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1 Introduction

About a year ago, when having to choose a mathematical subject in which to deepen,
I was immediately attracted by the subject known as Lie Theory. The way topology,
algebra and analysis interrelate to make a theoretically interesting theory yet extremely
useful struck me as something that ought to be explored. I was fortunate to have
Professor Jaume Aguadé to guide me in this scouting, since my first attempts were quite
poor. He introduced me to the wonders of Spin(n) through the eyes of Frank Adams,
and what you now have in your hands is an attempt to understand this point of view.

The interest of Adams’ way of tackling the construction of a triality lies beyond the
academic. Instead of rejoicing in complications and looking for inspiration among the
exceptional Jordan algebras, Cayley’s projective plane or the exceptional Lie group F4,
he takes the Dynkin diagrams as a basis. Undoubtedly, the relation among the outer
automorphisms and the permutations of the representations of Spin(8) provides a simpler
and more elementary explanation of the phenomenon.

An outline of the Chapters follows:

Chapter 2 is meant to be a gentle but broad overview of the mathematical objects that
will be used throughout the work. These include the general linear groups GLn(K),
the orthogonal groups O(n) and the representations of a group (V, µ).

Chapter 3 is where the Clifford algebras Cln and the Clifford groups Γn are
defined. The main structural properties of the first object are analysed, whereas over
the second object we expand on how a conjugation defines an isometry in a way that
establishes an intimate relation with O(n).

Chapter 4 contains the remaining of the construction of the pin groups Pin(n) and
spinor groups Spin(n). This is followed by the pertinent explanation of the claim
that the second is a double cover of SO(n) as well as the exposition of the main
properties their representations enjoy.

Chapter 5 is where the main interest of the work yields, as it is devoted to triality and
how it relates to Spin(8). This includes characterizing the outer automorphisms of
Spin(8), defining the concept of triality and, using its relation with duality, under-
stand how a triality can be induced by Spin(8).

Due to the subjective nature of the approach taken in the work, many results that
are to be needed must be provided without a proof. An effort has been made to provide
references for all of them. The work is also wished to provide a more topologically
flavoured approach, and thus a few results that are not essential to the core of the work
but broaden its scope are also explained. However, since they were the author’s at the
start of the journey, only basic topology and algebra are taken as prerequisites, and
every relevant definition has been included.
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2 Basic Ideas and Concepts

As the name of the section suggests, here we present a rough sketch of the basic ideas
and concepts that will be used throughout the work and that motivate the study.

2.1 The Classical Groups

In this section we present a brief introduction to the Classical groups, which are the
groups that arise from considering matrices with entries in R, C and H, although what
we expose is mainly valid in general for any field K.

In the whole work, given m,n ∈ N, the set of m × n matrices with entries on K is
denoted by Mm×n(K), and the special case when m = n is denoted as Mn(K). It is well
known that Mn(K) is a K vector space with the operations of matrix addition and scalar
multiplication, the zero vector being On the matrix with all entries zero.

Definition 1. We define the general linear group as the group:

GLn(K) = {A ∈ Mn(K) : detA 6= 0},

and the special linear group as the group:

SLn(K) = {A ∈ Mn(K) : detA = 1}.

These sets are easily checked for begin groups as claimed. However, this is not
enough, since we also need to consider the topology of the classical groups. This would
mean that SLn(K) ≤ GLn(K) is in fact what will be called a matrix group. Said
topology is usually taken only over R or C and is achieved by considering them metric
spaces. Since Mn(K) is a metric space of dimension n2 over K, we may define a norm
based on the existent norm over Kn.

Definition 2. For any vector x ∈ Kn, say x = (x1, . . . , xn), we define the norm of the
vector as:

|x| =
√
|x1|2 + · · ·+ |xn|2.

For any matrix A ∈ Mn(K), we define the norm of the matrix as:

||A|| = sup

{
|Ax|
|x|

: 0 6= x ∈ Kn

}
.

It is easy to check that | | is a norm in Kn and || || is a norm in Mn(K), and as in a
finite dimensional vector space all norms are equivalent, we shall use the one that suits
our needs.

Definition 3. A subgroup G ≤ GLn(K) which is also a closed subspace is a matrix
group (over K). We may say that G is a matrix subgroup of GLn(K).
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We now proceed to define the most important subgroups of GLn(K), which altogether
form the classical subgroups. The following definitions may be taken as a dictionary or
preamble. For a more detailed coverage of the metric and/or topological aspects of the
classical groups, see [3, Chapter 1], [5, Part 2], [4, Part A] or [9].

Definition 4. We define the affine group in dimension n ∈ N (over K) as:

Affn(K) =

{[
A t
0 1

]
: A ∈ GLn(K), t ∈ Kn

}
.

We define the translation subgroup of Affn(K) as:

Transn(K) =

{[
Idn t
0 1

]
: t ∈ Kn

}
.

In this context, very important are matrices that have their transpose as their inverse:
A ∈ Mn(K) with ATA = Idn = AAT , the orthogonal matrices.

Definition 5. We define the (real) orthogonal group in dimension n ∈ N as:

O(n) = {A ∈ GLn(R) : ATA = Idn}.

We define the positive and negative components of the orthogonal group as:

O(n)+ = {A ∈ O(n) : detA = 1},
O(n)− = {A ∈ O(n) : detA = −1},

respectively. The positive component is also named the special orthogonal group SO(n).

We obviously have O(n) = O(n)+ ∪O(n)− and O(n)+ ∩O(n)− = ∅. The orthogonal
and their special orthogonal subgroup are studied because of the relationship they have
with isometries, that is, distance preserving bijections (f : Rn → Rn bijection such that
|f(x)− f(y)| = |x− y| for any x,y ∈ Rn):

Proposition 1. If A ∈ GLn(R), then the following conditions are equivalent:

1. A is a linear isometry.

2. Ax ·Ay = x · y for all vectors x,y ∈ Rn.

3. ATA = Idn, that is, A is orthogonal.

Proof. It can be found in [3, Proposition 1.38].

In some bibliography, this result gives ground to elements of SO(n) being called direct
isometries or rotations and elements of O(n)− being called indirect isometries. This in
particular means that there is a full isometry group.
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Definition 6. We define the full isometry group of dimension n ∈ N as:

Isomn(R) = {f : Rn −→ Rn : f is an isometry}.

Which contains Transn(R) and in fact Isomn(R) ≤ Affn(R) is a matrix subgroup.
Elements of O(n) determine certain important structures. A subspace H ⊆ Rn of

dimension n − 1 is usually called a hyperplane in Rn, which has associated a linear
transformation θH : Rn → Rn called the reflection in the hyperplane. This mapping
is characterized by the fact that every element x ∈ Rn can be uniquely expressed as
x = xH + x′H with xH ∈ H and y · x′H = 0 for every y ∈ H, and thus we may set:

θH : Rn −→ Rn
x 7−→ xH − x′H

Lemma 1. For a hyperplane H ⊆ Rn, the reflection in the hyperplane θH is an indirect
isometry of Rn, in particular θH ∈ O(n).

Proof. It can be found in [3, Lemma 1.40].

A particular case of reflection in the hyperplane is when it is with respect to the
standard basis of Rn, because in this way it may be written as:

P

[
Idn−1 0

0 −1

]
P T ,

for some P ∈ O(n). In fact, these generate O(n).

Proposition 2. Every element A ∈ O(n) is a product of hyperplane reflections. The
number of these is even if A ∈ SO(n) and odd if A ∈ O(n)−.

Proof. It can be found in [3, Lemma 1.41].

Definition 7. We define the standard block as:

J =

[
0 −1
−1 0

]
.

Let m ≥ 1, we define:

J2m =


J O2 · · · O2

O2 J · · · O2
...

...
. . .

...
O2 O2 · · · J

 ,
a non-degenerate skew symmetric matrix. We define the (real) symplectic group as:

Symp2m = {A ∈ GL2m(R) : ATJ2mA = J2m}.
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This was the last of the real classical groups we consider here. We now switch our
attention to matrices with entries in the complex numbers. Over such matrices not only
we have a natural extension of the dot product (which is not linear but sesquilinear) with
x · y =

∑n
i=1 xiyi for x = (x1, . . . , xn), y = (y1, . . . , yn), but we also have the additional

option of conjugating their entries, and thus computing the hermitian conjugate of any
matrix A ∈ GLn(C) as A∗ = (A)T = AT .

Definition 8. We define the unitary group in dimension n ∈ N as:

U(n) = {A ∈ GLn(C) : A∗A = Idn}.

We define the special unitary group as:

SU(n) = {A ∈ GLn(C) : A∗A = Idn, detA = 1}.

2.2 Continuous Group Actions

In this section we shall consider group actions, which are a fundamental concept in
ordinary group theory. These actions will help us define the concept of representation,
the basis of all our work relating triality.

Definition 9. Let G be a topological space and consider G × G as the product space.
Suppose that G is also a group with a multiplication map G×G→ G and inverse map
G→ G. We say that G is a topological group if the multiplication and the inverse are
continuous.

There are many examples of topological groups, the simplest ones are obtained from
arbitrary groups given discrete topologies. The first relevant examples are GLn(R),
GLn(C), SLn(R) and SLn(C) with the matrix multiplication and inverse maps and the
subspace topologies inherited from Mn(R) and Mn(C) accordingly. These examples are
still relatively simple when compared to what can be found.

Definition 10. Given K a field and (V, | |) a finite dimensional normed K vector space,
we define:

EndK(V) = {f : V −→ V : f is a linear transformation}.

We define the general linear group of V as:

GLK(V) = {f : V −→ V : f is an ivertible linear transformation}.

