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Abstract. This paper is the transcription by the second author of the three-lecture
mini-course on B∞ structures, monoidal categories, and singularity categories given by
the first author during the seventeenth edition of the Séminaire Itinérant Géométrie et
Physique held at the University of British Columbia in May 2022.

1. Introduction to B∞ structures: From Hochschild to Getzler-Jones

Throughout this paper we set k a field, A a unital associative (not necessarily commu-
tative) k-algebra, and undecorated tensor products ⊗ will be over k. We will denote the
enveloping algebra of A by Ae = A⊗Aop. The Hochschild cochain complex of A, denoted
by C(A,A), is given by

A→ Homk(A,A)→ Homk(A⊗A,A)→ · · · → Homk(A
⊗p, A)→ · · ·

with differential

d(f)(a0 ⊗ · · · ⊗ ap) = a0f(a1 ⊗ · · · ⊗ ap)

+

p−1∑
i=0

(−1)i−1f(a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ ap)

+ (−1)pf(a0 ⊗ · · · ⊗ ap−1)ap.

The Hochschild cohomology of A, denoted by HH∗(A), is the homology of its Hochschild
cochain complex, namelyHH∗(A) = H∗C(A,A). These ideas were pionered by Hochschild [24].
Note that the first differential is given by

A −→ Homk(A,A)

a 7−→ (b 7→ ab− ba)

and the second differential by

Homk(A,A) −→ Homk(A⊗A,A)

D 7−→ (a⊗ b 7→ (Da)b−D(ab) + aD(b))

whence Hochschild cohomology encodes infinitesimal information about the algebra. Namely

HH0(A) = {a ∈ A|ab = ba for all b ∈ A} = Z(A)

HH1(A) = Derk(A)/InnDerk(A) = OutDerk(A)
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2 B. KELLER AND P. S. OCAL

where we recover a commutative algebra in Z(A) the center of A and a Lie algebra in
OutDerk(A) the outer derivations of A over the field k.

Hochschild cohomology was interpreted by Cartan and Eilenberg [6] and as the k-algebra
HH∗(A) = Ext∗Ae(A,A) with multiplication given by the cup product by seeing A as the
unit object in the category of Ae-modules (equivalently A-bimodules). In fact, Gersten-
haber [16, 17, 18, 19, 20] showed that this cup product makes HH∗(A) into a graded
commutative k-algebra, and that HH∗−1(A) is a graded Lie algebra with a bracket that
controls the deformations of A. This bracket is known as the Gerstenhaber bracket, and
the structure (HH∗(A), ?∪?, [?, ?]) arising from the compatibility of this bracket with the
cup product is known as Gerstenhaber algebra. A modern argument of this fact uses that
A is the monoidal unit in the category D(Ae), circumventing the tedious computations of
the original proof (see Schwede [50] and Hermann [23]).

This Gerstenhaber bracket, by definition, can be seen as an operation on the Hochschid
cochain complex C(A,A). Using brace operations defined by Kadeishvili [30] this inter-
pretation enabled Getzler and Jones [21] to lift the Gerstenhaber algebra structure to a
B∞ algebra structure (C(A,A), ?∪?, {?, ?}).

Remark 1.1.

(1) The nomenclature B∞ comes from the work of Baues [2] on the monoidal cate-
gory D(Sh(X,Ab)) of sheaves of abelian groups, in particular he proved that the
category of singular cochains C∗sg(X,Z) is a B∞-algebra.

(2) Brace operations come from an operadic viewpoint of operations on cochains, and
hence can be visualized as sums of n-ary trees.

c{a1, . . . , an} =

∑
a1,...,an

±
a1

. . .

ai
. . .

aj
. . .

an

c

(3) The B∞ structure on Hochschild cochains contains all the information of the Ger-
stenhaber algebra structure on Hochschild cohomology, in particular we can recover
the Gerstenhaber bracket as

[c, u] = c{u} ∓ u{c}.

