET(f) — d}rw(coryor and {¢; :
ET(f) — d'}rw(coryor be cocones, and let g : ¢ — ¢ be a morphism in Cocone(&T) given by a
morphism g :d — d inD. Then g :d — d' induces a morphism ®(g) : ®(¢) — ®(¢') in Cowedge(T).

g

Proof. Since g : d — d’ gives a morphism g : ¢ — ¢’ in Cocone( & T), then for all objects f : ¢ — ¢
in Tw(C)° we have

d/

so in particular for id. : ¢ — ¢ we have

>

which indeed induces a morphism ®(g) : ®(¢) — ®(¢’) in Cowedge(T). Explicitly

/

9P(d)d = g¢ia. = dia, = P(d)a-
O

Proposition 2.8. Let T : C°? x C — D be a functor, let o : T-3A4 and o : T-3Ay be cowedges,
and let g : @« — o be a morphism in Cowedge(T) given by a morphism g : d — d' in D. Then
g :d— d' induces a morphism ¥(g) : ¥(a) — ¥(a/) in Cocone(&T).

Proof. Since g : d — d’' gives a morphism g : & — ' in Cowedge(T), then for all objects ¢ in C we

have
T(c,c)
2
d g s d




COENDS ARE COLIMITS 9

whence given a morphism f : ¢ — ¢ in C we have
T(d,c)
T(f,ide /
TN
T(c,c)

y &
g
d s d

which indeed induces a morphism ¥(g) : ¥(«) — ¥(’) in Cocone( & T'). Explicitly
99 (a)y = gay = gagT(f,ide) = agT(f,ide) = oy = ¥(d);.

of

Theorem 2.9. The assignments

Cowedge(T) «+——— Cocone(&T)
a > U(a)
®(¢) X

induce an equivalence of categories Cocone( &T') ~ Cowedge(T).

Proof. Note W is well defined because ¥(«) is an object in Cocone( & T') by Proposition and a
morphism in Cocone( & T) is sent to a morphism in Cowedge(T") by Proposition Note @ is well
defined because ®(¢) is an object in Cowedge(7T") by Proposition and a morphism in Cowedge(T")
is sent to a morphism in Cocone( & T') by Proposition Moreover, ¢ preserves identities because
given idy : ¢ — ¢ in Cocone( & T) induced by idg : d — d, then ®(idg) and idg(g) are both induced
by idg : d — d, whence ®(idg) = idg(g). Also, ® preserves composition because given g : ¢ — ¢
and h : ¢’ — ¢” morphisms in Cocone(&T), induced by g : d — d' and h : d — d” respectively,
then ®(h)®(g) and ®(hg) are both induced by hg : d — d”, whence ®(h)®(g) = ®(hg). Finally, ®
is full, faithful, and essentially surjective by Propositions 2.6 and O

Theorem 2.10. Let T : C°? x C — D be a functor. Then

/mECT(m,m)%q)(colim(tT)) and w(/

Proof. Since colim( &T) is an initial object in Cocone( & T), which is equivalent to Cowedge(T") by
Theorem and equivalences of categories preserve initial objects, we obtain that @(colim( tT))

zeC

T(x, x)) = colim(&T).

is an initial object in Cowedge(T"). Since fmec T(x,z) is an initial object in Cowedge(T'), we have
J7E T, ) = @ (colim (£ T)). Thus ¥ (" T(z,2)) = W (@ (colim(£7))) = colim(£T). O
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