This space is equipped with the standard operator norm inherited from the vector
space V, that is ||f || = sup {|f(v)| : v ∈ V, |v| = 1}. Moreover, this definition clearly
generalises the general linear matrix group.

Definition 11. An action µ of a group G on a set X is a function:

µ : G×X −→ X
(g, x) 7−→ gx

satisfying:
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1. (gh)x = g(hx), that is, µ(gh, x) = µ(g, µ(h, x)) for all g, h ∈ G, x ∈ X,

2. ex = x for all x ∈ X with e ∈ G being the identity element.

An action has two important sets associated to it:

Definition 12. Consider G a group acting on a set X. Let x ∈ X, we define the
stabiliser of x as:

StabG(x) = {g ∈ G : gx = x}.

We define the orbit of x as:

OrbG(x) = {gx ∈ X : g ∈ G}.

And if the group we are considering is a topological one, this notion of action can be
generalised.

Definition 13. Let G be a topological group and X be a topological space, consider G×X
with the product topology. Then a group action µ : G ×X → X is a continuous group
action if the function µ is continuous.

We are particularly interested in actions over (V, | |), when G is a certain matrix
group.

Definition 14. Let (V, | |) be a finite dimensional normed K vector space, G be a matrix
group that has a continuous homomorphism ϕ : G→ GLK(V). The associated action:

µϕ : G× V −→ V
(g, v) 7−→ ϕ(g)(v)

is called a (continuous) linear action or representation of G on V.

This is well defined because the associated action µϕ is based on ϕ(g) ∈ GLK(V)
which is linear and thus in finite dimensional cases immediately continuous. In this case,
by choosing a basis for V, we may as well assume that V = Kn and thus a continuous
group action is essentially the same thing as a continuous group homomorphism ϕ :
G → GLn(K). Note that we may make the slight abuse of notation of interpreting a
representation as the vector space the group acts on.

Definition 15. Let V be a non trivial representation of a group G. We say that V is
irreducible if it has no proper G submodules other than the trivial.

It is a natural thing to wonder when two representations should be considered the
same. A natural way is to consider this when there exist analogues of equivariant
maps.

Definition 16. Let G be a group and X, Y two sets where G acts on. A map f : X → Y
is said to be equivariant when for every g ∈ G it holds f(g · x) = g · f(x).
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Definition 17. Let (V1, µ1), (V2, µ2) be two representations of a group G. A K linear
map F : V1 → V2 is called an intertwining operator between µ1 and µ2 when for every
g ∈ G it holds F ◦ µ1(g) = µ2(g) ◦ F , that is, the following diagram commutes:

V1
F //

µ1
��

V2

µ2
��

V1
F
// V2

.

We say that µ1 and µ2 are equivalent as representations if F is an isomorphism.

Observation 1. Notice how given (V, µ1) and (V, µ2) two representations of a group G
(that is V1 = V2 = V), we may say that µ1 and µ2 are equivalent if and only if there
exists A ∈ GLK(V) so that for every g ∈ G:

µ1(g) = A−1µ2(g)A.
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3 The Clifford Algebras

In this section we present the real Clifford algebras, the generalisation of the sequence
of Real algebras that start with R, C and H. We will need them to define the main object
of interest of this work: the Spin(8) group.

Definition 18. We define the real Clifford algebra in n ∈ N variables Cln as the R
algebra generated by the elements e1, . . . , en ∈ Cln for which:{

eser = −eres if s 6= r,

e2
r = −1.

These algebras are finite dimensional:

Proposition 3. The real Clifford algebra Cln has an R basis:

Bn = {ei1 · · · eir : 1 ≤ i1 < · · · < ir ≤ n and 0 ≤ r ≤ n},

with ei1 · · · eir = 1 for r = 0 by convention.

Proof. Clearly, every x ∈ Cln can be written as an expansion with certain coefficients
of the elements in Bn. We will now prove by induction that these elements are linearly
independent. This is clear in the first two cases, since Cl0 = 〈{1}〉R and Cl1 = 〈{1, e1}〉R
because they are the vector spaces of dimension 1 and 2. Assume Bn−1 is a basis of
Cln−1, consider:

Bn = {ei1 · · · eiren : 1 ≤ i1 < · · · < ir ≤ n− 1 and 0 ≤ r ≤ n− 1} ∪ Bn−1.

Clearly the elements in Bn−1 are linearly independent among them. As we have en mul-
tiplying in the first set, we have that the first and second sets are linearly independent.
It is thus enough to see that the rest of them are also linearly independent among them.
This is true because any linear sum has en as a common factor: ∑

i1,...,ir

λi1,...,irei1 · · · eir

 en =
∑
i1,...,ir

λi1,...,irei1 · · · eiren = 0,

and as we are in a vector space, the remaining sum must be zero. Since this sum is of
elements of Bn−1, we must have that all the coefficients are zero, obtaining the desired
result.

This means that dimR Cln = 2n, as we are essentially taking the power set of
{1, . . . , n}. Having such basis allow us to readily calculate:

Example 1. Let i, j, k, l ∈ {1, . . . , n} be distinct numbers. Then:

eiejekel = −eiekejel = −ekeielej = ekeleiej .
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This definition generalises the real algebras, as we wished.

Proposition 4. There are isomorphisms of R algebras Cl0 ∼= R, Cl1 ∼= C and Cl2 ∼= H.

Proof. For Cl0 the result is obvious, as in fact Cl0 = R.
For Cl1, the function:

Cl1 −→ C
x+ ye1 7−→ x+ yi

with x, y ∈ R, is an R linear ring isomorphism.
For Cl2, the function:

Cl2 −→ H
t+ xe1 + yr2 + ze1e2 7−→ t+ xi+ yj + zk

with t, x, y, z ∈ R, is an R linear ring isomorphism.

Moreover, we can define an ordering for the monomials in the base of Cln: we
associate to the basis element ei1 · · · eir the number:

1 + 2i1−1 + · · ·+ 2ir−1,

taking it as 1 when r = 0. As every integer m such that 1 ≤ m ≤ 2n has a unique binary
expansion:

m = m0 + 2m1 + · · ·+ 2nmn with mi = 0, 1 for i = 1, . . . , n,

this provides a one to one correspondence between the numbers m and the basis mono-
mials of Cln. Using the left regular representation over R associated to the basis of Cln,
we can realise Cln as a subalgebra of M2n(R).

The universal property that characterizes the Clifford algebras Cln is based on
the observation that there is an R linear transformation:

jn : Rn −→ Cln∑n
r=1 xrer 7−→

∑n
r=1 xrer

for which:

jn(x)2 = jn

(
n∑
r=1

xrer

)2

= −
n∑
r=1

x2
r = −

∣∣∣∣∣
n∑
r=1

xrer

∣∣∣∣∣
2

= −|x|2,

for x ∈ Rn.

Theorem 1 (Universal property of a Clifford algebra). Let A be an R algebra. If
f : Rn → A is an R linear transformation for which f(x)2 = −|x|21, then there is a
unique homomorphism of R algebras F : Cln → A for which F ◦ jn = f :

Rn f //

jn
��

A

Cln

F

== .
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Proof. We define the homomorphism:

F : Cln −→ A
er 7−→ f(er)

which extends to a ring homomorphism given on the basis monomials by:

F : Cln −→ A
ei1 · · · eir 7−→ f(ei1) · · · f(eir)

which as is usual with these constructions, fulfils the conditions and is unique by exi-
gences of the construction.

Corollary 1. Let U be an R algebra and j : Rn → U be an R linear transformation for
which j((x))2 = −|x|21. Suppose that U and j have the universal property enjoyed by
Cln and jn. Then there is a unique R algebra isomorphism Φ : Cln → U which satisfies
Φ ◦ jn = j.

Proof. It is immediate by using the universal property of Cln.

Example 2. The first 8 real Clifford algebras are:

Clifford algebra Matrix group Dimension

Cl0 R 1
Cl1 C 2
Cl2 H 4
Cl3 H×H 8
Cl4 M2(H) 16
Cl5 M4(C) 32
Cl6 M8(R) 64
Cl7 M8(R)×M8(R) 128
Cl8 M16(R) 256

Observation 2. We may consider the R linear transformation:

α0 : Rn −→ Cln
x 7−→ −jn(x)

where we have α0(x) = jn(−x) and α0(x)2 = jn(−x)2 = −|x|2. By Theorem 1, there is a
unique algebra homomorphism α : Cln → Cln for which α(jn(x)) = α0(x). In particular:

α(er) = α(jn(er)) = α0(er) = −jn(er) = −er.

Since α is an homomorphism, given 1 ≤ r ≤ n and 1 ≤ i1 < · · · < ir ≤ n, for the
associated term of the basis we have:

α(ei1 · · · eir) = α(ei1) · · ·α(eir) = (−1)rei1 · · · eir =

{
ei1 · · · eir if r is even,

−ei1 · · · eir if r is odd.
(1)
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As we have the identity when r is even and an inversion when r is odd, clearly α is its
own inverse and thus it is an isomorphism.

Definition 19. The canonical automorphism of Cln is the homomorphism α : Cln →
Cln defined over the basis of Cln by Equation (1).

As a noteworthy point that will not be discussed further, because of the following
periodicity result, these determine all the Clifford algebras.

Theorem 2. For n ∈ N, we have Cln+8
∼= Cln ⊗M16(R).

Proof. A comprehensive exposition can be found in [10]. For a KO-theory of real vector
bundles approach see [11].

As the reader may have already noticed, this same construction can also be considered
with the complex numbers C, obtaining the complex Clifford algebras Cln(C) =
Cln ⊗ C. In this case, the periodicity result is even more deterministic than before, as
the first algebra is enough to generate the rest.