(4) The B∞ structure plays a fundamental role in (almost) all the proofs of Deligne’s
conjecture, stating that the Hochschild cochain complex of an associative ring has
a natural action by the singular chains of the little 2-cubes operad. For example,
it features prominently in the proofs of McClure and Smith [46], Kontsevich and
Soibelman [38], Tamarkin [51], and Lurie [44, Section 5.3].

Formally, a B∞-algebra is a Z-graded k-vector space V together with a dg bialgebra
structure on the bar coalgebra B+(V ) of V

B+(V ) = T c(V ) =
⊕
n∈N

(ΣV )⊗n
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where ΣV is the suspension of V . In particular, this structure provides a coproduct
∆ : B+(V )→ B+(V )⊗B+(V ) given by

∆((Σa1)⊗ · · · ⊗ (Σan)) =
n∑
i=0

((Σa1)⊗ · · · ⊗ (Σai))⊗ ((Σai+1)⊗ · · · ⊗ (Σan))

for all a1, . . . , an ∈ V , as well as a coaugmentation η : k → B+(V ).

Remark 1.2.

(1) The bar coalgebra B+(V ) is augmented by definition, but V may not be augmented.
(2) The differential d : B+(V )→ B+(V ) yields an A∞-algebra structure on V . For the

rest of the paper we often assume that V is homologically unital, namely H∗(V ) is
unital.

(3) The B∞-operad is a dg operad whose underlying A∞ structure can be described
by multilinear maps µl : B+(V )⊗l → B+(V ) for l ≥ 2, and whose multiplication
can be described by multilinear maps mi,j : B+(V )⊗i ⊗ B+(V )⊗j → B+(V ) for
i, j ≥ 0. The braces operad Br is given by taking the quotient with the operadic
ideal generated by the mi,j for i ≥ 2 and j ≥ 0. It acts on the Hochschild cochain
complex C(A,A) of any A∞-algebra A, and it is quasi-isomorphic to the E2-operad
when k has characteristic zero (see Kontsevich and Soibelman [38], Willwacher [57,
Section 3], and Dolgushev and Willwacher [8]).

Since the Hochschild cochain complex C(A,A) carries the structure of an A∞-algebra,
the augmented bar construction B+(C(A,A)) inherits a dg bialgebra structure making
C(A,A) into a B∞-algebra.

2. Functoriality of the B∞ structure on Hochschild cochains

Let A and B be k-algebras. Given f : A → B a k-algebra morphism, it usually does
not induce a morphism Zf : Z(A)→ Z(B) between the centers, and thus it cannot induce
a morphism HH∗f : HH∗(A) → HH∗(B) in Hochschild cohomology. However, we can
gain some functoriality by interpreting this over module categories. Let ModA be the
category of right A-modules and let End(idModA) be the endomorphism algebra of the
identity functor idModA : ModA → ModA. Defining the center of ModA as Z(ModA) =
End(idModA), we have a canonical isomorphism

Z(ModA)
∼−→ Z(A)

ϕ 7−→ ϕA

where we have identified ϕA : A → A with the element ϕA(1A). Given a fully faithful
functor F : ModA→ ModB we then get a restriction morphism

Z(ModB) Z(ModA)

Z(B) Z(A)

F ∗

o o

F ∗

where we use that EndModA(L) ∼= EndModB(FL) to set F ∗((ϕM )M∈ModB) = (ψL)L∈ModA

as given by considering ψL ∈ EndModA(L) and identifying it with ϕFL ∈ EndModB(FL).
Our goal is to construct a derived analogue of F ∗ : Z(B)→ Z(A) by lifting it to Hochschild
cochain complexes together with their B∞ structures.
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Consider first D(A) the unbounded derived category of right A-modules. Its objects
are complexes of right A-modules, and its morphisms are chain maps between complexes
of right A-modules with the particularity that quasi-isomorphisms have formal inverses.
Namely given two complexes of right A-modules L and M , if a chain map s : L → M
induces an isomorphism H∗s : H∗L→ H∗M then it has a formal inverse in D(A).