Theorem 3. For n ∈ N, we have that Cln+2 ⊗ C ∼= (Cln ⊗ C)⊗C M2(C).

Proof. A general proof can be found in [12].

Example 3. The first 2 complex Clifford algebras are:

Clifford algebra Matrix group Dimension

Cl0 C 2
Cl1 C⊕ C 4

This introduces the question of the structure on Cln. We start by defining a conju-
gation over Cln.

Definition 20. We define the conjugation over the basis of Cln as the mapping:

( ) : Cln −→ Cln
ei1 · · · eir 7−→ (−1)reir · · · ei1

where 1 ≤ r ≤ n, 1 ≤ i1 < · · · < ir ≤ n, and satisfying:

u+ v = u+ v, tu = tu,

for u, v ∈ Cln and t ∈ R.

Observation 3. The conjugation is not a ring homomorphism for n > 1, since whenever
r < s we have:

eres = eser = −eres = −er es 6= er es.

12



However, it is a ring anti-homomorphism as for all u, v ∈ Cln:

uv = v u.

This result is clear over the basis of Cln, which generalises directly to linear combinations
by definition of conjugation.

When n = 1, 2 the conjugation defined agrees with the conjugations in C and H.

The fact that α behaves either as the identity or as an inversion means we can
differentiate two classes on Cln.

Definition 21. We define a ±-grading on Cln via:

Cl+n = {u ∈ Cln : α(u) = u}, Cl−n = {u ∈ Cln : α(u) = −u}.

Proposition 5. 1. Every element u ∈ Cln can be uniquely expressed as u = u+ +u−

with u+ ∈ Cl+n and u− ∈ Cl−n . Thus Cln = Cl+n ⊕ Cl−n .

2. This decomposition is multiplicative:{
uv ∈ Cl+n if u, v ∈ Cl+n or u, v ∈ Cl−n ,

uv, vu ∈ Cl−n if u ∈ Cl+n and v ∈ Cl−n .

Proof. 1. Consider:

u+ = (u+ α(u))/2, u− = (u− α(u))/2.

They satisfy α(u+) = u+ and α(u−) = −u−, so that u+ ∈ Cl+n and u− ∈ Cl−n ,
with u = u+ + u−. Take u = u+ + u− with u+ ∈ Cl+n and u− ∈ Cl−n another
decomposition, then as α(u) = u+ − u−:

(u+ α(u))/2 = u+, (u− α(u))/2 = u−,

and the decomposition is unique, defining the vector space direct sum decomposi-
tion.

2. Let uv ∈ Cl+n . As α is a ring homomorphism:

uv = α(uv) = α(u)α(v),

which means that u and v have the same ±-grading and thus u, v ∈ Cl+n or u, v ∈
Cl−n .

Let uv, vu ∈ Cl−n . As α is a ring homomorphism:

uv = −α(uv) = −α(u)α(v), vu = −α(vu) = −α(v)α(u),

which means that in both cases u and v have different ±-grading and thus u ∈ Cl+n
and v ∈ Cl−n .
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Observation 4. For the vector spaces Cl±n we have two basis that consist of the mono-
mials: {

ei1 · · · ei2m ∈ Cl+n for 1 ≤ i1 < · · · < i2m ≤ n,
ei1 · · · ei2m+1 ∈ Cl−n for 1 ≤ i1 < · · · < i2m+1 ≤ n.

This is proven in the same fashion Proposition 3 was.
This results in a canonical isomorphism between Cln and Cl+n+1:

Φ : Cln −→ Cl+n+1

ei 7−→ eien+1

since both algebras have the same dimension and the definition as a morphism yields a
one to one correspondence among the basis elements:

Φ(ei1 · · · eir) = ei1 · · · eir(−1)
∑r−1
j=0 jern+1 =

{
ei1 · · · eir if r is even.

ei1 · · · eiren+1 if r is odd..

This also proves that Φ is well defined.

The structure on Cln that we will use is the one given by both α and conjugating.
These two mappings work remarkably well together.

Lemma 2. For every u ∈ Cln, the identity α(u) = α(u) holds.

Proof. It is enough to see that it holds for an element of the basis, say ei1 · · · eir with
1 ≤ i1 < · · · < ir ≤ n and 0 ≤ r ≤ n:

α(ei1 · · · eir) = α((−1)reir · · · ei1) = (−1)2keir · · · ei1 = (−1)kei1 · · · eir = α(ei1 · · · eir).

Observation 5. The composition α = α ◦ ( ) = ( ) ◦ α, which holds because of Lemma
2, is another anti-homomorphism:

α(xy) = α(xy) = α(x)α(y) = α(y) α(x).

Moreover, we have that Id2
Cln = α2 = ( )

2
= α2 = IdCln. Thus, the elements IdCln, α,

( ) and α form a non cyclic finite group of order 4.

In order to give more structure to Cln, we finally provide it with an inner product ·
and a norm | |.

Definition 22. We define the inner product over the basis of Cln as the mapping:

· : Cln × Cln −→ R

(ei1 · · · eir , ej1 · · · ejs) 7−→

{
1 if r = s, ik = jk for all k = 1, . . . , r

0 otherwise

,
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where 1 ≤ r, s ≤ n, 1 ≤ i1 < · · · < ir ≤ n, 1 ≤ j1 < · · · < js ≤ n and satisfying linearity.
We define a norm on Cln as the mapping:

| | : Cln −→ R
u 7−→

√
u · u

Because of the definition, it is immediately obvious that · is an inner product, and
since it does not act over scalars, the coefficients are multiplied amongst them as usually.

Proposition 6. The mapping | | : Cln −→ R is in fact a norm.

Proof. For every u, v ∈ Cln and λ, µ ∈ R we have to check:

1. Clearly |u+ v|2 = (u+v) ·(u+v) = u ·u+u ·v+v ·u+v ·v ≤ u ·u+v ·v = |u|2 + |v|2,

meaning that |u+ v| ≤
√
|u|2 + |v|2 ≤ |u|+ |v| since λ+ µ ≤ λ+ µ+ 2

√
λµ.

2. Clearly |λu| =
√
λu · λu =

√
λ2(u · u) = |λ| |u|.

3. We have 0 = |u| =
√
u · u if and oly if 0 = u · u, that is, the inner product of any

element of the basis that expands u with itself is zero, and thus u = 0.

And | | is a norm.

In analogous fashion to the complex numbers and the quaternions, we have a real
and a complex part of an element of a Clifford algebra.

Definition 23. We define the real part of an element u ∈ Cln, and denote it as <(u),
to be the coefficient of 1 when u is expanded as an R linear combination of the basis
monomials ei1 · · · eir , where 1 ≤ r ≤ n, 1 ≤ i1 < · · · < ir ≤ n.

Alternatively, we may consider defining the inner product · as in the complex case.
We must first check that this characterization is well defined, that is, that they are
equivalent.

Proposition 7. For every u, v ∈ Cln, the following equality holds:

u · v = <(uv + vu)/2.

Proof. We first expand u and v in term of the basis elements of Cln:

u =
∑
i1,...,ir

λi1,...,irei1 · · · eir , v =
∑
j1,...,js

µj1,...,jsej1 · · · ejs ,

with λi1,...,ir , µj1,...,js ∈ R for all 1 ≤ i1 < · · · < ir ≤ n, 1 ≤ j1 < · · · < js ≤ n.
For the left hand side we can readily check that:

u · v =
∑
i1,...,ir

λi1,...,irµi1,...,ir ,
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for indexes i1, . . . , ir that both u and v have, since by definition of inner product we
must have r = s and eik = ejk for the basis elements to result in non zero numbers.

For the right hand side, we conjugate and obtain:

u =
∑
i1,...,ir

(−1)rλi1,...,ireir · · · eii , v =
∑
j1,...,js

(−1)sµj1,...,jsejs · · · ej1 .

Because of the definition of product inside Cln, in order for the multiplication of basis
elements to be a real number, we must have the same number of generators (r = s)
and (since the basis elements have the generators in a predetermined order) the same
generators in the same position (eik = ejk). In this case:

eir · · · eiiej1 · · · ejs = eir · · · eiiei1 · · · eir = (−1)r ∈ R.

Thus, by multiplying as elements of Cln:

<(uv) =
∑
i1,...,ir

λi1,...,irµi1,...,ir , <(vu) =
∑
i1,...,ir

µi1,...,irλi1,...,ir ,

for indexes i1, . . . , ir that both u and v have, and as the real part of a sum is the sum of
real parts:

<(uv + vu)/2 = <(uv)/2 + <(vu)/2 =
∑
i1,...,ir

λi1,...,irµi1,...,ir ,

obtaining the desired equality.

The norm | | gives rise to a metric on Cln which makes the group of units Cl×n into
a topological group. In particular, Cl×n is a matrix group itself.

In the following part of the section, we will present the Clifford groups, which are
subgroups of the group of units Cln.

Observation 6. Via the injective linear transformation jn : Rn → Cln we can identify
Rn with a subspace of Cln:

n∑
r=1

xrer ←→
n∑
r=1

xrer

which allow us to write elements x = x ∈ Rn.
Since Rn ⊆ Cl−n , we have that for every x ∈ Rn, u ∈ Cl+n and v ∈ Cl−n :

xu, ux ∈ Cl−n , xv, vx ∈ Cl+n .

Definition 24. Given n ≥ 1, we define the Clifford group Γn as the subgroup:

Γn = {u ∈ Cl×n : α(u)xu−1 ∈ Rn for all x ∈ Rn}.

This is obviously a group, by simply expanding and using that Rn is a vector space.
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Proposition 8. We have that R× is the centre of Γn, in particular R× ≤ Γn is a normal
subgroup.

Proof. Clearly R× is a normal subgroup as we are inside an R vector space.
We want to prove that Z(Γn) = R×. Obviously Z(Γn) ⊇ R× holds. To see Z(Γn) ⊆

R×, we first prove that if x ∈ Rn, then x ∈ Γn. As x(−x)/ |x|2 = |x|2 / |x|2 = 1, then
x−1 = −x/ |x|2. Take y ∈ Rn, we have:

α(x)yx−1 = (−x)y(−x)/ |x|2 = −yxx/ |x|2 = (−y)(− |x|2)/ |x|2 = y ∈ Rn.

Take now z ∈ Z(Γn). Since ei ∈ Γn for every i ∈ {1, . . . , n}, we have zei = eiz. This
implies that for every basis monomials ei1 · · · eir , where 1 ≤ r ≤ n, 1 ≤ i1 < · · · < ir ≤ n,
we have:

zei1ei2 · · · eir = ei1zei2 · · · eir = · · · = ei1 · · · eirz,

or equivalently z commutes with every element u ∈ Cln. The only invertible elements in
Cln that commute with every other element are those of R×.

Proposition 9. The group Γn is a closed subgroup of Cl×n

Proof. There is a continuous action:

Cl×n × Cln −→ Cln
(u, v) 7−→ α(u)vu−1

and since u ∈ Cl×n implies α(u) ∈ Cl×n , for each such u the function:

ρu : Cln −→ Cln
v 7−→ α(u)vu−1

is a linear isomorphism. As Rn ⊆ Cln is a finite dimensional normed R subspace, it is
closed and we have that the stabiliser:⋂

x∈Rn
ρ−1
x (x) = StabCl×n

(Rn) = {u ∈ Cl×n : ρx(u) = x for all x ∈ Rn} ≤ Cl×n

is a closed subgroup. As we have StabCl×n
(Rn) = Γn, we obtain the desired result.

Corollary 2. Given n ∈ N \ {0}, the group Γn is a matrix group.

Proof. It is immediate since Cln is a matrix group.

We wish to find an inclusion of Γn into one of the classical matrix groups. We will
now prove a couple of technical results needed to progress in the right direction.

Proposition 10. For u ∈ Γn, we also have α(u), u ∈ Γn.
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Proof. Let u ∈ Γn and have Observation 5 present. Before anything, note that Rn is
obviously closed under α and ( ). To see that it is closed under ρα(u−1), it is enough to
see that u−1 ∈ Γn, but this is due to ρu being an isomorphism; for every x ∈ Rn, there
exists y ∈ Rn such that x = α(u)yu, and thus:

α(u−1)xu−1 = α(u−1)α(u)yuu−1 = y ∈ Rn,

where we have used the fact that α(u−1)α(u) = 1 = α(u)α(u−1). Moreover, for x ∈ Rn
we have α(x) = −x = x ∈ Rn. We first check that α(u) ∈ Γn:

α(α(u))xα(u)−1 = α(α(u))α(−x)α(u)−1 = α(α(u)(−x)u−1) ∈ Rn,

We now check that u ∈ Γn:

α(u)xu−1 = α(u) (−x) u−1 = u−1(−x)α(u) = α(α(u−1)α(−x)u) ∈ Rn,

where we have also used u u−1 = 1 = u−1 u.

For u ∈ Γn we have that ρu keeps Rn invariant by definition, and thus we can restrict
to them the function and not only obtain an isomorphism, but a little more.

Proposition 11. For each u ∈ Γn, the function ρu restricted to Rn is an R linear
isometry.

Proof. For any x ∈ Rn, we have:

|ρu(x)|2 =
∣∣α(u)xu−1

∣∣2 = |α(u)|2 |x|2
∣∣u−1

∣∣2 = |u|2 |x|2 |u|−2 = |x|2 ,

hence |ρu(x)| = |x|. We have used that
∣∣u−1

∣∣ = |u|−1 and |α(u)| = |u|, the first being
obvious and the second due to Proposition 7 and Lemma 2:

|α(u)|2 = α(u)α(u) = α(u)α(u) = α(uu) = α
(
|u|2
)

= |u|2 .

For u ∈ Γn, this means that if we express ρu in terms of the standard basis {e1, . . . , en}
we then have ρu ∈ O(n) and there is a group homomorphism:

ρ : Γn −→ O(n)
u 7−→ ρu

which in fact is also continuous, as it is a linear operator between finite dimensional
vector spaces. We are obviously very interested in knowing how this homomorphism
behaves.

Proposition 12. The kernel of ρ is identified as ker ρ = R× = {t1 : t ∈ R \ {0}}.

18



Proof. Take u ∈ ker ρ. Decompose u = u+ + u− with u± ∈ Cl±n , and note that for each
i = 1, . . . , n we may (always) write:

u+ = a+
i + eib

−
i and u− = a−i + eib

+
i ,

with a±r , b
±
r ∈ Cl±n and not involving ei in their expansions in terms of the basis of Cl±n ,

and we have the identities:

a+
i ei = eia

+
i and − b−i ei = eib

−
i .

By definition of u, for every x ∈ Rn we have α(u)xu−1 = x, that is, α(u)x = xu.
With the decomposition we have that:

u+x = xu+ and − u−x = xu−.

In particular by setting x = ei and taking into account the above we obtain:

a+
i ei + b−i = u+ei = eiu

+ = a+
i ei − b

−
i ,

−a−i ei − b
+
i = eiu

− = −u−ei = −a−i ei + b+i ,

which by comparing the parts involving or not involving ei we see that b−i = 0 = b+i
respectively and thus u+ = a+

i , u− = a−i , neither of these involving ei. As this is true
for all i = 1, . . . , n, we must have u+ = t1 for some t ∈ R and u− = 0, hence u = t1.

Obviously ρt(x) = x if t ∈ R×.

This knowledge can be used to prove some more technical facts.

Proposition 13. For every u ∈ Γn, we have uu ∈ R× and uu = uu. If v ∈ Γn, we have
uvuv = uuvv.

Proof. Take u ∈ Γn. By Proposition 10 we have that uu ∈ Γn. Taking into account
Observation 5 and that we have α(u−1)xu ∈ R, the next shows that uu ∈ ker ρ:

ρuu(x) = α(uu)x(uu)−1 = α(u)α(u)xu−1u−1 = α(u)α(u xα(u−1))u−1

= α(u)α(u xα(u−1))u−1 = α(u)α(α(u−1)xu)u−1 = α(u)α(−α(u−1)xu)u−1

= α(u)α(u−1)xuu−1 = α(uu−1)x(uu−1) = x,

and thus uu ∈ R× by Proposition 12. This means that it commutes with every element
of Cln, so that:

uu = u−1uuu = uuu−1u = uu.

In fact, if v ∈ Γn, then vv ∈ R× also commutes with every element of Cln and thus:

uvuv = uvv u = uuvv.
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Proposition 14. The function:

ν : Γn −→ R×
u 7−→ uu

(2)

is a continuous group homomorphism.

Proof. In virtue of the first two results of Proposition 13, for every u ∈ Γn we have that
uu = uu ∈ R× and thus:

ν(u) = uu = <(uu+ uu)/2 = |u|2 ,

which by Proposition 6 is continuous and always takes positive values. Using the last
result of Proposition 13, we have that ν is a group homomorphism.

This last result shows how studying ν’s kernel we may obtain a group in which every
element behave as a unit and may still be thought via ρ as an element of the orthogonal
group. We wish to obtain a morphism relation between those groups.
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4 The Spin(n) Group and Representations

4.1 The Spin(n) Group

In this section we define the spinor groups Spin(n), which include our main object of
interest. These groups are compact, connected and we will find a surjective homomor-
phism onto the orthogonal group, as desired.

Definition 25. Given n ≥ 1, and ν : Γn → R× as in Equation (2), we define the pinor
group Pin(n) as:

Pin(n) = ker ν.

We obviously have that Pin(n) is a closed subgroup of Γn, and with respect to the
metric induced by the norm | | it is also bounded, and hence is compact.

Definition 26. Given n ≥ 1, we define the spinor group Spin(n) as:

Spin(n) = Pin(n) ∩ Cl+n .

Observation 7. The restriction α : Pin(n)→ Pin(n) is a continuous group homomor-
phism, since it is well defined; take u ∈ Pin(n), then:

ν(α(u)) = |α(u)|2 =
∣∣u+ − u−

∣∣2 = u+ · u+ + u− · u− = |u|2 = ν(u) = 1,

and it already is an homomorphism. For this restriction, we have:

Spin(n) = {u ∈ Pin(n) : α(u) = u} = Pin(n) ∩ Cl+n ≤ Pin(n),

and hence Spin(n) is a closed subgroup. As we will see in Theorem 4, it is also a normal
subgroup.

The natural inclusion Cln ↪→ Cln+1 yields a natural inclusion Spin(n) ↪→ Spin(n+1).

We wish to accomplish the goal set at the end of Section 3, that is, show that the
restricted homomorphism ρ : Pin(n)→ O(n) is surjective and that Spin(n) = ρ−1SO(n).
This will be done by showing that Pin(n) is generated by a set of elements u ∈ Rn for
which ρu is a reflection on a hyperplane. The reason why this is useful will be clear in
Proposition 17 and Observation 11.