Theorem 2.1 (Keller [35]). Let X ∈ D(A) be such that the functor ?⊗L
AX : D(A)→ D(B)

is fully faithful. Then there is a canonical restriction morphism

resX : C(B,B)→ C(A,A)

in the homotopy category of B∞ algebras. It is invertible if the functor X⊗L
B? : D(Bop)→

D(Aop) is fully faithful.

As a corollary, when A is a Koszul algebra we obtain an isomorphism of B∞ structures on
Hochschild cochain complexes that generalizes the isomorphism of the graded commutative
algebra structure on Hochschild cohomologies found by Buchweitz, Green, Snashall, and
Solberg [5].

Corollary 2.2 (Keller [35]). Let A be an Adams-graded Koszul algebra and let A! =⊕
p,q ExtpA(A0, A0〈q〉) be its Adams-graded Koszul dual viewed as a dg algebra with differ-

ential zero. Then we have a canonical isomorphism

C(A,A)
∼→ C(A!, A!)

in the homotopy category of Adams-graded B∞-algebras that induces an isomorphism

HH∗(A)
∼→ HH∗(A!)

compatible with the cup product and the Gerstenhaber bracket.

The idea behind the proof of Corollary 2.2 is to use the Koszul complex X =
⊕

q A0〈q〉 in

the unbounded derived category DAdams(A⊗ (A!)op). The proof of Theorem 2.1, which we
now sketch, relies on the aforementioned restriction functor F ∗ and on the generalization
of a homotopy bicartesian square to dg categories.

Consider the dg category G with two objects and three morphisms

G:
• •X

A B

where A and B are the given dg algebras and X is an A ⊗ Be-module, to which we
can associate C(G,G) the product total complex of the Hochschild cochain complexes of
elements in G. Abusing notation, we denote C(G,G) = Hom•k(G⊗p,G). Note that

k[G] =

{[
a x
0 b

] ∣∣∣∣∣a ∈ A, b ∈ B, x ∈ X
}

is a dg algebra of upper triangular matrices, having a dg subalgebra of diagonal matrices

R =

[
k 0
0 k

]
⊆ k[G].

With the aforementioned abuse of notation, the cochain complex relative to R is given by
CR(G,G) = Hom•Re(G⊗p,G). We can see it as a subcomplex CR(G,G) ⊆ C(G,G) via the



B-INFINITY STRUCTURES 5

inclusions HomRe(G⊗p,G) ⊆ Homk(G⊗p,G). Moreover, we can interpret CR(G,G) as the
Hochschild cochain complex of the dg category G. The inclusion CR(G,G) � C(G,G) is
a quasi-isomorphism of B∞-algebras, and we can see CR(G,G) as intermediate between
C(A,A) and C(B,B). Namely, we want to define resX : C(B,B) → C(A,A) via the
following diagram of B∞-algebra morphisms

CR(G,G) C(A,A)

C(B,B)

resA

oresB

resX

where crucially the restriction resB : CR(G,G) → C(B,B) is a quasi-isomorphism. The
reason is that the faithfulness of the functor ? ⊗L

A X : D(A) → D(B) induces a quasi-

isomorphism A
∼→ RHomB(X,X), completing the diagram

CR(G,G) C(A,A) RHomAe(A,A)

C(B,B) RHomAop⊗B(X,X) RHomAe(A,RHomB(X,X))

resA

oresB �h o

∼

o

∼

where the square on the left is homotopy bicartesian. Defining resX = resAres−1
B finishes

the proof.

3. B∞ algebras and monoidal categories

We now follow Lowen and Van den Bergh [43] and Lurie [44, Section 7.1.2] to showcase
how the endomorphisms REndA(I) of the tensor unit I of a monoidal category A carry a
B∞ structure that induces several monoidal equivalences of categories.

Given V a homologically unital B∞-algebra, we denote by ModV the category of homo-
logically unital A∞-modules over V , and by D(V ) the associated derived category. Our
guide will be the remarkable thesis of Lefèvre-Hasegawa [41].

Lemma 3.1. The category D(V ) has a monoidal triangulated structure with V as the unit.

Proof. Let V + = V ⊕ k be the augmented A∞-algebra of V , let C+ = B+(V ), and
let Com(C+) be the category of cocomplete right dg C+-comodules (which in this case
coincides with the the category of conilpotent right dg C+-comodules). Since C+ is a dg
bialgebra, Com(C+) inherits a monoidal structure via ⊗ with k as the unit. We then have

D(V +) ModV + ModV D(V )

Dco(C+) Com(C+) (Com(C+))ac (Com(C+))ac[(Rqis)
−1]

o R R oL L

where R =? ⊗τ C+ and L =? ⊗τ V + for τ : C+ → ΣV ∼= V → V the canonical twist-
ing cochain, and Dco(C+) is the coderived category, (Com(C+))ac is a tensor ideal in
Com(C+), and (Com(C+))ac[(Rqis)

−1] is monoidal with unit RV . This induces a monoidal
structure on D(V ) with unit V via the rightmost vertical equivalence. �
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Remark 3.2. It follows that per(V ) the perfect derived category of V , which here coincides
with thick(V ) the thick subcategory generated by V (namely the subcategory of D(V ) con-
taining V and being closed under taking shifts, extensions, and retracts), is also monoidal
with unit V . In particular, per(V ) is a unitally generated monoidal triangulated category.

Our philosophy following Remark 3.2 is that every unitally generated monoidal trian-
gulated category should be of this form. Even better, every E1-monoidal, stable, k-linear
∞-category should be of this form!

Theorem 3.3 (Lowen and Van den Bergh [43]). Let (A,⊗, I) be a monoidal k-linear
category such that

(1) A is abelian (with ⊗ not necessarily exact),
(2) A has enough projectives and ?⊗ P : A → A is exact for every projective P .

Then V = REndA(I) carries a B∞ structure such that the canonical equivalence

per(V )
∼−→ thick(I)

V 7−→ I

becomes a monoidal equivalence.

Example 3.4. Let A be a k-algebra, we can identify A = ModAe with the category of
A-bimodules and endow it with a monoidal structure given by ?⊗A? : A × A → A and
having unit I = A. Then V = RHomAe(A,A) = C(A,A) as a dg algebra (up to quasi-
isomorphism), and the B∞ structure given by Theorem 3.3 coincides with the classical B∞
structure discussed at the end of Section 1.

Example 3.5. Let X be a topological space and let A = Sh(X,Modk) with unit I = kX .
Then REnd(I) = C∗sg(X, k) has a B∞ structure (see Baues [2]). However, since A does
not have enough projectives, this structure does not come from Theorem 3.3 because it does
not apply.

Let R be an E2-ring spectrum. Its associated ∞-enhanced derived category D∞(R)
underlies the E1-monoidal ∞-stable category D∞(R)⊗, which is compactly generated by
its tensor unit R. Let per∞(R)⊗ be the subcategory of compact objects of D∞(R)⊗,
which is formed by retracts of iterated extensions of shifts of R. Then per∞(R)⊗ is a small
E1-monoidal unitally generated stable ∞-category.

Theorem 3.6 (Lurie [44], Proposition 7.1.2.6). The map

{E2-ring spectra} ∼−→ {small E1-monoidal unitally generated stable ∞-categories}
R 7−→ per∞(R)⊗

is an equivalence of ∞-categories.

When k is a field of characteristic zero, Kontsevich and Soibelman [38] proved that
the k-linearized E2-operad kE2 is quasi-isomorphic to the brace operad Br. This heavily
suggests that the following corollary holds.
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Corollary 3.7 (∗ Jasso and Keller). The map

{Br∞-algebras} ∼−→ {small kE1-monoidal unitally generated stable dg categories}
V 7−→ perdg(V )⊗

is an equivalence of ∞-categories, where Br∞ denotes homotopy Br-algebras.