Observation 8. The unit sphere Sn−1 that lies within Rn ⊆ Cln has an active role
in the following pages. We should observe in particular that it lies within the Clifford
algebra and has a simple characterization:

Sn−1 = {x ∈ Rn : |x| = 1} =

{
n∑
r=1

xrer :
n∑
r=1

x2
r = 1

}
.

Lemma 3. Let u ∈ Sn−1. Then u ∈ Cl×n , it is a unit, and u−1 ∈ Sn−1.
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Proof. Take u ∈ Sn−1 ⊆ Rn, we have:

(−u)u = u(−u) = −u2 = −(− |u|2) = 1,

hence u−1 = −u ∈ Sn−1.

This may be immediately generalized.

Observation 9. Let u1, . . . , uk ∈ Sn−1, by Lemma 3 applied k times we have:

(u1 · · ·uk)−1 = (−1)kuk · · ·u1 = uk · · ·u1.

This should remind us of the concept of subgroup generated by a set. In a group
G and given a subset S ⊆ G, the subgroup generated by S is the smallest subgroup of
G containing S, and is denoted by 〈S〉 ≤ G. With multiplicative notation, any element
s ∈ 〈S〉 may be written as a product of elements in S and their inverses:

s = s±1
1 · · · s

±1
k .

The well known fact that if H ≤ G and S ⊆ H, then 〈S〉 ≤ H is also useful.
This means that, in fact, Lemma 3 assures that every element of

〈
Sn−1

〉
is a product

of elements of Sn−1.

Lemma 4. Let u, v ∈ Rn ⊆ Cln. If u · v = 0, then vu = −uv.

Proof. For u, v ∈ Rn, we write u =
∑n

r=1 xrer and v =
∑n

r=1 yrer with xr, yr ∈ Rn for
every r = 1, . . . , n. Expanding the multiplication:

vu =
n∑
s=1

yses

n∑
r=1

xrer =
n∑
s=1

n∑
r=1

ysxreser =
n∑
r=1

yrxre
2
r +

∑
r<s

(yrxs − ysxr)eres

= −
n∑
r=1

xryr −
∑
r<s

(ysxr − yrxs)eres = −u · v −
∑
r<s

(ysxr − yrxs)eres

= −
∑
r<s

(ysxr − yrxs)eres = v · u−
∑
r<s

(ysxr − yrxs)eres

=
n∑
r=1

yrxr −
∑
r<s

(ysxr − yrxs)eres = −
n∑
r=1

xryre
2
r −

∑
r<s

(xrys − xsyr)eres

= −
n∑
r=1

n∑
s=1

xryseres =
n∑
r=1

xrer

n∑
s=1

yses = −uv,

as desired.

Observation 10. We observe that for every u ∈ Sn−1 and x ∈ Rn, in virtue of Lemma
3 we have:

α(u)xu−1 = (−u)x(−u) = uxu.
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On the one hand if u · x = 0 then Lemma 4 guarantees that:

α(u)xu−1 = uxu = −u2x = −(− |u|2)x = −(−1)x = x.

On the other hand, if x = tu for some t ∈ R, then:

α(u)xu−1 = tu3 = −tu,

so in particular α(u)xu−1 ∈ Rn for both cases. However, we already know that this
always happens because u ∈ Rn ⊆ Γn.

Proposition 15. It holds
〈
Sn−1

〉
≤ Pin(n), that is, the subgroup of Cln generated by

Sn−1 is contained in Pin(n).

Proof. As it is already a subgroup, we just have to see that for any s ∈
〈
Sn−1

〉
we have

s ∈ Pin(n), that is, s ∈ Γn and ν(s) = 1. The latter is direct from Observation 9, since
ν(s) = ss = ss−1 = 1. The former is an immediate consequence of the decomposition
s = s1 · · · sk with sr ∈ Sn−1 ⊆ Rn ⊆ Γn for all r = 1, . . . , k and thus α(sr)y(sr)

−1 ∈ Rn
for any y ∈ Rn:

α(s1 · · · sk)x(s1 · · · sk)−1 = ((−1)ks1 · · · sk)x((−1)ksk · · · s1) ∈ Rn.

The next step is to study the restriction of the homomorphism ρ : Pin(n)→ O(n) to
ρ :
〈
Sn−1

〉
→ O(n). As we have seen, for each u ∈ Sn−1 we have an R linear isometry:

ρu : Rn −→ Rn
x 7−→ uxu.

More generally, we have also seen that considering u ∈
〈
Sn−1

〉
with u = u1 · · ·uk for

u1, . . . , uk ∈ Sn−1, then for any x ∈ Rn:

ρu(x) = α(u1 · · ·uk)x(u1 · · ·uk)−1 = u1 · · ·ukxuk · · ·u1.

Proposition 16. For u ∈ Sn−1, the mapping ρu : Rn → Rn is a reflection in the
hyperplane orthogonal to u.

Proof. What we have seen in Observation 10 is precisely that ρu meets the defining
equation of a hyperplane reflection, and thus it is so with respect to the hyperplane
orthogonal to u.

We can finally show that Sn−1 actually generates Pin(n), and thus the elements of
Spin(n) are relatively easy to work with.

Proposition 17. 1. The mapping ρ :
〈
Sn−1

〉
→ O(n) is surjective with ker ρ =

{1,−1}.
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2. The mapping ρ : Pin(n)→ O(n) is surjective with ker ρ = {1,−1}.

3. It holds
〈
Sn−1

〉
= Pin(n).

Proof. 1. Computing ker ρ = {u ∈
〈
Sn−1

〉
: ρu = IdO(n)}, we must have uxu = x for

all x ∈ Rn, which only happens for u = ±1. Because of Observation 10, any reflec-
tion in the hyperplane orthogonal to u ∈ Sn−1 has the form ρu. The surjectivity is
due since every element A ∈ O(n) is a product of hyperplane reflections, as stated
by Proposition 2.1.

2. The surjectivity follows from the above, since
〈
Sn−1

〉
⊆ Pin(n). We obviously have

±1 ∈ ker ρ. Let t ∈ ker ρ ⊆ Pin(n) ∩ R×, then 1 = ν(t) = |t|2 = tt = t2, so t = ±1.

3. We just have to see that Pin(n) ⊆
〈
Sn−1

〉
. Take v ∈ Pin(n), then ρv ∈ O(n)

can be expressed as a product of hyperplane reflections as noted above, each of
which has the form ρu for some vector u ∈ Sn−1. Hence ρv = ρu1···uk for some
u1, . . . , uk ∈ Rn−1. But then:

IdO(n) = ρvρv = ρvρu1···uk = ρvu1···uk =⇒ vu1 · · ·uk ∈ ker ρ = {±1},

hence v = ±(u1 · · ·uk)−1 = ±(−1)kuk · · ·u1 ∈
〈
Sn−1

〉
.

Theorem 4. 1. The group Pin(n) is the disjoint union of open subsets:

Pin(n) =
(
Pin(n) ∩ Cl+n

)
∪
(
Pin(n) ∩ Cl−n

)
= Spin(n) ∪

(
Pin(n) ∩ Cl−n

)
.

2. The group Spin(n) is a normal subgroup of Pin(n) and every element u ∈ Spin(n)
can be expressed as a product of even length of elements of Sn−1, that is, u =
u1 · · ·u2k with u1, . . . , u2k ∈ Sn−1.

3. For any v ∈ Sn−1 it holds Pin(n) ∩ Cl−n = vSpin(n), and every element u ∈
Pin(n)∩Cl−n can be expressed as a product of odd length of elements of Sn−1, that
is, u = u1 · · ·u2k+1 with u1, . . . , u2k+1 ∈ Sn−1.

Proof. 1. We have Pin(n) =
〈
Sn−1

〉
and thus any element u ∈ Pin(n) may be ex-

pressed as u = u1 · · ·uk for some u1, . . . , uk ∈ Sn−1. For this decomposition we
have α(u1 · · ·uk) = (−1)ku1 · · ·uk, meaning that u ∈ Pin(n)∩Cl±n depending on k
being even or odd respectively. This proves the equality.

The subsets are disjoint since Cl+n ∩ Cl−n = {0} but 0 /∈ Pin(n).

2. Take u ∈ Spin(n) and v ∈ Pin(n). We know by the above that u = u1 · · ·u2k for
some u1, . . . , u2k ∈ Sn−1. If v ∈ Spin(n), then obviously vuv−1 ∈ Spin(n). Suppose
v = v1 · · · v2l+1 with v1, . . . , v2l+1 ∈ Sn−1, now:

vuv−1 = −v1 · · · v2l+1u1 · · ·u2kv2l+1 · · · v1 = w1 · · ·w2(2l+1+k) ∈ Spin(n),

with w1, . . . , w2(2l+1+k) ∈ Sn−1 by renaming the elements, and there is an even
number of them. This proves the normality of the group.
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3. Take u ∈ Pin(n) ∩ Cl−n . We know by the above that u = u1 · · ·u2k+1 for some
u1, . . . , u2k+1 ∈ Sn−1. Moreover, for each v ∈ Sn−1 we have that:

v−1u = (−v)u ∈ Pin(n) ∩ Cl+n ,

say v−1u = w, and so u = vw with w ∈ Spin(n). This argument can be applied at
the inverse, as given w ∈ Spin(n) we have that:

vw ∈ Pin(n) ∩ Cl−n ,

say vw = u with u ∈ Pin(n)∩Cl−n . We thus have both inclusions and the equality.

Observation 11. The following notation is extensively used in the bibliography:

Pin(n)+ = Spin(n) = Pin(n) ∩ Cl+n , Pin(n)− = Pin(n) ∩ Cl−n .

It is also worth noting that these two groups can also be characterized using the
surjective homomorphism ρ : Pin(n)→ O(n). For u1, . . . , uk ∈ Sn−1 we have that ρui is
a hyperplane reflection for every i = 1, . . . , k, for which det ρui = −1 as guaranteed by
Lemma 1. Thus:

det ρu1···uk = det ρu1 · · · ρuk = det ρu1 · · · det ρuk = (−1)k.

Now recalling Definition 5 together with Theorem 4 we have that for u ∈ Pin(n):

u ∈ Spin(n) ⇐⇒ ρu ∈ SO(n),

u ∈ Pin(n)− ⇐⇒ ρu ∈ O(n)−.

Theorem 5. The continuous homomorphism ρ : Pin(n)→ O(n) is surjective and:

ρ−1(SO(n)) = Spin(n), ρ−1(O(n)−) = Pin(n)−.

Meaning that the restriction ρ+ = ρ : Spin(n)→ SO(n) is also surjective and the kernels
of these homomorphisms are ker ρ = ker ρ+ = {±1}.

Proof. We know that ρ : Pin(n) → O(n) is surjective by Proposition 17. We obtain
the two equalities in virtue of Observation 11, and since ±1 ∈ Spin(n), the kernel is
maintained.

As we wished, Theorem 5 guarantees that Spin(n) is a double cover of SO(n).

Observation 12. This characterization leads to an even better understanding of the
group by means of topological considerations. In particular, as is shown in [13], it can
be used to prove that the center of Spin(n) is:

Z(Spin(n)) =


{±1} ∼= Z2 if n is odd.

{±1,±e1 · · · en} ∼=

{
Z2 × Z2 if n ≡ 0 mod 4.

Z4 if n ≡ 2 mod 4.
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It also provides a way of defining a (non injective) product Spin(p) × Spin(q) →
Spin(p+ q) that covers the product:

⊕ : SO(p)× SO(q) −→ SO(p+ g)

(A,B) 7−→
(
A 0
0 B

)
Example 4. In low dimensions, there exist isomorphisms between the Spin groups and
other Classical groups. These are not featured in higher dimensions, thus being called
accidental isomorphisms. The first 6 Spin groups are:

Spin group Classical group

Spin(1) O(1)
Spin(2) SO(2) ∼= U(1)
Spin(3) SU(2) ∼= Sp(1) ∼= S3

Spin(4) SU(2)× SU(2)
Spin(5) Sp(2)
Spin(6) SU(4)

But only vestiges of these isomorphisms remain in dimensions 7 and 8, completely
disappearing afterwards. The ensuing groups are of its own kind.

4.2 The Spin(n) Representations

Now that we are familiar with the Spin(n) groups, in this section we present some
elementary and not so elementary facts concerning their representations. As our goal
is to study the automorphisms of Spin(n), the results, which can be found in [1], are
provided without proofs.

We wish to find a continuous homomorphism ϕ : Spin(n) → Mm(C) that induces
a representation of Spin(n). In a first approach, we may consider the projection λ :
Spin(n)→ SO(n) ⊂ GLn(C), that clearly induces a representation. This representation
has −1 ∈ Spin(n) acting the same way as 1 ∈ Spin(n) does, namely as the identity
element. In fact, this is a distinguishing factor of λ, since we may differentiate represen-
tations in which this happens and in which it does not. In the former, we have that the
representation must factorize through SO(n), and we simply have a lift to Spin(n) of a
representation in SO(n). Thus, the representation λ is in fact the canonical representa-
tion of SO(n) acting naturally over Rn, has dimension n and is irreducible.

We shall now consider representations that do not factorize through SO(n), distin-
guishing when the dimension is even or odd.

Proposition 18. Let n ∈ N. If n = 2r + 1 is odd, then Spin(n) has one irreducible
representation ∆ of degree 2r. If n = 2r is even, then Spin(n) has two irreducible
representations ∆+, ∆− of degree 2r−1.
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Sketch of the proof. Consider the Spin groups over the complex numbers. If n = 2r+ 1,
we may consider the inclusions:

Spin(2r + 1) ⊂ Cl+2r+1
∼= Cl2r ↪→ Cl2r ⊗ C ∼= M2r(C).

If n = 2r, we may consider the inclusions:

Spin(2r) ⊂ Cl+2r
∼= Cl2r−1 ↪→ Cl2r−1 ⊗ C ∼= M2r−1(C)⊕M2r−1(C).

The periodicity results in [12] are to be used to see the last equivalences.

These representations are complex. Notice how a representation on Spin(n) may be
the composition of the inclusion on a higher dimensional group Spin(n + r) (for some
r ∈ N) with a representation on the latter. We observe that ∆+ is distinguishable from
∆− in the sense that by definition they take different values in some central elements:

∆+(ire1 · · · e2r) = IdGL2r−1 (C),

∆−(ire1 · · · e2r) = −IdGL2r−1 (C),

being i =
√
−1 the complex number.

Proposition 19. For every r ∈ N, under the inclusions:

Spin(2r) −→ Spin(2r + 1) −→ Spin(2r + 2),

we have that:
∆+<

~~
∆+ + ∆− ∆�oo

∆−
�

``

We wish to know when these representations are real, if they can ever be.

Proposition 20. Let r ∈ N. The representation ∆ of Spin(2r + 1) is real if 2r + 1 ≡
1, 7 mod 8. The representations ∆+ and ∆− of Spin(2r) are real if 2r ≡ 0 mod 8.

This last result is difficult to prove, but it immediately meets the eye that the case of
Spin(8) must be a special one, since dim(λ) = dim(∆+) = dim(∆−) = 8. This means in
particular that all three irreducible representations are real, and in fact ∆±(e1 · · · e8) =
IdGL8(C).

Theorem 6. The only irreducible representations of Spin(8) are λ, ∆+ and ∆−.

This concludes what we will need to know about the Spin(n) representations in order
to be able to sow Theorem 7.
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5 Spin(8) and Triality

5.1 The Automorphisms of Spin(8)

In this section we present the main result that makes Spin(8) special, that is, that its
group of outer automorphisms is isomorphic to the group of permutations of three
elements. Most of the auxiliary results used can be found in [1].

Definition 27. Let A be an algebra over K. The group of K-algebra automorphisms
of A is AutK(A).

In general, this group contains many elements. In particular, for every unit u ∈ A×
the conjugation:

χu : A −→ A
a 7−→ uau−1

is an automorphism.

Definition 28. Let A be an algebra over K. An automorphism having the form χu
for some unit u ∈ A× is called an inner automorphism, and form the group of inner
automorphisms InnK(A), which is a subgroup of AutK(A).

These inner automorphisms are readily understood, making our interest lie among
the ones that are not of this form.

Definition 29. Let A be an algebra over K. The group of outer automorphisms of A is
defined as OutK(A) = AutK(A)/InnK(A). The equivalence classes of OutK(A) are called
outer automorphisms.

To completely determine the group of outer automorphisms of Spin(8) we need a few
preliminary results.

Lemma 5. Let G be a compact group acting on a vector space V. We can always find a
positively defined quadratic form in V that remains invariant by the action of the group.

Proof. It can be found in [7].

Proposition 21. Let G be a compact simple Lie group. Then End(G) = {1} ∪Aut(G).

Proof. It can be found in [7].

The main result that we wish to prove is:

Theorem 7. The group of outer automorphisms of Spin(8) is the group of permutations
of three elements: OutK(Spin(8)) = Σ3.
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Proof. We will prove that the elements of OutR(Spin(8)) are in a one to one correspon-
dence with the permutations of the three representations λ, ∆+ and ∆−.

If we have an automorphism α : Spin(8)→ Spin(8) and a representation ρ : Spin(8)→
GL8(C), then clearly ρ ◦ α : Spin(8) → GL8(C) is also a representation. Thus, we may
define an homomorphism:

ψ : OutR(Spin(8)) −→ Σ3{λ,∆+,∆−}
α 7−→ ψ(α) : {λ,∆+,∆−} −→ {λ,∆+,∆−}

[ρ] 7−→ [ρ ◦ α]

It is important to see that we must consider the class of the irreducible representation
[ρ], since as in Definition 17 we are taking the representations modulo equivalence. In
our case in particular, this equivalence translates as taking representations modulo a
change of basis in GL8(C). We have to show that ψ is both surjective and injective.

We claim that ψ is surjective. Consider the diagram:

Spin(8)

����
SO(8)� _

��
O(8)� _

��
GL8(R)� _

��
Spin(8)

α+

CC

??

99

44

∆+
// GL8(C)

The first factorization is justified because ∆+ is a real representation. In virtue of Lemma
5, we may choose an orthonormal basis and thus factorize through O(8). As Spin(8)
is connected, it must have image into a connected group, allowing the factorization via
SO(8). Finally, since Spin(8) is simply connected for every n > 2, it is the universal
cover of SO(8) and thus we may lift the map to α+ : Spin(8)→ Spin(8).

Taking into account Proposition 21 and the fact that ∆+ is not trivial, we must have
that α+ is a non trivial automorphism. Observe that by construction λ ◦ α+ = ∆+ and
thus the representation λ is in fact the one that makes the diagram above commute. Let
ρ be another representation acting after α+, by definition of ψ we have that:

ψ(α+)(ρ) : Spin(8)
α+

−→ Spin(8)
ρ−→ GL8(C).

The diagram above shows that over λ this composition yields ∆+, but the other two
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representations are left undetermined. We may have one of the following:

ψ(α+) :


λ 7−→ ∆+

∆+ 7−→ λ

∆− 7−→ ∆−
, ψ(α+) :


λ 7−→ ∆+

∆+ 7−→ ∆−

∆− 7−→ λ

.