As noted in Remark 1.2, the brace operad Br is a quotient of the B∞ operad, whence
each Br-algebra is also a B∞-algebra. The content of Corollary 3.7 would yield the con-
verse, namely that the diagram

{B∞-algebras}

{small kE1-monoidal unitally generated stable dg categories} {Br∞-algebras}∼

induced by the maps

V

perdg(V )⊗

and

V

V/L(mi,j , i ≥ 2, j ≥ 0)

is commutative. This suggests the picture

B∞

B∞/
L(mi,j , i ≥ 2, j ≥ 0) Br∼

where Br = B∞/(mi,j , i ≥ 2, j ≥ 0) is equivalent to B∞/
L(mi,j , i ≥ 2, j ≥ 0).

4. B∞ structures for singularity categories

We now lift the B∞ structures obtained for the Hochschild cohomology of an algebra to
a categorical framework, and we use them to study several types of singularities.

4.1. Derived categories. The construction of the Hochschild cochain complex, together
with itsB∞ structure, generalizes from k-algebras to k-categories in the sense of Mitchell [47].
A k-category is a category equipped with a k-module structure on each set of morphisms
that is compatible with the composition (namely composing morphisms in the category
is itself a k-module morphism). This can be rephrased as saying that a k-category is a
category enriched over k-modules. We can think of k-algebras as k-categories with exactly
one object, and k-categories can be seen as being k-algebras with several objects. In the
sketch of the proof of Theorem 2.1 we already saw the k-category with two objects G.
Given A a small k-category (or a dg category in general), its Hochschild cochain complex
C(A,A) is defined as the product total complex of the bicomplex having p-th column∏

X0,...,Xp∈A
Homk(A(Xp−1, Xp)⊗ · · · ⊗ A(X0, X1),A(X0, Xp))

∗This is unpublished work in progress.
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with horizontal differential

d(f)(a0 ⊗ · · · ⊗ ap) =(−1)|ap||f |a0f(an ⊗ · · · ⊗ ap)

+

p−1∑
i=0

(−1)sif(a0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ ap)

+ (−1)spf(a0 ⊗ · · · ⊗ ap−1)ap

where si = |f | − i − 1 +
∑p

j=p−i+1 |aj | for i = 0, . . . , p − 1 are given by the Koszul sign

convention. The Hochschild cohomology of A is HH∗(A) = H∗C(A,A) the homology of
its Hochschild cochain complex. Since the first differential in C(A,A) is given by∏

X0∈A
A(X0, X0) −→

∏
X0,X1∈A

Homk(A(X0, X1), A(X0, X1))

(ϕX0 : X0 → X0) 7−→ (f 7→ ϕX1f − fϕX0)

we then recover the center of the category as HH0(A) = End(idA) = Z(A) as in Section 1.
Following Drinfeld [10], the notion of a derived dg category is then a sensible construction.

Theorem 4.1 (Lowen and Van den Bergh [42], Töen [53], Keller [35]). Let A be a gd algebra
and fix U a Grothendieck universe. Let Proj(A) be the category of U-small projective
right A-modules, let D(A) be the unbounded derived category of A, and let Ddg(A) be
its canonical dg enhancement. Then there are canonical isomorphisms of Gerstenhaber
algebras

HH∗(Ddg(A))
∼−→ HH∗(Proj(A))

∼−→ HH∗(A)

that lift to quasi-isomorphisms

C(Ddg(A), Ddg(A))
∼−→ C(Proj(A),Proj(A))

∼−→ C(A,A)

giving the equivalence of these B∞ structures.

Remark 4.2.

(1) The isomorphism HH∗(Dsg(A)) ∼= HH∗(A) should be viewed as a derived version
of the classical isomorphism Z(ModA) ∼= Z(A) of Section 2.

(2) In particular, we have the desirable property Z(Dsg(A)) ∼= Z(A). This does not
hold without the dg enhancement, the center of the unbounded derived category
D(A) is in fact pathological. For example Z(D(k[ε]/(ε2))) ∼= k n kN as shown by
Krause and Ye [39].

4.2. Singularity categories. Let A be a right Noetherian k-algebra, for example a quo-
tient of a polynomial ring k[x1, . . . , xn]/(I), and assume that Ae is also Noetherian. Let
modA be the category of finitely genrated right A-modules, let Db(modA) be its bounded
derived category, and let per(A) be its perfect derived category (which again coincides with
thick(A)). The Verdier quotient sg(A) = Db(modA)/per(A) is known as the stable derived
category of A, employed by Buchweitz [4, 3] in the study of Cohen-Macaulay modules,
or as the singularity category of A, rediscovered by Orlov [49] in the context of mirror
symmetry. Note that when A is smooth, namely it has finite global dimension, then sg(A)
is the zero category. The singular Hochschild cohomology or Tate-Hochschild cohomology
is defined as HH∗sg(A) = Ext∗Ae(A,A). As before, HH∗sg(A) is still graded commutative,
but sg(Ae) is not monoidal in an obvious way.
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Theorem 4.3 (Wang [55, 54, 56]).

(1) The singular Hochschild cohomology HH∗sg(A) has a canonical Gerstenhaber bracket.
This bracket is compatible with the graded commutative cup product, making HH∗sg(A)
a Gerstenhaber algebra.

(2) There is a canonical cochain complex Csg(A,A) such that HH∗sg(A) = H∗Csg(A,A).
Moreover Csg(A,A) is a B∞-algebra lifting the Gerstenhaber algebra structure on
HH∗sg(A).

The key tool for this result is the spineless cacti operad introduced by Kaufmann [31,
33, 32, 34]. We now have a complete structural analogy between singular and classical
Hochschild cohomology. This suggests that singular Hochschild cohomology may in fact
be an instance of classical Hochschild cohomology.

Theorem 4.4 (Keller [36, 37]). There is a canonical algebra morphism

Ψ : HH∗sg(A) −→ HH∗(sgdg(A))

between the singular Hochschild cohomology of A and the Hochschild cohomology of the
canonical dg enhancement of the singularity category of A. This morphism is usually
invertible.

Seeing A as a dg category with one object, this isomorphism is given by the existence
of natural dg functors

A Db
dg(modA) sgdg(A)i p

such that pi ' 0 in the homotopy category of dg categories. These fit in the diagram

Db(modAe) D(A⊗Db
dg(modA)) D(Db

dg(modA)⊗Db
dg(modA)op)

sg(Ae) D(sgdg(A)⊗ sgdg(A)op)

(1⊗i)∗ (i⊗1)!

(p⊗p)∗

where the functor

sg(Ae) D(sgdg(A)⊗ sgdg(A)op)

A sgdg(A)

induces an isomorphism of the Ext∗ algebras. Unfortunately, this functor is hard to com-
pute because it is induced by the composition of a right derived functor with a left derived
functor.

Remark 4.5.

(1) The morphism Ψ : HH∗sg(A) → HH∗(sgdg(A)) is invertible if A is commutative
and the characteristic of k is zero.

(2) The morphism Ψ : HH∗sg(A)→ HH∗(sgdg(A)) is not invertible if k ⊆ A is a finite
inseparable field extension. In this case HH∗sg(A) 6= 0 but HH∗(sgdg(A)) = 0.

(3) The existence of this (iso)morphism is satisfying because HH∗sg(A) is computable
while HH∗(sgdg(A)) is conceptually pleasing.

Conjecture 4.6 (Keller [36, 37]). The (iso)morphism

Ψ : HH∗sg(A) −→ HH∗(sgdg(A))
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lifts to an (iso)morphism of B∞-algebras

Φ : Csg(A,A) −→ C(sgdg(A), sgdg(A)).

Theorem 4.7 (Chen, Li, and Wang [7]). Let Q be a finite quiver without sinks, then
Conjecture 4.6 is true for A = kQ/(kQ1)2.