An analogous argument starting with ∆− obtains a non trivial automorphism α−

that acts on the representations as one of the following:

ψ(α−) :


λ 7−→ ∆−

∆+ 7−→ λ

∆− 7−→ ∆+

, ψ(α−) :


λ 7−→ ∆−

∆+ 7−→ ∆+

∆− 7−→ λ

.

To see that ψ results in all the elements of Σ3{λ,∆+,∆−}, and thus is surjective, we
notice that regardless of the respective order of ψ(α+) and ψ(α−) they always generate
the whole permutation group as we wished. The options are:

ψ(α+) ψ(α−) Result

2 3 Two permutations of different order generate Σ3

3 2 Two permutations of different order generate Σ3

2 2 Two different permutations of order 2 generate Σ3

We claim that ψ is injective. Let α : Spin(8) → Spin(8) be an automorphism such
that ψ(α) = IdΣ3 , namely ψ(α)(ρ) = ρ for every ρ = λ,∆+,∆−. It is enough to show
that α is an inner automorphism to ensure the desired result.

The above means that we have [λ ◦ α] = [λ], they are equivalent representations.
Thus, the following diagram commutes:

Spin(8)

λ
��

α // Spin(8)

λ
��

O(8)
χU // O(8)

where χU is a change of basis via certain element U ∈ O(8). We may expand it onto the
following diagram:

Spin(8)

πzzzz

� r

j

%%

α // Spin(8)
lL

jyy

π

$$ $$
SO(8)� r

i

$$

Pin(8)

πyyyy

χŨ // Pin(8)

π

%% %%

SO(8)
lL

izz
O(8)

χU // O(8)
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where both the left and right rhombuses and the lower trapezoid are commutative by
construction, as we have taken Ũ = π−1(U) ∈ Pin(8) that exists because of π being
surjective, and i, j denote the natural inclusions.

If there is justice in this world, the upper trapezoid should be commutative, that is,
j ◦α = χŨ ◦ j. Let β1 = j ◦α, β2 = χŨ ◦ j. What has been said about the commutativity
of the inner diagrams allow us to say:

π ◦ β1 = π ◦ j ◦ α = i ◦ π ◦ α = χU ◦ i ◦ π = χU ◦ π ◦ j = π ◦ χŨ ◦ j = π ◦ β2.

That is, we have the diagram:

Spin(8)
β2
//

β1 //

%%

Pin(8)

π
��

O(8)

but as Spin(8) is connected, it must have image into a connected group of Pin(8), namely
itself. So in fact as i ◦ π = π ◦ j, we have:

Spin(8)
β2
//

β1 //

π
%%

Spin(8) �
� j //

π

��

Pin(8)

π
��

SO(8) �
� i // O(8)

being β1 and β2 morphisms, in particular β1(1) = 1 = β2(1). As we may think these mor-
phisms as a lift of the projection onto SO(8) that have a point in common, basic covering
theory assure that β1 = β2, they are equal and the upper trapezoid is commutative.

Moreover, what we have seen is that we do not need to project onto Pin(8) to get the
equality as this holds already in Spin(8), and thus in fact α = χŨ , it is a conjugation by an

element Ũ ∈ Pin(8). We have that for every element x ∈ Spin(8) it holds α(x) = ŨxŨ−1.
It is enough to see that Ũ ∈ Spin(8) to obtain that α is a conjugation in the desired way,
and thus an inner automorphism.

Suppose that it is not an inner automorphism, or equivalently Ũ /∈ Spin(8). By
Theorem 4, we can write Ũ = e1θ for some θ ∈ Spin(8). As a conjugation by an element
of Spin(8) leads to equivalent outer automorphisms, we have that α = χe1 and must
only check how the conjugation acts. However, choosing ∆+ we have that:

∆+ ◦ χe1(e1 · · · e8) = ∆+(e1e1 · · · e8(−e1)) = ∆+(−e1 · · · e8) = −IdGL8(R),

that does not fix the representation ∆+, whereas we had started with ∆+◦α = ψ(α)(∆+) =
∆+. As this is a contradiction, we must have that Ũ ∈ Spin(8), as we claimed.

Example 5. It is enlightening to see how ψ : InnR(Spin(8)) → Σ3{λ,∆+,∆−}, the
analogous homomorphism, works. For any invertible u ∈ Spin(8)×, this is simply the
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diagrams below:

Spin(8)

χu

��

ρ // GL8(C)

χρ(u)

��
Spin(8)

ρ // GL8(C)

, completed as h

χu
��

ρ // ρ(h)

χρ(u)
��

uhu−1 ρ // ρ(u)ρ(h)ρ(u)−1

Note how the representations ρ and ρ ◦ χu are trivially equivalent.

5.2 The Fundamentals of Triality

In this section we recall the concept of duality and define the concept of triality.

Definition 30. Let U , V be two vector spaces over a field K. We say that there is a
duality between them if there exists a non degenerate linear map:

f : U ⊗ V −→ K.

The non degeneracy is expressed as the two following conditions:

f(u⊗ v) = 0 for every u ⇐⇒ v = 0,

f(u⊗ v) = 0 for every v ⇐⇒ u = 0.

Equivalently, we may have a non degenerate bilinear map f : U × V → K.

Example 6. The canonical example of a duality occurs between a K vector space U and
its dual U∗, where the linear function is the so called incidence:

j : U ⊗ U∗ −→ K
v ⊗ w 7−→ w(v)

The characterization of a duality over finite dimensional vector spaces is relatively
straightforward.

Proposition 22. Let U , V be two finite dimensional vector spaces over a field K with
a duality f : U ⊗V → K. It exists an isomorphism ϕ : V → U∗ that makes the following
diagram commute:

U ⊗ V
IdU⊗ϕ

��

f // K

U ⊗ U∗

j
;;

Proof. Define:
ϕ : V −→ U∗

v 7−→ ϕ(v) : U −→ K
u 7−→ f(u⊗ v)

The non degeneracy conditions imply that ϕ is injective, and thus dim(V ) ≤ dim(U∗) =
dim(U). Interchanging the roles of U and V , we obtain that dim(U) ≤ dim(V ∗) =
dim(V ). As so, dim(U) = dim(V ) and ϕ is an isomorphism, that makes the diagram
commute by definition.
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So in fact a duality is essentially the relation between a vector space and its dual.
This relation translates to a matrix level to taking the transposed of the original matrix.

Definition 31. Let V1, V2, V3 be three finite dimensional vector spaces over a field K.
We say that there is a triality between them if there exists a non degenerate linear map:

f : V1 ⊗ V2 ⊗ V3 −→ K.

The non degeneracy is expressed as the three following conditions:

f(v1 ⊗ v2 ⊗ v3) = 0 for every v1 ⇐⇒ v2 = 0 or v3 = 0,

f(v1 ⊗ v2 ⊗ v3) = 0 for every v2 ⇐⇒ v1 = 0 or v3 = 0,

f(v1 ⊗ v2 ⊗ v3) = 0 for every v3 ⇐⇒ v1 = 0 or v2 = 0.

In particular, we have a duality for every two pairs from V1, V2, V3.

Example 7. 1. Consider K = V1 = V2 = V3 = R with:

f : R⊗ R⊗ R −→ R
x⊗ y ⊗ z 7−→ xyz

This is obviously a triality.

2. Consider K = R, V1 = V2 = V3 = C with:

f : C⊗ C⊗ C −→ R
x⊗ y ⊗ z 7−→ <(xyz)

By letting x = x1+ix2, y = y1+iy2, z = z1+iz2 and doing a simple calculation, we
obtain that <(xyz) = x1y1z1 − x2y2z1 − x2y1z2 − x1y2z2. We will see the property
for the first component, the others are analogous. If either y = 0 or z = 0, clearly
this is zero. Conversely, let f(x ⊗ y ⊗ z) = 0 for all x ∈ C and without loss of
generality take y 6= 0 (say y1 6= 0). By choosing x accordingly, we have:

x1 = 1, x2 = 0 =⇒ y1z1 = y2z2,

x1 = 0, x2 = 1 =⇒ y2z1 = −y1z2,

and thus y1z
2
1 = y2z1z2 = −y1z

2
2, that is, z2

1 = −z2
2, which is only possible if

z1 = z2 = 0, as we wished. This is then a triality.

3. Consider K = R, V1 = V2 = V3 = H with:

f : H⊗H⊗H −→ R
x⊗ y ⊗ z 7−→ <(xyz)

The equivalent reasoning as before (expanding in 1, i, j, k and imposing the con-
ditions) shows that this is a triality.
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Observation 13. It would seem that having a triality is not as easy as having a dual-
ity, since if we have the former between V1, V2, V3, say f , then this same mapping
induces a duality between Vi and Vj for every i, j = 1, 2, 3, i 6= j. In particular,
dim(V1) = dim(V2) = dim(V3) and Proposition 22 characterizes each and every one
of these dualities.

Consider now a triality between the finite dimensional R vector spaces V1, V2, V3,
say f : V1 ⊗ V2 ⊗ V3 −→ R. Define:

f̃ : V1 ⊗ V2 −→ V ∗3
v1 ⊗ v2 7−→ f̃(v1 ⊗ v2) : V3 −→ R

v3 7−→ f(v1 ⊗ v2 ⊗ v3)

the natural way of obtaining elements of V ∗3 via f . Choose a non zero e1 ∈ V1 and define:

ϕ : V2 −→ V ∗3
v2 7−→ f̃(e1 ⊗ v2)

which is injective because of the non degeneracy conditions over f and since V2 and V ∗3
have the same dimension is thus an isomorphism. Choose a non zero e2 ∈ V2 and define:

ψ : V1 −→ V ∗3
v1 7−→ f̃(v1 ⊗ e2)

which is also an isomorphism.