Example 4.8. Let Q be the quiver with one vertex and one edge. Then kQ/(kQ1)2 =
k[ε]/(ε2) and the isomorphism

HH∗sg(k[ε]/(ε2)) ∼= HH∗(sgdg(k[ε]/(ε2))).

can be lifted canonically to an isomorphism of B∞-algebras.

4.3. Reconstruction theorems for singularities. We now apply these results to re-
construct isolated hypersurface singularities and compound Du Val singularities.

4.3.1. Hypersurface singularities.

Theorem 4.9 (Hua and Keller[25]). Let R = C[[x1, . . . , xn]]/(f) be an isolated singular-
ity. Then R is determined up to isomorphism by its Krull dimension dim(R) and the dg
enhancement of its singularity category sgdg(R).

For the sketch of the proof, set S = C[[x1, . . . , xn]] so R = S/(f). We will use

S/(f, ∂f∂x1
, . . . , ∂f∂xn ) the Tyurina algebra of R, a large enough natural number r ∈ N, and a

series of results to complete the diagram

Z(sgdg(R)) HH0(sgdg(R)) HH0
sg(R)

S

/(
f, ∂f∂x1

, . . . , ∂f∂xn

)
HH2r(R) HH2r

sg (R)

o

∼

o

∼ ∼

giving an isomorphism Z(sgdg(R)) ∼= S/(f, ∂f∂x1
, . . . , ∂f∂xn ). As noted in Remark 4.5 we

have HH0(sgdg(R)) ∼= HH0
sg(R) by Theorem 4.4. Using matrix factorization, Eisen-

bud [14] described a 2-periodicity that can be used to give HH0
sg(R) ∼= HH2r

sg (R) for
r ∈ N. Moreover, for large enough r ∈ N the singular Hochschild cohomology coincides
with the classical Hochschild cohomology by the seminal work of Buchweitz [4, 3], giving
HH2r

sg (R) ∼= HH2r(R). The fact that the 2r-th degree of the Hochschild cohomology of a
hypersurface is its Tyurina algebra is due to the Buenos Aires Cyclic Homology Group[22].
Given sgdg(R) and dim(R), our claim now follows by obtaining Z(sgdg(R)) and applying
Mather and Yau’s [45] result showing that the Tyurina algebra and the Krull dimension
of R suffice to determine R up to isomorphism.

4.3.2. Compound Du Val singularities. Let k = C and let R be a complete local isolated
compound Du Val singularity, namely it is a three dimensional normal singularity whose
generic hyperplane section is Kleinian. Set X = Spec(R) and let f : Y → X be a
small crepant resolution, namely it is a birational resolution giving an isomorphism in
codimension one, an isomorphism outside the exceptional fiber, and an equality f∗ωX = ωY
where ωX and ωY are the corresponding canonical divisors (in this case a resolution is small
if and only if it is crepant). Let F be the reduced exceptional fiber of f , which is given
by a tree of rational curves F =

⋃n
i=1Ci that is contracted to a single point by f . It
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has several associated dg algebras, of particular interest are contraction algebra Λ and its
derived contraction algebra Γ.

Theorem 4.10 (Efimov, Lunts, and Orlov [11, 12, 13], Donovan and Wemyss [9], Lau-
dal [40], Hua and Keller [25]).

(1) There is a canonical connective dg algebra Γ which pro-represents the noncommu-
tative deformations of

⊕n
i=1OCi in Db(coh(Y )). In particular, HpΓ = 0 for all

p ≥ 0.
(2) There is an isomorphism H0Γ ∼= Λ representing the noncommutative deformations

of
⊕n

i=1OCi in coh(Y ).

Remark 4.11.

(1) The algebra Λ is finite dimensional, as is the Tyurina algebra of R, but is noncom-
mutative. Moreover, HpΓ is finite dimensional for all p ∈ Z.

(2) The algebra Λ determines many invariants of R, such as the width of Reid and the
bidegree of the normal bundle (see Donovan and Wemyss [9]), and Katz’s genus
zero Gopakumar-Vafa invariants (see Toda [52] and Hua and Toda [26]).

This suggests that the algebra Λ may be enough to characterize R.

Conjecture 4.12 (Donovan and Wemyss [9]). The derived equivalence class of Λ deter-
mines R up to isomorphism.

Partial progress was achieved using the algebra Γ instead of Λ.

Theorem 4.13 (Hua and Keller[25]). The algebra Γ is a homologically smooth bimodule
3-Calabi-Yau algebra and its derived equivalence class determines R up to isomorphism.

The strategy behind the proof involves showing that there is a dg equivalence

sg(R)
∼−→ CΓ = per(Γ)/Dfd(Γ)

between the singularity category of R and the cluster category of Γ. Here Dfd(Γ) denotes
the derived category of complexes M of right Γ modules whose homology H∗M has finite
total dimension. The result follows by applying Theorem 4.9.

Observe that H∗Γ ∼= Λ⊗k[u−1] where u has degree two, whence Λ determines H∗Γ, but
unfortunately Γ is not a formal dg algebra. Nevertheless, the following new approach to
Conjecture 4.12 using cluster-tilting objects keeps our hopes alive. Consider the projection
functor p : per(V ) → CΓ and let T = p(Γ). It was proven by Amiot [1] that T is a
2Z cluster-tilting object in the sense of Iyama and Yoshino [28] and Geiss, Keller, and
Oppermann [15], namely

add(T ) = {X ∈ CΓ|Exti(T,X) = 0∀i /∈ 2Z} = {X ∈ CΓ|Exti(X,T ) = 0∀i /∈ 2Z}
where add(T ) is the smallest subcategory of CΓ that is closed under finite direct sums,
closed under retracts, and contains T . Moreover, we have Λ = H0Γ ∼= End(T ) where the
endomorphisms are not at the derived level. Under this perspective Conjecture 4.12 is
implied by the following more general statement.

Conjecture 4.14. Let C be a dg enhanced triangulated category satisfying suitable technical
conditions. If C contains a 2Z-cluster-tilting object T then the non-derived endomorphisms
EndC(T ) determine C up to quasi-equivalence of dg categories.
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This would yield the surprising fact that the higher structure of the category C, namely
its dg enhancement, is completely determined by its lower structure, namely the non-
derived endomorphisms EndC(T ). Assuming Conjecture 4.14 then Conjecture 4.12 follows
by applying Theorem 4.9.

Λ = EndCΓ (CΓ)dg ∼= sgdg(R) R up to isomorphism
Conjecture 4.14 Theorem 4.9

Remark 4.15. There are a couple of reasons to hope that Conjecture 4.14 holds.

(1) Recent work of Muro [48] shows that when C is a dg enhanced triangulated category
(satisfying suitable technical conditions) containing a 1Z-cluster-tilting-object T ,
then C is determined by the non-derived endomorphisms EndC(T ) up to quasi-
equivalence of dg categories. A family of categories containing 1Z-cluster-tilting-
objects are sg(R) for R a simple singularity of even dimension.

(2) A surprising feature of Iyama’s [27] higher homological theory is that many phe-
nomena occurring in dimension one generalize to higher dimensions. It is reasonable
to expect this to continue being the case.

Even more recently Jasso and Muro [29] showed that when C is a dg enhanced triangu-
lated category (under suitable technical conditions) containing a dZ-cluster-tilting-object
T , then C is determined by the derived endomorphisms REndC(T ) up to quasi-equivalence
of dg categories. In an appendix to their work, Keller proved Conjecture 4.12.
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of Math. Phys. Stud., pages 255–307. Kluwer Acad. Publ., Dordrecht, 2000.

[39] Henning Krause and Yu Ye. On the centre of a triangulated category. Proc. Edinb.
Math. Soc. (2), 54(2):443–466, 2011.

[40] O. A. Laudal. Noncommutative deformations of modules. volume 4, pages 357–396.
2002. The Roos Festschrift volume, 2.
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