Definition 32. Let f : V1⊗V2⊗V3 −→ R be a triality over three finite dimensional real
vector spaces and f̃ , ϕ, ψ as above. We define Φ = f̃ ◦ (ψ ⊗ ϕ)−1, the map that makes
the following diagram commute:

V1 ⊗ V2

ψ⊗ϕ
��

f̃ // V ∗3

V ∗3 ⊗ V ∗3
Φ

::

This map is a “product” in V3 in the sense that it gives him a structure of R algebra.

Proposition 23. Let f : V1 ⊗ V2 ⊗ V3 −→ R be a triality over three finite dimensional
real vector spaces. Then Φ : V ∗3 ⊗V ∗3 → V ∗3 has an identity element and no zero divisors.

Proof. We claim that e = f̃(e1 ⊗ e2) is the identity element. Let w ∈ V ∗3 , we have that:

Φ(e⊗ w) = Φ(f̃(e1 ⊗ e2)⊗ w) = Φ(ψ(e1)⊗ w) = Φ(ψ(e1)⊗ ϕ(ϕ−1(w)))

= Φ((ψ ⊗ ϕ)(e1 ⊗ ϕ−1(w))) = f̃(e1 ⊗ ϕ−1(w)) = ϕ(ϕ−1(w)) = w,

and in analogous fashion Φ(w ⊗ e) = w, and thus e is a bilateral unit.
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Suppose that for some w, τ ∈ V ∗3 we had Φ(w⊗ τ) = 0. As ψ⊗ϕ is an isomorphism,
there exist v1 ∈ V1 and v2 ∈ V2 with ψ(v1) = w and ϕ(v2) = τ . Then:

0 = Φ(w⊗τ) = Φ((ψ⊗ϕ)(v1⊗v2) = f̃(v1⊗v2) =⇒ f(v1⊗v2⊗v3) = 0 for every v3 ∈ V3,

and thus because of the non degeneracy of f we have that v1 = 0 or v2 = 0, that is,
w = 0 or τ = 0.

This results guarantees that V ∗3 is in fact a finite dimensional real division algebra.
These algebras are extremely rare.

Theorem 8. Every finite dimensional real division algebra has dimension 1, 2, 4 or 8.

Proof. This is a difficult result to obtain. Heinz Hopf proved in [14] that the dimen-
sion must be a power of 2 and Raoul Bott, John Milnor and Michel Kervaire proved
independently in [15] and [16] that the dimension must be less than or equal to 8.

In particular, we may have a triality only in dimension 1, 2, 4 or 8. As seen in Example
7, we already know trialities in the lower dimensions, taking the division algebras R, C
and H as our starting point.

Definition 33. We define the octonions as the only real normed division algebra of
dimension 8, and denote them by O.

This is well defined because as shown in [6] there are only four real normed division
algebras, the first three being R, C and H. However, this is certainly not the most useful
way to define the octonions. To this effect, we refer to the characterizations in [6] and
[1]. We will see that the triality induced by Spin(8) is precisely the same as the triality
induced by the octonions in the sense of Example 7.

5.3 The Triality Induced by Spin(8)

In this section we will construct a triality that iduces a real division algebra of dimension
8. This will be done taking Spin(8) as our starting point and using the unique prop-
erty provided by Theorem 7. For this, we will need a few extra results concerning the
representations of Spin(8).

Proposition 24. For the irreducible representations of Spin(8) we have that:

1. The representation λ is self dual, that is, λ∗ = λ.

2. The product of the representations ∆± yields another representation having λ as
a direct term in a sum decomposition, ∆+ ⊗ ∆− = λ + Θ, where Θ is some
representation.

3. The group Spin(8) acts transitively over S7 × S7 ⊂ λ×∆+.

Proof. It can be found in [1].
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Note that in the last item we make the abuse of notation of interpreting the repre-
sentations λ, ∆+, ∆− as the vector spaces the group acts on, instead of the morphism
as we have been doing.

Observation 14. Note that:

λ⊗∆+ ⊗∆− = λ⊗ (λ+ Θ) = λ⊗ λ+ λ⊗Θ,

and as λ = λ∗, we in fact have that the first term is the duality µ : λ ⊗ λ∗ → R. In
particular, this first term is linear and equivariant, since for every g ∈ Spin(8) and
x, y ∈ λ = λ∗ = R8 we have that:

µ(g · (x⊗ y)) = µ((λ⊗ λ)(g)(x⊗ y)) = µ(λ(g)(x)⊗ λ(g)(y)) = λ(g)(y) · λ(g)(x)

= λ(g)(y · x) = λ(g)(µ(x⊗ y)) = g · µ(x⊗ y).

Definition 34. For Spin(8), we define f : λ⊗∆+⊗∆− → R as the natural restriction on
λ⊗λ. That is, given v = (v1⊗v2⊗v3) ∈ λ⊗∆+⊗∆− with v = w = (w1⊗w2)+(w3⊗w4) ∈
λ⊗ λ+ λ⊗Θ, we have that f(v) = µ(w1 ⊗ w2) ∈ R.

We obviously have that f is linear, non zero (since a duality is non zero) and it is
Spin(8) equivariant.

Theorem 9. The map f : λ⊗∆+ ⊗∆− → R is a triality.

Proof. If any element x, y, z = 0, then obviously f(x⊗ y ⊗ z) = 0.
Suppose there exist non zero x, y ∈ R8 with f(x ⊗ y ⊗ z) = 0 for every z ∈ R, or

equivalently f̃(x⊗y) = 0 as an element of ∆−. By linearity f̃ ((x/ ||x||)⊗ (y/ ||y||)) = 0,
and without loss of generality we may take ||x|| = ||y|| = 1, that is x, y ∈ S7. Since f 6= 0,
there exist x0, y0, z0 ∈ R8 for which f(x0 ⊗ y0 ⊗ z0) 6= 0, or equivalently f̃(x0 ⊗ y0) 6= 0.
As before, we may take ||x0|| = ||y0|| = ||z0|| = 1, or equivalently x0, y0, z0 ∈ S7.

Considering Proposition 24, there exists an element g ∈ Spin(8) such that g · x = x0

and g · y = y0, and thus:

0 = f̃(x⊗ y) = g · f̃(x⊗ y) = f̃(g · x⊗ g · y) = f̃(x0 ⊗ y0) 6= 0,

which is a contradiction. There are no such elements x, y ∈ R8.
Using Theorem 7, for any of the other two possibilities we may now use an outer

automorphism to permute the representations in a way that they suit the case we just
proved:

f ◦ α(2,3) : λ⊗∆+ ⊗∆−
(2,3)←→ λ⊗∆− ⊗∆+ −→ R

x⊗ ⊗ z 7−→ x⊗ ⊗ z 7−→ f(x⊗ ⊗ z),
f ◦ α(1,2,3) : λ⊗∆+ ⊗∆−

(1,2,3)←→ ∆− ⊗ λ⊗∆+ −→ R
⊗ y ⊗ z 7−→ ⊗ y ⊗ z 7−→ f( ⊗ y ⊗ z).

These compositions are also equivariant, since conjugation by an element of Spin(8)
maintains the equivalence class of the automorphism. We can thus apply the same
argument as before, obtaining the desired result.
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This triality induces by Proposition 23 a real division algebra of dimension 8. The
very important result that ends this work is:

Theorem 10. Let λ, ∆+, ∆− be the irreducible representations of Spin(8). We can
identify each and every one of these representations with O.

Proof. It can be found in [1].

Observation 15. Note that this is done while preserving all the vector space structure,
and obviously guarantees that the induced (real) division algebra is O. In fact, we have
the commutative diagram:

λ⊗∆+ ⊗∆−
f //

OO
∼=
��

R

R8 ⊗ R8 ⊗ R8
OO
∼=
��

O⊗O⊗O

F

<< with F (x⊗ y ⊗ z) = <(xyz)
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6 Conclusion

The results presented in this work cover several major branches of the Mathematics.
From the Classical groups to Representation Theory, from the definition of the Clifford
algebras to the concept of triality, we saw a glimpse of the modern treatment of a mathe-
matical problem: topology was present in the justification that Spin(8) is a double cover
of SO(8), algebra was present in the vector space structures in which the foundations of
the division algebras rely and even K-Theory was briefly touched in Bott periodicity.

With our feet on the ground, in this work we were able to prove flabbergasting facts.
The relation that lies within the Clifford group Γn and the isometries O(n) is nothing
to be sneezed at, making it even more remarkable that we started by generalising a
mundane sequence of Real algebras. Not to be understated is the recurrent fact that,
as here has been shown, this develops into a double cover of a Classical group, which is
very surprising. Moreover, in the appropriate dimension this double cover happens to
induce a triality, an extremely restrictive and exigent construction. Astonishment is the
only possible reaction.

However, not all is said and done. This summarizes the approach taken by Adams
when dealing with triality and Spin(8), but the major part of the very interesting subject
of the exceptional groups of Lie type has been avoided. It has captivated my mind and
I wish to deepen into this world in future readings.

This work demonstrates how one does not need an extremely deep background to
get to the core of a subject. Before writing the volume you are finishing, I thought
that every mathematical treatise that was to be worth of this name had to start from
basic concepts, be self contained and develop the subject as precisely as was needed.
Needless to say, such thing was impossible with the task at hand. It is fundamental to
have reached the impasse where the understanding of a matter is not subject to all the
nuances of the technical results, this, I consider a personal achievement that alone was
worth the effort.
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